
Documentation 2.2

ZABBIX

10.04.2025

Contents

Zabbix Manual 5
Copyright notice . 5

1. Introduction . 5
1 Manual structure . 5
2 What is Zabbix . 6
3 Zabbix features . 6
4 Zabbix overview . 7
5 What’s new in Zabbix 2.2.0 . 8
6 What’s new in Zabbix 2.2.1 . 29
7 What’s new in Zabbix 2.2.2 . 30
8 What’s new in Zabbix 2.2.3 . 31
9 What’s new in Zabbix 2.2.4 . 32
10 What’s new in Zabbix 2.2.5 . 33
11 What’s new in Zabbix 2.2.6 . 33
12 What’s new in Zabbix 2.2.7 . 34
13 What’s new in Zabbix 2.2.8 . 34
14 What’s new in Zabbix 2.2.9 . 35
15 What’s new in Zabbix 2.2.10 . 35
16 What’s new in Zabbix 2.2.11 . 36
17 What’s new in Zabbix 2.2.12 . 36
18 What’s new in Zabbix 2.2.13 . 36
19 What’s new in Zabbix 2.2.15 . 37
20 What’s new in Zabbix 2.2.16 . 37
21 What’s new in Zabbix 2.2.17 . 37
22 What’s new in Zabbix 2.2.18 . 38
23 What’s new in Zabbix 2.2.19 . 38
24 What’s new in Zabbix 2.2.20 . 38
25 What’s new in Zabbix 2.2.21 . 38
26 What’s new in Zabbix 2.2.22 . 38
27 What’s new in Zabbix 2.2.23 . 38
28 What’s new in Zabbix 2.2.24 . 38

2. Zabbix concepts . 39
1 Zabbix definitions . 39
2 Server . 41
3 Agent . 42
4 Proxy . 45
5 Java gateway . 46
6 Sender . 48
7 Get . 50

3. Installation . 50
1 Getting Zabbix . 50
2 Requirements . 51
3 Installation from packages . 58
4 Installation from sources . 60
5 Upgrade procedure . 68
6 Known issues . 69
7 Template changes . 70
8 Upgrade notes for 2.2.0 . 71
9 Upgrade notes for 2.2.1 . 75
10 Upgrade notes for 2.2.2 . 75

1

11 Upgrade notes for 2.2.3 . 75
12 Upgrade notes for 2.2.4 . 76
13 Upgrade notes for 2.2.5 . 76
14 Upgrade notes for 2.2.6 . 77
15 Upgrade notes for 2.2.7 . 77
16 Upgrade notes for 2.2.8 . 77
17 Upgrade notes for 2.2.9 . 77
18 Upgrade notes for 2.2.10 . 78
19 Upgrade notes for 2.2.11 . 78
20 Upgrade notes for 2.2.12 . 79
21 Upgrade notes for 2.2.13 . 79
22 Upgrade notes for 2.2.14 . 79
23 Upgrade notes for 2.2.15 . 79
24 Upgrade notes for 2.2.16 . 79
25 Upgrade notes for 2.2.17 . 80
26 Upgrade notes for 2.2.18 . 80
27 Upgrade notes for 2.2.19 . 80
28 Upgrade notes for 2.2.20 . 80
29 Upgrade notes for 2.2.21 . 80
30 Upgrade notes for 2.2.22 . 80
31 Upgrade notes for 2.2.23 . 80

4. Quickstart . 81
1 Login and configuring user . 81
2 New host . 84
3 New item . 85
4 New trigger . 87
5 Receiving problem notification . 88
6 New template . 91

5. Zabbix appliance . 93
6. Configuration . 97

1 Hosts and host groups . 102
2 Items . 107
3 Triggers . 225
4 Events . 234
5 Visualisation . 235
6 Templates . 253
7 Notifications upon events . 253
8 Macros . 282
9 Users and user groups . 284

7. IT services . 288
8. Web monitoring . 291

1 Web monitoring items . 296
2 Real life scenario . 297

9. Virtual machine monitoring . 303
Virtual machine discovery key fields . 307

10. Maintenance . 308
11. Regular expressions . 311
12. Event acknowledgement . 314
13. Configuration export/import . 315

Groups . 316
Hosts . 316

14. Discovery . 322
1 Network discovery . 322
2 Active agent auto-registration . 329
3 Low-level discovery . 331

15. Distributed monitoring . 343
1 Proxies . 344
2 Nodes . 346

16. Web interface . 350
1 Frontend sections . 350
2 User profile . 406
3 Global search . 410
4 Frontend maintenance mode . 412

2

5 Page parameters . 413
6 Definitions . 413
7 Creating your own theme . 415
8 Debug mode . 415

17. API . 416
Method reference . 421
Appendix 1. Reference commentary . 773
Appendix 2. Changes from 2.0 to 2.2 . 779
Zabbix API changes in 2.2 . 785

18. Appendixes . 790
1 Frequently asked questions / Troubleshooting . 790
2 Installation . 791
3 Daemon configuration . 794
4 Protocols . 819
5 Items . 820
6 Triggers . 833
7 Macros . 850
8 Setting time periods . 904
9 Command execution . 904
10 Recipes for monitoring . 905
11 Performance tuning . 906
12 Version compatibility . 909
13 Database error handling . 909
14 Zabbix sender dynamic link library for Windows . 909
15 Other issues . 910

Zabbix manpages 910
zabbix_agentd . 911

NAME . 911
SYNOPSIS . 911
DESCRIPTION . 911
FILES . 911
SEE ALSO . 911
AUTHOR . 911
Index . 911

zabbix_get . 912
NAME . 912
SYNOPSIS . 912
DESCRIPTION . 912
EXAMPLES . 912
SEE ALSO . 912
AUTHOR . 912
Index . 913

zabbix_proxy . 913
NAME . 913
SYNOPSIS . 913
DESCRIPTION . 913
FILES . 914
SEE ALSO . 914
AUTHOR . 914
Index . 914

zabbix_sender . 914
NAME . 914
SYNOPSIS . 914
DESCRIPTION . 914
EXIT STATUS . 916
EXAMPLES . 916
SEE ALSO . 916
AUTHOR . 916
Index . 916

zabbix_server . 917
NAME . 917
SYNOPSIS . 917

3

DESCRIPTION . 917
FILES . 917
SEE ALSO . 917
AUTHOR . 917
Index . 918

4

Zabbix Manual

Welcome to the user manual for Zabbix 2.2 software. These pages are created to help users successfully manage their monitoring
tasks with Zabbix, from the simple to the more complex.

Copyright notice

Zabbix documentation is NOT distributed under a GPL license. Use of Zabbix documentation is subject to the following terms:

You may create a printed copy of this documentation solely for your own personal use. Conversion to other formats is allowed as
long as the actual content is not altered or edited in any way. You shall not publish or distribute this documentation in any form or on
any media, except if you distribute the documentation in a manner similar to how Zabbix disseminates it (that is, electronically for
download on a Zabbix web site) or on a USB or similar medium, provided however that the documentation is disseminated together
with the software on the same medium. Any other use, such as any dissemination of printed copies or use of this documentation,
in whole or in part, in another publication, requires the prior written consent from an authorized representative of Zabbix. Zabbix
reserves any and all rights to this documentation not expressly granted above.

1. Introduction

Please use the sidebar to access content in the Introduction section.

1 Manual structure

Structure

The content of this Zabbix 2.2 manual is divided into sections and subsections to provide easy access to particular subjects of
interest.

When you navigate to respective sections, make sure that you expand section folders to reveal full content of what is included in
subsections and individual pages.

Cross-linking between pages of related content is provided as much as possible to make sure that relevant information is not
missed by the users.

Sections

Introduction provides general information about current Zabbix software. Reading this section should equip you with some good
reasons to choose Zabbix.

Zabbix concepts explain the terminology used in Zabbix and provides details on Zabbix components.

Installation and Quickstart sections should help you to get started with Zabbix. Zabbix appliance is an alternative for getting a
quick taster of what it is like to use Zabbix.

Configuration is one of the largest and more important sections in this manual. It contains loads of essential advice about how to set
up Zabbix to monitor your environment, from setting up hosts to getting essential data to viewing data to configuring notifications
and remote commands to be executed in case of problems.

IT services section details how to use Zabbix for a high-level overview of your monitoring environment.

Web monitoring should help you learn how to monitor the availability of web sites.

Virtual machine monitoring is new in Zabbix 2.2 and presents a how-to for configuring VMware environment monitoring.

Maintenance, Regular expressions, Event acknowledgement and XML export/import are further sections that reveal how to use
these various aspects of Zabbix software.

Discovery contains instructions for setting up automatic discovery of network devices, active agents, file systems, network inter-
faces, etc.

Distributed monitoring deals with the possibilities of using Zabbix in larger and more complex environments.

Web interface contains information specific for using the web interface of Zabbix.

API section presents details of working with Zabbix API.

Detailed lists of technical information are included in Appendixes. This is where you will also find a FAQ section.

5

2 What is Zabbix

Overview

Zabbix was created by Alexei Vladishev, and currently is actively developed and supported by Zabbix SIA.

Zabbix is an enterprise-class open source distributed monitoring solution.

Zabbix is software that monitors numerous parameters of a network and the health and integrity of servers. Zabbix uses a flexible
notification mechanism that allows users to configure e-mail based alerts for virtually any event. This allows a fast reaction to
server problems. Zabbix offers excellent reporting and data visualisation features based on the stored data. This makes Zabbix
ideal for capacity planning.

Zabbix supports both polling and trapping. All Zabbix reports and statistics, as well as configuration parameters, are accessed
through a web-based frontend. A web-based frontend ensures that the status of your network and the health of your servers can be
assessed from any location. Properly configured, Zabbix can play an important role in monitoring IT infrastructure. This is equally
true for small organisations with a few servers and for large companies with a multitude of servers.

Zabbix is free of cost. Zabbix is written and distributed under the GPL General Public License version 2. It means that its source
code is freely distributed and available for the general public.

Commercial support is available and provided by Zabbix Company.

Learn more about Zabbix features.

Users of Zabbix

Many organisations of different size around the world rely on Zabbix as a primary monitoring platform.

3 Zabbix features

Overview

Zabbix is a highly integrated network monitoring solution, offering a multiplicity of features in a single package.

Data gathering

• availability and performance checks
• support for SNMP (both trapping and polling), IPMI, JMX, VMware monitoring
• custom checks
• gathering desired data at custom intervals
• performed by server/proxy and by agents

Flexible threshold definitions

• you can define very flexible problem thresholds, called triggers, referencing values from the backend database

Highly configurable alerting

• sending notifications can be customized for the escalation schedule, recipient, media type
• notifications can be made meaningful and helpful using macro variables
• automatic actions include remote commands

Real-time graphing

• monitored items are immediately graphed using the built-in graphing functionality

Web monitoring capabilities

• Zabbix can follow a path of simulated mouse clicks on a web site and check for functionality and response time

Extensive visualisation options

• ability to create custom graphs that can combine multiple items into a single view
• network maps
• custom screens and slide shows for a dashboard-style overview
• reports
• high-level (business) view of monitored resources

Historical data storage

6

http://www.zabbix.com/support.php

• data stored in a database
• configurable history
• built-in housekeeping procedure

Easy configuration

• add monitored devices as hosts
• hosts are picked up for monitoring, once in the database
• apply templates to monitored devices

Use of templates

• grouping checks in templates
• templates can inherit other templates

Network discovery

• automatic discovery of network devices
• agent auto registration
• discovery of file systems, network interfaces and SNMP OIDs

Fast web interface

• a web-based frontend in PHP
• accessible from anywhere
• you can click your way through
• audit log

Zabbix API

• Zabbix API provides programmable interface to Zabbix for mass manipulations, 3rd party software integration and other
purposes.

Permissions system

• secure user authentication
• certain users can be limited to certain views

Full featured and easily extensible agent

• deployed on monitoring targets
• can be deployed on both Linux and Windows

Binary daemons

• written in C, for performance and small memory footprint
• easily portable

Ready for complex environments

• remote monitoring made easy by using a Zabbix proxy

4 Zabbix overview

Architecture

Zabbix consists of several major software components, the responsibilities of which are outlined below.

Server

Zabbix server is the central component to which agents report availability and integrity information and statistics. The server is
the central repository in which all configuration, statistical and operational data are stored.

Database storage

All configuration information as well as the data gathered by Zabbix is stored in a database.

Web interface

For an easy access to Zabbix from anywhere and from any platform, the web-based interface is provided. The interface is part of
Zabbix server, and usually (but not necessarily) runs on the same physical machine as the one running the server.

7

Note:
Zabbix web interface must run on the same physical machine if SQLite is used.

Proxy

Zabbix proxy can collect performance and availability data on behalf of Zabbix server. A proxy is an optional part of Zabbix
deployment; however, it may be very beneficial to distribute the load of a single Zabbix server.

Agent

Zabbix agents are deployed on monitoring targets to actively monitor local resources and applications and report the gathered
data to Zabbix server.

Data flow

In addition it is important to take a step back and have a look at the overall data flow within Zabbix. In order to create an item that
gathers data you must first create a host. Moving to the other end of the Zabbix spectrum you must first have an item to create a
trigger. You must have a trigger to create an action. Thus if you want to receive an alert that your CPU load it too high on Server X
you must first create a host entry for Server X followed by an item for monitoring its CPU, then a trigger which activates if the CPU
is too high, followed by an action which sends you an email. While that may seem like a lot of steps, with the use of templating it
really isn’t. However, due to this design it is possible to create a very flexible setup.

5 What’s new in Zabbix 2.2.0

5.1 Improved web monitoring 5.1.1 Templated web scenarios

Web scenarios previously could not be template members so it used to be quite difficult to apply some scenario to multiple hosts.

Starting with Zabbix 2.2.0 web scenarios can be template members in the same way as items, triggers, graphs, screens and low
level discovery rules. If a template is applied to several hosts, all hosts will inherit the web scenarios in the template.

In the frontend, web scenarios are now created in Configuration → Templates and Configuration → Hosts respectively, similarly to
the way items, triggers etc. are created. A separate Configuration → Web menu exists no more.

5.1.2 New configuration parameters

The web scenario configuration form has gained new parameters.

8

Retries of web scenario steps

A new Retries parameter is introduced, allowing to set the number of attempts for executing web scenario steps in case of timeouts
and network-related issues.

Use of HTTP proxy

The use of an HTTP proxy can now be specified directly in the web scenario configuration form.

5.1.3 More options with variables

Regular expression matching

In addition to the standard variable syntax of {variable}=value now there is also support for a {variable}=regex:<regular expres-
sion> syntax for finding matches on a web page to a regular expression. The regex: string indicates that what follows is treated
as a regular expression.

For example,

{hostid}=regex:hostid is ([0-9]+)

is looking for a ”//hostid is //” string and then will extract any number that follows this string and store it in the variable.

Variables on step level

Variables can now be defined not only on a scenario level, but on a step level as well. A step-level variable overrides a scenario-level
variable or the variables of the previous step.

9

5.1.4 Improved error logging

Previously, when server or proxy performed web monitoring and there was a failure, it only mentioned scenario and step names,
for example:

web scenario step "scenario:step" error: error doing curl_easy_perform: Couldn't resolve host name

With templated web monitoring the need to know which host had the problem is bigger, and thus the messages now include that
information as well:

cannot process step "step" of web scenario "scenario" on host "host": Couldn't resolve host name

Additionally, more error messages will be printed at debug level 3.

5.2 Virtual machine monitoring A new feature in Zabbix 2.2.0 is VMware virtual machine monitoring. It allows to monitor
VMware vCenter and vSphere installations for various VMware hypervisor and virtual machine properties and statistics.

Zabbix can use low-level discovery rules to automatically discover VMware hypervisors and virtual machines and create hosts to
monitor them, based on pre-defined host prototypes. See Virtual machine monitoring for more detailed information.

5.3 Support for IPMI discrete sensors Previously Zabbix supported reading only IPMI threshold (analog) sensors. Zabbix 2.2.0
adds reading states of IPMI discrete sensors. A new function band() (bitwise AND) and an improved function count() can be used
for testing state of bits of discrete sensors.

5.4 Loadable modules Loadable modules, new in Zabbix 2.2, offer a way of extending Zabbix functionality that is more
performance-minded than the user parameter option or external checks. In addition to greater performance and the ability to
implement any logic, modules have the potential to be developed and shared within the Zabbix community.

Supported for Unix-like systems, a loadable module is basically a shared library used by Zabbix server, proxy or agent and loaded on
startup. To deal with the modules, Zabbix server, proxy and agent support two new configuration parameters: LoadModulePath
and LoadModule. The modules must be located in a directory specified by LoadModulePath. It is allowed to include multiple
LoadModule parameters.

A sample module written in C is included in Zabbix 2.2 under src/modules/dummy. It can be used as a template for your own
modules. To learn more about the loadable module option, visit the respective documentation section.

5.5 Referencing item values in graph names Referencing item values in graph names is made possible starting with Zabbix
2.2 by using the standard {host:key.func(param)} macro syntax.

Similarly to map labels, only avg(), last(),max() andmin() functions with seconds as parameter are supported within this macro
in graph names. Value mapping is supported as well.

10

Additionally, LLD macros are supported in the parameters of an item key, making it possible to use a macro like {Cisco
switch:ifAlias[{#SNMPINDEX}].last()}

{HOST.HOST<1-9>} macro can be used to reference a host: {{HOST.HOST}:ifAlias[{#SNMPINDEX}].last()}. As the graph
may contain items from several hosts, {HOST.HOST} and {HOST.HOST1} will refer to the first host, {HOST.HOST2} to the second
and so on.

5.6 Notifications on unsupported items, unknown triggers In previous Zabbix versions it was not possible to be notified
on unsupported items. If some item turned unsupported (and stopped gathering data) it could stay unnoticed for a long period of
time. The only way of spotting an unsupported item was to look at the list of items all the time, which was rather impractical.

Starting with Zabbix 2.2 a new concept of internal events is introduced. Internal events happen not only when items become
unsupported, but also when a low-level discovery rule becomes unsupported or a trigger goes into an unknown state.

The benefit of having internal events is that users can configure actions based on these events, similarly to actions based on trigger
events, and receive notifications for unsupported items (unsupported LLD rules, unknown triggers). For more information, see a
how-to section for configuring notifications on unsupported items.

5.7 Value mapping for string and float type data Value mapping in Zabbix 2.0 was available for numeric integer data types
only. In 2.2.0, full support for character and numeric float types has been implemented. For example, a backup related value map
could be:

• F → Full
• D → Differential
• I → Incremental

In Monitoring → Latest data, displayed values are shortened to 20 symbols. If value mapping is used, this shortening is not applied
to the mapped value, but only to the raw value separately (displayed in parenthesis).

Note that value mapping is not available for text or log data types.

5.8 Trigger length limit increased Maximum length limit for trigger expressions was increased from 255 to 2048. Note that
this is the ”raw” limit, actual expression string may be notably longer in most cases.

5.9 Some trigger function parameters can be empty A more friendly trigger expression parser allows to omit optional
parameters in trigger functions. For example, trigger function ”last(#1)” can be written as ”last()”, ”last(#1,1h)” - as ”last(,1h)”.

It also works for functions of calculated items.

5.10 Network map improvements 5.10.1 Filtering trigger severity in maps

Map configuration has gained the option of defining the lowest trigger severity. This way only triggers on the defined level and
above will be displayed in the map, and triggers below the defined severity will not be displayed.

11

For example, only triggers starting with the Warning level can be displayed. Information and Not classified level triggers will not
be reflected in the map.

The level selected in map configuration can be optionally overwritten when viewing maps in Monitoring → Maps:

12

5.10.2 Map label length limit increased

Maximum length limit for map element labels and link labels was increased from 255 to 2048.

5.10.3 Icons in map element properties now sorted

Previously, when configuring a map element, icons were listed in the order in which they had been created. Now they will be sorted
alphabetically.

5.11 Finer control over housekeeping tasks Previously the Zabbix housekeeper process could be completely disabled, using
the DisableHousekeeping server configuration option. That was the recommended course of action if housekeeping encountered
problems with, say, a large history table. That, however, also meant disabling all housekeeping tasks, while the real problem was
only with one.

In Zabbix 2.2 a finer control over housekeeping tasks is introduced. The DisableHousekeeping parameter is not supported anymore.
Instead, there is a fine-level control over housekeeping tasks in the frontend, in Administration → General → Housekeeper, where
housekeeping tasks can be enabled/disabled on a per-task basis.

5.12 Permission improvements Previously, if a user (through two different user groups) had both ”Read” and ”Read-write”
permissions to a specific host, the host was only ”Read” to them. That was very confusing.

In Zabbix 2.2 that has been fixed so that ”Read-write” permissions have precedence over ”Read”. Now only “Deny” can restrict
permissions to a host.

5.13 Linking templates with the same application name Previously it was not possible to link templates having the same
application name to the same host (or template). This is allowed in Zabbix 2.2.

5.14 Accessible history data for disabled hosts Disabled hosts are made available for host selection in Monitoring → Latest
data as well as in Monitoring → Graphs and Monitoring → Web. Access to latest data includes access to graphs and item value lists
for disabled hosts.

Where access to disabled host information is available, they are highlighted in red in host dropdowns and lists:

13

5.15 Changed maintenance period logic Previously, a maintenance period for every second/third/etc day would first occur
on the second/third/etc day after the Active since day. Now the first occurrence will take place on the Active since day and then
every second/third/etc day.

5.16 SNMPv3 monitoring

5.16.1 Context name support

Optional setting of SNMPv3 context name is now supported in item, item prototype, low-level discovery rule or network discovery
rule configuration. User macros are resolved in this field.

5.16.2 SHA/AES protocol support

Support for SHA authentication/AES privacy protocols has been added. Previously only MD5 authentication/DES privacy protocols
were supported.

When configuring an SNMPv3 item, item prototype, low-level discovery rule or network discovery rule, the SHA option is additionally

14

available for selection if authNoPriv is chosen as Security level or both SHA and AES options are available if authPriv is chosen as
Security level:

5.17 Ability to extract matching part of a regular expression The purpose of the improvement is to allow extracting only
the interesting value from a target instead of returning the whole line when a regular expression match is found.

Zabbix already had the ability to search files, logs or web pages for a regular expression match. This ability was offered by such
agent items as vfs.file.regexp[], log[], logrt[] and web.page.regexp[]. So far, however, if a regular expression match
was found, the whole line containing the match was returned.

In Zabbix 2.2 these items have been extended to allow limiting the number of lines searched and to be able to extract desired
values from these lines. This has been accomplished by adding to the items some additional parameters: <start line>, <end line>,
<output>. For example, the vfs.file.regexp[] item now has gained all 3 additional parameters:

vfs.file.regexp[file, regexp, <encoding>, <start line>, <end line>, <output>]

Whereas <start line> and <end line> are optional parameters allowing to specify the numbers of the beginning and ending lines
in the search, output allows to indicate the subgroup of the match that we may be interested in.

So, for example

vfs.file.regexp[/path/to/some/file,"([0-9]+)$",,3,5,\1]

will allow to return the number of interest residing in the target file at the end of lines 3-5. The reason why Zabbix will return only
the number is because output here is defined by \1 referring to the first and only subgroup of interest: ([0-9]+)

And, with the ability to extract and return a number, the value can be used to define triggers.

Similarly, the other extended items have gained the optional <output> parameter: log[], logrt[] and web.page.regexp[].

Related changes:

• if no match for the regular expression is found, an empty string is returned (instead of EOF)
• vfs.file.regmatch[] has gained the <start line> and <end line> parameters

See also Zabbix agent item documentation.

5.18 Support of internal checks for proxies Previously there was no easy way to monitor health of Zabbix proxies. Starting
with Zabbix 2.2.0 the internal checks of hosts monitored by proxies are now processed by the proxies, allowing to monitor proxy
performance metrics.

The following internal checks are supported by proxies:

• zabbix[proxy_history] (supported only by proxies - the number of values pending to be sent to the server)
• zabbix[boottime]
• zabbix[host,<type>,available]
• zabbix[hosts]
• zabbix[items]
• zabbix[items_unsupported]
• zabbix[java„<param>]
• zabbix[process,<type>,<mode>,<state>] (alerter, db watchdog, escalator, node watcher, proxy poller, timer processes
aren’t supported, but two new processes are supported - data sender and heartbeat sender)

• zabbix[queue,<from>,<to>]
• zabbix[rcache,<cache>,<mode>]
• zabbix[requiredperformance]
• zabbix[uptime]
• zabbix[wcache,<cache>,<mode>] (trends cache is not supported by proxies)

See detailed specifications in internal checks documentation.

5.19 Templates FreeBSD and OpenBSD templates now include network interface discovery rule.

Zabbix server template has been updated to include value cache related items and other entities.

Various services from the agentless template have been split out in individual templates.

All triggers in Template App Zabbix Server and Template App Zabbix Proxy have been updated to be less sensitive and use
hysteresis.

All templates have been updated to use suffixes and aggregate functions.

All OS templates have been updated to include memory graph.

15

5.20 Network discovery changes Starting with Zabbix 2.2.0 hosts discovered on different proxies will be always treated as
different hosts. This allows to perform discovery on the same IP ranges used by different subnets.

5.21 Items 5.21.1 Database monitoring is now official

ODBC monitoring has been around in Zabbix for quite some time, but so far it has lacked proper documentation and has had the
status of an unofficial feature. Now the item is finally documented and can boast the status of an official feature.

Also, item configuration for database monitoring in the frontend is improved. Previously, several parameters - DSN, username,
password and SQL query were entered into a single field. Now the DSN is moved to the second parameter of the item key, while
username and password get their own separate fields and only the SQL query is left in the original field, allowing to enter a multiline
query with better readability.

5.21.2 Support of scientific notation in received values

Items with ”Numeric (float)” type of information now support receiving values and specifying a multiplier in scientific notation. E.g.
1.234e+5.

5.21.3 Improved items

logrt on Windows now supports multibyte path names. E. g. logrt[c:\логи\app1.*].
system.swap.size on Windows and Tru64 now supports the ”used” parameter. E.g. system.swap.size[all,used].

eventlog now supports Windows eventlog messages from the new eventing system log (”Windows Eventing 6.0”) introduced with
Windows Vista.

eventlog now supports regular expressions in source filter.

5.21.4 Changed items

zabbix[items] internal check now returns the number of monitored items, instead of the total number of items in database.

5.21.5 New items

system.swap.size is now supported on AIX.

net.if.discovery is now supported on FreeBSD, OpenBSD and NetBSD.

system.sw.arch is now supported on NetBSD, OpenBSD, Mac OS X, AIX, HP-UX, Solaris, Tru64, FreeBSD and Windows.

proc.num, net.if.in, net.if.out and net.if.total are now supported on HP-UX. Note: net.if.in, net.if.out and
net.if.total items do not provide statistics of loopback interfaces (e.g. lo0).

sensor is now supported on Linux 2.6+.

zabbix[hosts] internal check returns the number of monitored hosts.

wmi.get is added to Windows agent to provide WMI query support.

5.21.6 Trend calculation

The trend average value calculation for items of unsigned numeric data types was improved. Previously average value was kept
as an integer, thus precision would be lost if change between two values was small. For example, for values going from 1 to 5
average result would be 1. This has been changed to keep the sum of the values and only compute the average when storing it
in the database. Note that the result is still stored as an integer in the database. For example, if item has values 0 and 1, the
average value will be 0, not 0.5.

There is no change for decimal items, average is still computed as a number with decimal part.

5.21.7 Validation changes

A more strict parameter validation by Zabbix agent has been introduced. Whereas previously parameters for items that do not
support parameters would be ignored, now the items will return ZBX_NOTSUPPORTED and become unsupported.

5.22 Trigger functions 5.22.1 Logical functions for testing bits

A new function band() (bitwise AND) is now supported. For example, to test that the most and the least significant bits in byte are
set to 1, a trigger expression could be like

{www.zabbix.com:Power Unit Stat.band(#1,129)}=129

Function count() has been enhanced by adding ”band” to supported operators. For example, to count the number of values for
last 10 minutes having ’110’ (in binary) in the 3 least significant bits, an expression could be

count(600,6/7,"band")

16

where ’6’ is a number to compare with (i.e. ’110’) and ’7’ is a bitmask (i.e. ’111’ in binary).

5.22.2 Time suffix support for testing

Support for standard Zabbix time suffixes (”s”, ”m”, ”h”, ”d” and ”w”) has been added to trigger expression condition test page
and can be used to test values.

5.22.3 Improved nodata() function calculation

Previously, when a new item was added (for example, by creating item, adding a host or linking a host to a template) and there
was a trigger with nodata() function, it would likely fire before the item would get a chance to send in any values. Since Zabbix
2.2.0, the nodata() function will fire only after the time period, specified in the function parameters, has passed.

5.23 Macros 5.23.1 New notification macros

To make notifications more informative and to support the new functionality in Zabbix for receiving notifications based on internal
events, a much expanded set of macros is supported in notifications:

• {ACTION.ID}, {ACTION.NAME} - return the ID or name of the action that delivered the notification. Supported in actions
of all event sources.

• {EVENT.STATUS}, {EVENT.VALUE} - return the verbal state and numeric state of the event that caused a notification. Sup-
ported in trigger and internal event-based actions. In addition, all previously existing EVENT.* macros are limited to returning
information of the original problem event only - as recovery event information is returned by the new EVENT.RECOVERY.*
macros.

• {EVENT.RECOVERY.ID}, {EVENT.RECOVERY.DATE}, {EVENT.RECOVERY.TIME}, {EVENT.RECOVERY.STATUS},
{EVENT.RECOVERY.VALUE} - return the ID/date/time/verbal state or numeric state of a recovery event. These macros
are designed specifically for recovery messages. Supported in trigger and internal event-based actions.

• {ITEM.STATE}, {TRIGGER.STATE} - return the verbal state of the item/trigger that caused a notification.
• {LLDRULE.NAME.ORIG}, {LLDRULE.KEY.ORIG} - return the original name or key (with macros not expanded) of an LLD
rule.

• {LLDRULE.ID}, {LLDRULE.NAME}, {LLDRULE.KEY}, {LLDRULE.DESCRIPTION}, {LLDRULE.STATE} - return the
ID/name/key/description or verbal state of the low-level discovery rule that caused a notification.

For more details, see macros supported by location.

5.23.2 Support of LLD macros in trigger expressions

Low-level discovery macros can now be used in trigger expression standalone constants. For example, {#MY_CUSTOM_MACRO}
from:

{
"{#FSNAME}":"\/",
"{#FSTYPE}":"ext4",
"{#MY_CUSTOM_MACRO}":"90"

}

can be used in the following trigger prototype:

{Template_OS_Linux:vfs.fs.size[{#FSNAME},pused].last()}>{#MY_CUSTOM_MACRO}

To be expanded correctly, the macro must return a numeric value. If the macro value is not numeric or no value is found, a real
trigger will not be created.

5.23.3 Support of LLD macros in item and trigger descriptions

Low-level discovery macros can now be used in trigger and item descriptions.

5.23.4 Macros in trigger descriptions

The set of macros previously supported in trigger names is now also supported in trigger descriptions: {HOST.HOST},
{HOST.NAME}, {HOST.CONN}, {HOST.DNS}, {HOST.IP}, {ITEM.VALUE}, {ITEM.LASTVALUE} and {$MACRO}.

These macros will be expanded when viewing the trigger comment in Monitoring → Triggers and also inside the {TRIG-
GER.DESCRIPTION} macro when used in notifications.

5.23.5 Macros in global scripts

User macros are now supported in global script commands and confirmation texts.

The confirmation text for global scripts will now also expand host name macros - {HOST.HOST}, {HOST.NAME} and host connection
macros - {HOST.IP}, {HOST.DNS}, {HOST.CONN}.

5.23.6 User macros in allowed hosts

17

User macros are now supported in the Allowed hosts field of trapper items.

5.24 Frontend improvements 5.24.1 Improved layout

With the redesign of Zabbix 2.0, some frontend pages did not look very satisfactory at a more narrow browser window size (or on
small form factor devices). Significant improvements have been made for Zabbix 2.2, and now most of the pages should scale
down much better. For example, the general frontend setting page at the same width before and after the redesign looks quite
differently:

Before the redesign. After the redesign.

5.24.2 Latest data section

Expand/collapse without page reload

Latest data page was improved to expand/collapse individual entries (per application or host) without page reload. While increasing
the page size, it results in a much smaller amount of requests and smoother user experience.

Show details option

The filter has a new Show details option. If used, it allows to extend displayable information on the items by such details as refresh
interval, history and trends settings, item type and item errors (fine/unsupported).

18

A direct link to item configuration is also available allowing to quickly tweak an item from the monitoring section.

5.24.3 Configuration options and monitoring data accessible from host inventory

In host inventory details (accessible through Inventory → Hosts) there are two tabs now - Overview and Details. While Details, as
before, present all inventory data maintained with the host, Overview presents some useful general information about the host
along with links to predefined scripts and various aspects of host configuration and monitoring data.

5.24.4 More flexible dashboard filter

The dashboard filter has gained the ability to not only show selected groups, but to hide selected groups as well. This offers more
flexibility for displaying hosts.

For example, we may have hosts 001, 002, 003 in Group A and hosts 002, 003 in Group B as well. If we select to show Group A
and hide Group B at the same time, only data from host 001 will be displayed in the Dashboard.

To enable the show/hide functionality, two new fields are introduced in the dashboard filter form for when Selected is chosen in
Host groups field. Show selected groups and Hide selected groups both are auto-complete so starting to type the name of a group

19

will offer a dropdown of the matching groups.

If nothing is selected in Show selected groups, then all groups will be displayed, except the ones chosen to hide in the Hide selected
groups field.

5.24.5 Displaying name and surname with acknowledgements

Previously, only user alias was displayed with acknowledged events - that sometimes did not provide sufficient information, espe-
cially in systems with many system users.

To make acknowledgement information more informative, now a name and surname is also displayed, in the ’alias (name surname)’
format. The name and surname are taken from the respective (now optional) user configuration fields.

Name and surname now appears in:

• acknowledgement and action details popup of the Dashboard Last 20 issues widget
• acknowledgement and action details popup of the Host/host group issues widget in screens
• acknowlegdement details (accessible from Monitoring → Triggers)
• event details
• user group member list
• user selection in user group configuration
• action operation list
• action operation configuration tab

5.24.6 Ability to view acknowledgements in trigger status page

Previously, when viewing triggers without events in Monitoring → Triggers page, it was possible to see that a trigger has been
acknowledged, but there was no way to see the acknowledgement. The acknowledged status can now be clicked to view the
details.

5.24.7 Overview filtered by application

The Monitoring → Overview section has gained an additional filtering-by-application option.

Previously, all items or all triggers would be displayed in the overview of hosts, which did not allow to focus on the information one
was mostly interested in. Now the overview can be narrowed down by selecting a specific application and only displaying those
items or triggers that are under the selected application.

The overview filtering option is also made available in Configuration → Screens. When configuring Data overview and Trigger
overview screen elements, a new Application field is available for entering the required application name:

20

The result can be a very neat and concise screen element for viewing in Monitoring → Screens:

5.24.8 Ability to append host groups, item applications on mass update

Previously, when using mass update for hosts or items, it was possible to replace host groups and replace item applications. The
previous host groups/applications were unlinked and replaced with the specified ones.

Now, while the replace function is still available, the mass update forms have gained an additional field for adding host groups or
item applications. Using this field, both existing host groups/applications as well as completely new ones can be added.

This additional field is auto-complete and starting to type in it offers a dropdown of the matching host groups/applications. If the
host group/application is new, it also appears in the dropdown and is indicated by (new) after the string. Just scroll down to select.

5.24.9 Screen element changes

Status of host triggers and Status of host group triggers screen elements have been renamed to Host issues and Host group issues
respectively.

Previously, triggers without events would not be displayed in these two widgets, nor in the Last 20 issues widget. As a result,
sometimes problem triggers would disappear from the widgets when their events got deleted by the housekeeper. To fix this, now
triggers without events are displayed as well.

5.24.10 Hierarchy in global scripts

Global scripts can be put into categories now. To put a script into a category, prefix it with a desired path, for example, Default/,
when configuring the script name.

21

When accessing scripts through the menu in monitoring sections, they will be organized according to the given categories:

5.24.11 Editable discovery checks

Previously discovery checks within a discovery rule could only be created and deleted. To edit an existing check it had to be deleted
first and a new one created, which could be quite cumbersome with a check having several parameters. In Zabbix 2.2, discovery
checks can be edited directly.

|<| |<| |-| |<|

5.24.12 Improved host, template, host group selection

Host, template and host group selection fields have been improved in several locations in the frontend. Where previously a popup
was displayed for selection, now an auto-complete field is available.

Starting to type in it offers a dropdown of the matching entities.

The new selection fields are implemented in:

• template linkage (in both host and template configuration)
• action conditions
• host/item mass update options
• map element editing
• screen element editing for several resources
• discovery action operations (for selecting template, host group)
• remote commands
• custom script configuration
• item filter

5.24.13 Multi-selection of values in action conditions

Previously, when selecting an action condition of the same type, it was impossible to select more than one value at a time. Selecting
ten hosts would mean that all ten hosts would have to be added one at a time.

Now, for host/template/trigger/host group conditions in trigger based actions, a multi-select field is available, where several values
can be selected and then added in one go. The same improvement is available for host/template/host group conditions in internal
event based actions.

22

The selection field is auto-complete, so starting to type in it offers a dropdown of all the matching values. Just scroll down to select.

In a related improvement, selected action condition values are now displayed in italics, rather than in quotes, resulting in better
readability.

5.24.14 Improved global search page

Global search results, compared to the previous version, have gained links to:

• graph monitoring (for hosts and host groups)
• web monitoring (for hosts and host groups)
• low-level discovery rule configuration (for hosts and templates)
• web scenario configuration (for hosts and templates)

5.24.15 Miscellaneous improvements

Host mass update form has been improved by making it more similar to host properties. Introduction of tabs allows to easier find
the desired controls, and options like inventory fields now are much easier to distinguish from other fields.

Regular expression editing form has been redesigned.

• Testing has its own tab now
• The logic of displaying testing results has been improved. Results are shown after applying the condition, not before:

23

Previously, the result of comparison would be displayed
immediately, disregarding a possibly negative condition,
such as Result is FALSE.

Now the result is displayed after taking into account both
comparison and the condition and the result is displayed
correctly.

• Instead of checkboxes and Delete button, Remove links for each entry are used

Maintenance period configuration form has been redesigned, including a more compact layout and Remove links instead of check-
boxes and a Delete selected link.

Most forms will now auto-focus on the first field.

The list of actions will now display what media type is used when sending notifications.

Previously two operations with the same recipient looked the
same even if they were using different media.

Now the difference is clear by seeing the media type used.

Also, when displaying a system user that the message is sent to, the name and surname of the user (as configured in user
configuration) is displayed in parentheses after the alias.

Before Zabbix 2.2. In Zabbix 2.2.

Previously, if time selection fields were used, for instance, to set a maintenance period, the current time was always displayed
by default. Now, 0 hours and 0 minutes are displayed instead.

Before Zabbix 2.2. In Zabbix 2.2.

There are multiple places in the Zabbix frontend where colours can be specified, including graph and network map properties.
Previously, colour code validation was implemented separately for each location, and error messages varied in quality. Now all
locations use single validation process, and error messages have been improved and unified.

24

”Access denied” pages have been unified and an option to log in will now always be provided.

Previously, when the flexible interval limit for an item was reached, Zabbix did not allow to add more intervals, but did not indicate
the reason to the user. Since Zabbix 2.2.0, after adding 7 flexible intervals to an item, the message ”Maximum number of flexible
intervals added” is shown:

Send to field length in user media properties was increased to allow easier entering of long e-mail addresses.

Overall frontend and API memory usage was decreased by optimising database access function and reducing its memory usage
by 22-95%.

Previously, enabling debug mode for guest user did not allow it to view debug information anyway. Debug information is available
for guest user in Zabbix 2.2.

Previously, new map elements were added with label set to Bottom, instead of the map default. Now new elements will have the
label set to map default, and it will be possible to change that later. Additionally, instead of - (a single dash), text Default will be
used to identify the default location.

The frontend now uses relative links only. Previously, absolute links were used in a few locations, which caused problems with
certain web server setups, such as reverse proxies.

In bulk actions the dropdown below the list and the Go button are now disabled if no items are selected or all items on that page
are LLD-created items. ”Select all” is also disabled if all items on that page are LLD-created items.

Previously, Print functionality did a full page reload. This was changed to a pure JavaScript solution, which works faster and in a
more robust way.

Slightly obscure ”No <entity> defined” messages have been changed to explain what type of entity exactly has not been found -
for example, ”No maintenance defined” has been changed to ”No maintenance periods found”.

Previously, the frontend configuration wizard during a pre-requisites check used yes/no to denote PHP configuration parameter
status. It has been changed to display on/off to match settings in php.ini.

”All” has been removed as a choice from the trigger severity filter in the frontend, being a redundant duplicate of the ”Not classified”
option. The show_severity=-1 GET parameter, previously returning ”All”, now defaults to the ”Not classified” selection.

5.24.16 Antialiasing in generated graphics

From now on generated graphs are easier to comprehend due to antialiasing. The change includes support of normal and bold
anti-aliased lines lines for graphs, map connectors as well as graph X/Y axis triangles.

25

Before the redesign. After the redesign.

5.25 Daemon improvements 5.25.1 Automatic database upgrade

Starting with 2.2.0, Zabbix server and proxy will automatically upgrade the database - manual SQL patch execution is not required
anymore.

Note:
Automatic database upgrade for SQLite is not supported.

5.25.2 Zabbix proxy improvements

Zabbix proxies will now be able to work uninterrupted for much longer when used with PostgreSQL because of increased history
value ID range.

Zabbix proxies send values together with item configuration (like host name and item key). Previously, this data was retrieved
from the local database, but starting with Zabbix 2.2.0 it will be retrieved from the configuration cache - but only for historical data
(excluding network discovery and active agent auto-registration events).

5.25.3 Support for long and string SNMP indexes

Previously, SNMP low level discovery only used the last value from the OID. This caused problems when the index was longer. For
example, in the following OIDs the last two numbers together represent the index:

CISCO-POP-MGMT-MIB::cpmDS1ActiveDS0s.6.0
CISCO-POP-MGMT-MIB::cpmDS1ActiveDS0s.6.1
CISCO-POP-MGMT-MIB::cpmDS1ActiveDS0s.7.0

Without long index support Zabbix would create items for the first two OIDs as 0 and 1, then fail to create item for the third OID.
Now the full OID part will be used.

Additionally, strings as indexes are supported since Zabbix 2.2.0.

5.25.4 Value cache for faster access to history data

To make the calculation of trigger expressions, calculated/aggregate items and somemacros much faster, a new value cache option
is supported by the Zabbix server.

26

This in-memory cache can be used for accessing historical data, instead of making direct SQL calls to the database. If historical
values are not present in the cache, the missing values are requested from the database and the cache updated accordingly.

To enable the new functionality, a new optional ValueCacheSize parameter is supported by the Zabbix server configuration file.

Two new internal items are supported formonitoring the value cache: zabbix[vcache,buffer,<mode>] and zabbix[vcache,cache,<parameter>].
See more details with internal items.

5.25.5 Reducing update operations in item table

Previously Zabbix would update several fields in the ’items’ table for each new value, resulting in a large number of SQL update
operations and an obvious performance bottleneck. To reduce the number of update operations, shared memory is now used to
store fields related to the last and previous value of items, bringing great benefit to server performance.

Additionally, queue-related internal checks use information from shared memory instead of accessing the database.

5.25.6 Improved work with configuration and history caches

Zabbix server and proxy daemons will support bulk access to configuration and history caches. It will reduce the quantity of system
calls of operation with semaphores and will positively affect system performance.

More specifically, Zabbix trapper processes, when receiving collected values from active agents or proxies, previously obtained item
configuration from the cache one by one, locking the cache each time. Since Zabbix 2.2 they will obtain all required information
in one operation.

Similarly Zabbix Java gateway pollers will retrieve information about all items they should be collecting data for in one operation.

When sending configuration data to active agents the same principle applies - item configuration from the cache is retrieved in
one operation.

5.25.7 Multiple timer processes

Zabbix server daemon will support parallel processing of time-based functions. A user can specify the number of timer processes
in the new StartTimers configuration parameter.

5.25.8 Logging the used configuration file name

Zabbix daemons will now include the used configuration file name in the startup log messages. For example, agent daemon startup
messages would have an additional line like this:

10159:20130404:184230.963 Starting Zabbix Agent [A Test Host]. Zabbix 2.1.0 (revision 34816).
10159:20130404:184230.963 using configuration file: /usr/local/etc/zabbix_agentd.conf

5.25.9 JSON validation on server

Previously, a slightly incorrect JSON could silently get accepted by the Zabbix server. Starting with Zabbix 2.2, syntax validation
is performed, before parsing JSON data. Opening invalid JSON data will immediately return failure and the parsing error will be
logged as warning.

5.25.10 Host metadata for host auto-registration

Previously it was only possible to use a hostname to differentiate hosts when using active agent auto-registration. In some cases
(for example, Amazon cloud nodes) it would be great to keep the original hostname while also use other information sent by the
agent for auto-registration purposes.

To make such extra information available, support for 2 new agent configuration parameters was added:

• HostMetadata. An optional parameter that defines host metadata. If not defined, the value will be acquired from Host-
MetadataItem.

• HostMetadataItem. An optional parameter that defines an item used for getting host metadata. This option is only used
when HostMetadata is not defined.

Host metadata is used only at a host auto-registration process.

5.25.11 Dynamic display of current process activity and statistics

Zabbix processes now show a process type, instance number (if there can be more than one process of this type), current activity
and some statistics from previous activity by changing their commandlines:

zabbix22 4584 1 0 14:55 ? 00:00:00 zabbix_server -c /home/zabbix22/zabbix_server.conf
zabbix22 4587 4584 0 14:55 ? 00:00:00 zabbix_server: configuration syncer [synced configuration in 0.041169 sec, idle 60 sec]
zabbix22 4588 4584 0 14:55 ? 00:00:00 zabbix_server: db watchdog [synced alerts config in 0.018748 sec, idle 60 sec]
zabbix22 4608 4584 0 14:55 ? 00:00:00 zabbix_server: timer #1 [processed 3 triggers, 0 events in 0.007867 sec, 0 maint.periods in 0.005677 sec, idle 30 sec]
zabbix22 4637 4584 0 14:55 ? 00:00:01 zabbix_server: history syncer #4 [synced 35 items in 0.166198 sec, idle 5 sec]
zabbix22 4673 4670 0 14:55 ? 00:00:00 zabbix_proxy: configuration syncer [synced config 15251 bytes in 0.111861 sec, idle 60 sec]

27

zabbix22 4674 4670 0 14:55 ? 00:00:00 zabbix_proxy: heartbeat sender [sending heartbeat message success in 0.013643 sec, idle 30 sec]
zabbix22 4688 4670 0 14:55 ? 00:00:00 zabbix_proxy: icmp pinger #1 [got 1 values in 1.811128 sec, idle 5 sec]
zabbix22 4690 4670 0 14:55 ? 00:00:00 zabbix_proxy: housekeeper [deleted 9870 records in 0.233491 sec, idle 3599 sec]
zabbix22 4701 4670 0 14:55 ? 00:00:08 zabbix_proxy: http poller #2 [got 1 values in 0.024105 sec, idle 1 sec]
zabbix22 4740 4738 0 14:55 ? 00:00:00 zabbix_agentd: listener #1 [waiting for connection]
zabbix22 4741 4738 0 14:55 ? 00:00:00 zabbix_agentd: listener #2 [processing request]

The commandline of the main process is shown unchanged (in previous versions it was displaying ”main process” on BSD platforms)

See also Viewing Zabbix process performance with ”ps” and ”top”.

5.25.12 Miscellaneous daemon improvements

• Zabbix pinger processes do not use a connection to database anymore.
• Zabbix agent daemon already supported the AllowRoot parameter. Since Zabbix 2.2.0, server and proxy daemons also
support it.

• Accepted data limit when using Zabbix protocol is changed from 128MB to 64MB (in versions 2.2.0-2.2.2; reverted to 128MB
starting from 2.2.3). Any other data (including older Zabbix protocols) stays limited at 16MB.

• Zabbix server and proxy daemons now correctly use the Timeout configuration parameter when performing SNMP checks.
Additionally now the daemons do not perform retries after a single unsuccessful (the timeout/wrong credentials) SNMP
request. Previously the SNMP library default timeout and retry values (1 second and 5 retries respectively) were actually
used.

• Spaces are now allowed in the Server parameter in the agent daemon configuration file.
• Spaces are now allowed in the Allowed hosts field for Zabbix trapper items.
• IP address comparison (for example, for checking incoming connections in Zabbix agent or for Zabbix trapper items) was
more efficient if the daemon has been built without IPv6 support. Now it should be on the same performance level as with
IPv6 support enabled.

• Zabbix proxies previously sent availability data for templates when they first started up. While harmless, this was not
required. Since 2.2.0, availability data is sent for monitored hosts only, reducing network traffic slightly.

• Zabbix server previously did not respond to proxy configuration and heartbeat requests that had incorrect proxy name.
Starting with 2.2, failure response is returned.

• Zabbix server now logs response to global script request at DebugLevel 4.
• Zabbix server previously discarded non-numeric characters in global script request values, and silently closed the connection
if any of the required parameters were missing. Since 2.2, non-numeric characters and missing required values result in an
error message being returned.

• Setting display name for From and To addresses for outgoing e-mails is now supported. For example, entering ”Zabbix Riga
<zabbix@company.lan>” is supported.

• Zabbix agent now also prints the Aliases and PerfCounters specified in the agent configuration file when run with a -p
parameter .

• Zabbix agent now returns ZBX_NOTSUPPORTED in case of invalid timeout or count values of a net.dns check.
• Zabbix agent previously returned 0 in case of successful exit and 255 in case of failure. Starting from version 2.2.0 Zabbix
agent returns 0 in case of successful exit and 1 in case of failure.

• Starting from version 2.2 a check for non-UTF-8 characters in the configuration files of server, proxy or agent was added. In
case of a non-UTF-8 character specified in a parameter value the program will exit immediately, reporting an error.

• Zabbix agent has an improved system.hostname and system.uname querying mechanism. The data is retrieved using a
uname() system call instead of forking a shell and running uname or hostname commands.

• Reduced database load when evaluating trigger expressions containing user macros.
• Zabbix server now caches global regular expressions in configuration cache.
• Extra whitespace in comma-delimited lists is more widely supported in the configuration files now - it’s now also supported
in ListenIP parameter for Zabbix proxy, server and agent and ServerActive parameter for Zabbix sender.

• Improved formatting of a trapper response to values sent by Zabbix sender. The new info field format is ”processed: <N>;
failed: <N>; total: <N>; seconds spent: <N>”.

• Maximum length of an alert message has been increased for Oracle database.

5.26 API improvements ** New host prototype API **

A host prototype API has been implemented with the development of VM support for low-level discovery rules and can be used to
manage host prototypes. It comes with the standard get, create, update, delete, isreadable and iswritable methods.

** Changes to the get method ”output” parameter **

The ”output” parameter will now also accept arrays of property names to return only the requested data in all ”get” methods. It
will no longer support the ”shorten” value. The ”refer” value has been deprecated and will be removed in Zabbix 2.4.

** Improved get method subselects **

28

All get method subselects will now also accept arrays of property names to return only the requested data. To standardise the
returned results, they will always return arrays of objects.

** ”Webcheck” API renamed to ”httptest” **

To be consistent with the naming conventions of other web-related objects, the ”webcheck” API has been renamed to ”httptest”.
The name ”webcheck” has been deprecated.

** New ”text” data type **

A new ”text” data type has been introduced for storing long text strings. It’s now used for storing alert messages, and text and
log history values. Note that fields of this type are not supported by the get method ”filter” parameter.

** Improved validation **

API input has been improved and made stricter for most of the methods.

** Even more changes and bug fixes **

For a fully detailed list of changes and bug fixes see the API changelog.

5.27 Miscellaneous ** Full 64-bit range for object IDs **

Zabbix now supports a signed 64-bit range for internal object IDs in a standalone, non-distributed setup. Thus the highest available
number of one-type objects is 263-1 now.

** Additional service types in network discovery action condition **

HTTPS and telnet service type conditions now are available in network discovery action configuration.

** Removed duplicated indexes in Zabbix MySQL database schema **

Redundant indexes were removed in several Zabbix MySQL database tables. This should improve performance and slightly reduce
the database size for MySQL users in these cases:

• child nodes in distributed mode
• Zabbix proxy value collection, network discovery and active agent autoregistration data processing

Added indexes on child-table columns having foreign key constraints

Such indexes were created automatically on MySQL, now they are created also on PostgreSQL, Oracle, DB2 to improve performance
of Zabbix server and frontend operations with these databases.

Dynamic link library with Zabbix sender functionality on Windows

A dynamic link library with basic Zabbix sender functionality is available on the Windows platform. It allows sending data to
server/proxy without having to launch the Zabbix sender process. See the documentation for detailed information.

Zabbix sender exit status changes

Zabbix sender will now finish with the exit status 0 only if all of the values are sent and processed successfully. If the processing of
at least one of the values fails, the exit status will be 2. If data sending fails, the exit status will be 1. Additionally if no arguments
or server are specified the exit status will be 1 and for -h and -V options the exit status will be 0 (before Zabbix 2.2.0 exit status in
the listed situations was 255).

Improved error reporting in the frontend

Previously, when an SNMP, JMX and IPMI host became unavailable, trigger error messages could include a reference to Zabbix
agent. As Zabbix agent is not involved in those cases, in Zabbix 2.2 these messages will explicitly refer to SNMP, JMX and IPMI
agent instead.

More up to date built-in item key help

Help data on built-in item keys should be more up to date now - previously it was stored in the database and only updated in major
versions. Since 2.2 it is stored in the frontend and any frontend update will provide information on new or improved items.

6 What’s new in Zabbix 2.2.1

29

6.1 Frontend improvements 6.1.1 Translatable item key helper

Item key helper - the dialog that allows to choose from the built-in item keys - can now be translated.

6.1.2 PHP gettext is no longer mandatory

Starting from 2.2.1 the PHP gettext extension is not a mandatory requirement for installing Zabbix. If gettext is not installed, the
frontend will work as usual, but the translations will not be available.

6.1.3 ZBX_HISTORY_DATA_UPKEEP constant removed

The global housekeeping settings have been changed to allow to override the history storage period even if internal housekeeping
is disabled. Now, when using an external housekeeper, the history storage period should be set using the history ”Data storage
period” field instead of the ZBX_HISTORY_DATA_UPKEEP constant.

6.1.4 Graphs may be constructed from history if trends are disabled

If trend storage period is set to zero for an item or globally in the housekeeping settings, the frontend will no longer try to render
graphs from trend data, but will use history data instead.

6.1.5 Updated translations

• Brazilian Portuguese
• French
• Italian
• Russian
• Ukrainian

7 What’s new in Zabbix 2.2.2

7.1 Frontend improvements 7.1.1 Updated translations

• American English
• Czech
• French
• Greek
• Hungarian
• Italian
• Japanese
• Russian
• Slovak
• Ukrainian

7.1.2 LDAP bind password no longer viewable in clear text

• LDAP authetication bind password, once stored in the database, was accessible to Zabbix Super Admin level users in clear
text in HTML source code. This has been fixed, by hiding the password from clear view.

7.2 Daemon improvements Value cache memory efficiency improved - now it requires less shared memory to cache the same
amount of values.

Improved error logging for server-proxy communication. A number of error messages in server and proxy log files have been
improved to provide more information about failures.

Zabbix application names in syslog fixed to meet RFC 5424 for APP-NAME. See Syslog application names change

A trigger can now only be processed by one main, history syncer or timer process at a time, which should eliminate problems like
multiple successive OK events and might lead to a performance improvement for timer processes on large systems, because they
will not do duplicate work by processing triggers already being processed by history syncers.

Trigger processing performance during low level discovery has been improved.

Low level discovered triggers won’t be deleted and will still work if relevant items are not discovered anymore (until those items
get deleted).

Synchronized ICMP ping check (icmpping, icmppingloss and icmppingsec) scheduling for items with the same interface. Before if
a host had multiple ICMP ping based items it was highly possible that the fping utility will be invoked for every item. Synchronizing
ICMP ping checks allows to invoke fping utility only once for all checks (given that all of those checks have the same packet count,

30

interval, size and timeout values). For instance, if a host has icmpping, icmppingloss and icmppingsec items, then only 3 packets
will be sent in one fping invocation, whereas before it would likely send 9 packets in three fping invocations.

Previously, when ITEM.LOG.* macros were substituted in notifications, item configuration information was obtained from the
database. Since Zabbix 2.2.2 this information is obtained from the configuration cache.

7.3 Macro improvements HOST.PORT macro is now supported in internal and trigger-based notifications, as well as in trigger
names and descriptions. It now supports an optional number suffix to reference hosts in the order in which they appear in a trigger
expression ({HOST.PORT1}, {HOST.PORT2} ...).

8 What’s new in Zabbix 2.2.3

8.1 SNMP bulk requests SNMP monitoring performance is significantly improved by introducing bulk requests with at most 128
items. The load on Zabbix server and monitored SNMP devices should be greatly reduced:

* regular SNMP items benefit from GetRequest-PDU with a large number of variable bindings;
* SNMP low-level discovery rules for SNMPv2 and SNMPv3 benefit from GetBulkRequest-PDU with a large value of "max-repetitions" field;
* SNMP items with dynamic indexes benefit from both of these improvements: one for index verification and another for building of the cache.

See more information about SNMP bulk processing.

8.2 Frontend improvements 8.2.1 Updated translations

• Brazilian Portuguese
• Italian
• Japanese
• Slovak
• Turkish

8.3 Daemon improvements

• Graph processing performance during low level discovery has been significantly improved. Testing with 2048 graphs showed
a 600 times smaller amount of SQL requests during the initial discovery. Further runs without changes showed a 2500 times
smaller amount of SQL requests, and if a change to graph name was required, the SQL request count was 1500 times lower.
The total size of SQL statements was 3.7 times lower for the initial discovery, 3000 times lower for further runs without
changes and 1500 times lower when a change to graph name was required.

• Graphs created by low-level discovery from now on will not be deleted and will still work if relevant items are not discovered
anymore (until those items get deleted).

• Batch processing of IT services has been added. It resolves possible deadlocks and improves performance when process-
ing large IT service trees. Testing with 800 IT services and having a tree depth of 4 levels showed a 300% performance
improvement.

• Significantly improved log file monitoring (log[] and logrt[] items):
– more efficient log file reading and matching of records against regular expression.
– more efficient selecting of log files when checking logrt[] items.
– for log file records longer than 256 kB only the first 256 kB are matched against the regular expression and the rest
of the record is ignored. However, if Zabbix agent is stopped while it is dealing with a long record the agent internal
state is lost and the long record may be analyzed again and differently after the agent is started again.

– for log[] items: if there is a problem with the log file (e.g. it does not exist or is not readable) the log[] item now
becomes NOTSUPPORTED. Before the change (in 2.2.2) it did not go into NOTSUPPORTED state because of a bug in the
agent.

– for logrt[] items:

* On UNIX platforms a ''logrt[]'' item becomes NOTSUPPORTED if a directory where the log files are expected to be found does not exist.
* Unfortunately, on Microsoft Windows if a directory does not exist the item will not become NOTSUPPORTED (for example, if directory is misspelled in item key). Currently this is a limitation of agent.
* An absence of log files for ''logrt[]'' item does not make it NOTSUPPORTED.
* Errors of reading log files for ''logrt[]'' item are logged as warnings into Zabbix agent log file but do not make the item NOTSUPPORTED.

* Zabbix agent log file can be helpful to find out why a ''log[]'' or ''logrt[]'' item became NOTSUPPORTED. Zabbix can monitor its agent log file except when DebugLevel=4.
* Please note that even though performance of ''log[]'' and ''logrt[]'' item checks has been improved the limits on maximum number of log file records analyzed and number of matching records sent to server in one check are not modified. For example, if a ''log[]'' or ''logrt[]'' item has //Update interval// 1 second, by default the agent will not analyze more than 400 log file records and will not send more than 100 matching records to Zabbix server in one check. By increasing **MaxLinesPerSecond** parameter in agent configuration file or setting **maxlines** parameter in the item key the limit can be increased up to 4000 analyzed log file records and up to 1000 matching records sent to Zabbix server in one check. If the //Update interval// is set to 2 seconds the limits for one check would be set 2 times higher than for //Update interval// 1 second.

* Startup and shutdown scripts for Java gateway no longer hide error messages on startup. They now also detect stale PID files and should work in /bin/sh.
* Value cache reporting more free space than really available has been fixed.
* Improved error messaging for VMware items. Now instead of a generic error message "Simple check is not supported" there will be a failure specific message.
* Maximum data transfer size increased from 64MB to 128MB to stay compatible with previous versions of Zabbix. In the case of one process with a data transfer limit of 128MB sending data to another with a 64MB limit, the receiving process would drop the data due to it exceeding the size limit.
* Maximum configuration cache size increased to 8GB from 2GB

31

* On Oracle databases variable binding is now used for bulk inserts, resulting in much better performance.

8.4 Miscellaneous improvements

• Zabbix agent daemon manpage now describes the meaning of value types in -p or -t output.

9 What’s new in Zabbix 2.2.4

9.1 Trigger evaluation order improved for dependencies To make sure that trigger dependencies work correctly, it is im-
portant that the trigger evaluation order works correctly first.

Previously, the evaluation order of triggers was by trigger IDs, which would work fine regarding dependencies as long as the more
important trigger was evaluated first. However, in situations where the dependent trigger was evaluated first, dependencies would
not work correctly. For example, the dependent trigger would go into a problem state because the more important, root trigger
would not have been evaluated and changed to ’Problem’ yet. Or, the dependent trigger would not be changed to ’OK’, simply
because the root trigger would not have been evaluated and changed to ’OK’ yet.

To solve this, triggers in dependencies now are always evaluated starting with the most important first. In a ”trigger A depends on
trigger B that depends on trigger C” dependency, C is now always evaluated before B and before A.

9.2 Frontend improvements 9.2.1 Value selection popups are back

In Zabbix 2.2.0, auto-select fields were introduced to eliminate redundant clicking when trying to select well-known values for a
field, for example, when selecting templates for a host. While this made life easier for those who knew the name of the value they
were looking for, lost was the ability to browse the whole content of available values, like in a popup-style selection. Selection was
also made difficult for users who did not know exactly what they were looking for, or in cases with the same trigger name across
very many hosts.

Thus, in Zabbix 2.2.4, popups for value selection are reinstated alongside the auto-select fields:

9.2.2 Latest data from 24 hours only

Only values that fall within the last 24 hours are now displayed in Monitoring → Latest data, Monitoring → Overview and the Data
overview screen element by default.

This limit has been introduced with the aim of improving initial loading times for large pages of latest data. It is also possible to
change this limitation by changing the value of ZBX_HISTORY_PERIOD constant in include/defines.inc.php.

9.2.3 Updated translations

• Brazilian Portuguese
• German
• Italian
• Japanese
• Polish
• Romanian
• Russian
• Slovak
• Spanish

32

9.3 Daemon improvements

• History cache performance has been improved by using configuration cache more instead of using database.
• Improved handling of log file rotation/truncation for logrt[] and log[] items. Special attention is paid to cases when
several log files have the same last modification time. For more details see Important notes in the Log file monitoring
section.

• A log message has been added to the zabbix_server log whenever an unsupported item’s reason for being in that state
changes.

9.4 Miscellaneous improvements

• An example robots.txt file has been added in the frontend.
• Trigger-based events are loaded much quicker and with less memory usage in Monitoring → Events.
• Last event calculation in the System status frontend widget has been optimized, which may result in improved speed and
less memory usage in environments with huge numbers of problem triggers and host groups.

• In node-based environments, a duplicatingNode column has been removed from trigger popups in the System status frontend
widget.

10 What’s new in Zabbix 2.2.5

10.1 Daemon improvements 10.1.1 Server

The process title for the timer process has changed. Instead of displaying active maintenance periods, it now displays the amount
of hosts that have gone into and come out of maintenance. This indicator is called ‘maintenances’.

Support for PHPmutexes has been removed on the server side due to licensing issues. While it was not recommended to use Zabbix
server and frontend with SQLite3 database before, this change makes it even less recommended, because simultaneous database
access with Zabbix server and frontend may now corrupt the database. Note that using Zabbix proxy with SQLite3 database is still
a perfectly valid solution.

11 What’s new in Zabbix 2.2.6

11.1 Frontend improvements

• When full cloning hosts or templates, web scenarios are cloned as well.
• Maintenance periods without host group and hosts are available to all admin level users.

11.1.1 Updated translations

• Brazilian Portuguese
• Chinese (Taiwan)
• Japanese
• Polish
• Slovak
• Spanish

11.2 Template changes

• Template JMX Generic: typo in item name ”mpTenured” has been fixed to be ”mp Tenured”. If re-importing the template,
this change requires no manual updates.

11.3 Daemon improvements

• The items discovered by VMware virtual machine disk and network discovery will now have descriptions rather than instance
ids in their names.

• Zabbix server can now discover an unlimited number of VMware hypervisors. Previously there was a limit of 100 hypervisors
that Zabbix server could discover.

• Java gateway now uses Android JSON library instead of JSON.org library. When upgrading, apart from the gateway itself, it
is necessary to replace the JSON library file and update startup.sh script. See Java gateway file overview for details.

33

11.4 Miscellaneous improvements Trigger events deleted by Housekeeper

Previously, when a trigger was deleted (or its expression was changed so that a host trigger became a template trigger), all events
generated by the trigger would be deleted from Zabbix frontend and by Zabbix server. This operation could take a long time. Now
trigger events are deleted more efficiently by the Housekeeper process, in the background.

11.5 API improvements

• Performance of last value retrieval by the item.get method has been improved to use values from 24 hours only (by
default).

12 What’s new in Zabbix 2.2.7

12.1 Frontend improvements 12.1.1 Updated translations

• Chinese (Taiwan)
• Italian
• Polish
• Spanish

12.2 Daemon improvements

• Value cache requests have been optimized to better utilize database indexes. The improvement would be mostly noticeable
with large databases.

• A new EnableSNMPBulkRequests configuration parameter has been added to Zabbix server/proxy to be able to disable
(or enable) SNMP bulk requests globally.

• Validation of received SNMP responses has been added to server and proxy. Now, upon receiving a malformed SNMP
response server and proxy will log lines similar to the following:

SNMP response from host "gateway" does not contain all of the requested variable bindings
While they do not cover all the problematic cases, they are a useful indicator that EnableSNMPBulkRequests configura-
tion parameter should be set to 0 in order to disable SNMP bulk requests globally.

13 What’s new in Zabbix 2.2.8

13.1 Frontend improvements

• History related macros - {ITEM.VALUE}, {ITEM.LASTVALUE} and the {host:key.last()} functional macro - now obey the
ZBX_HISTORY_PERIOD constant. This limits the amount of data the macro has to sift through and results in better per-
formance.

13.1.1 Updated translations

• Brazilian Portuguese
• Polish
• Russian

13.2 Daemon improvements

• History cache has been optimized to better handle a situation when it’s being flooded with hundreds of thousands of values
from less than a thousand items.

• SNMP polling logic has been improved to always retry at least once. This should make Zabbix more resilient to network
errors.

• SNMP values of type OID are now supported.
• SNMP validation error messages from Zabbix 2.2.7 have been improved by including the sent and received OIDs:

SNMP response from host "gateway" contains variable bindings that do not match the request:
sent ".1.3.6.1.2.1.2.2.1.16.9", received ".1.3.6.1.2.1.2.2.1.16.9.0"For bulk requests, these are
logged at DebugLevel=3. For single-variable requests, these are logged at DebugLevel=4.

• If an IPMI device reports a threshold sensor and a discrete sensor under the same name, the threshold sensor is now preferred.
This might fix strange readings (like ”1” for fan RPM) or ”not supported” errors.

34

• Message logging on IBM DB2 errors has been improved. Now additional information is printed to the log file - database name
on connection errors and SQL query on failed queries.

14 What’s new in Zabbix 2.2.9

14.1 VMware monitoring improvements VMware performance counter based statistics retrieval was separated from VMware
data retrieval:

• VMware collector now sends fewer requests to VMware servers, greatly improving performance of configuration data and
performance collector based statistics gathering.

• VMware performance collector based statistics retrieval is much faster and can be done more frequently than VMware
configuration data retrieval. To avoid it being delayed by VMware configuration data retrieval it is recommended to enable
more VMware collectors than monitored services in your Zabbix server/proxy configuration.

• vmware.vm.perfcounter and vmware.hv.perfcounter items were added to allow custom hypervisor and virtual machine
performance counter monitoring.

A configurable timeout was added to VMware data requests. See VMwareTimeout option in server and proxy configuration docu-
mentation.

VMware data requests were optimized to reduce the amount of transferred data by half.

14.2 Frontend improvements 14.2.1 Updated translations

• Japanese
• Polish
• Slovak

14.3 Daemon improvements

• When monitoring Windows eventlog Zabbix agent will no longer set an item state to NOTSUPPORTED in case of error when
formatting the message. Instead, an unformatted message will be used.

• Item proc_info on Windows was improved to get more information about the processes.

14.4 Miscellaneous improvements 14.4.1 Validation of global regular expressions in LLD rules

A check for valid reference has been added for global regular expressions in LLD rules. If entered reference is not valid, due to
misspelling or missing referenced global regular expression, the respective LLD rule will become unsupported and appropriate
error message will be displayed.

15 What’s new in Zabbix 2.2.10

15.1 Frontend improvements Czech translation is 100% completed and is now displayed in the language dropdown.

15.1.1 Updated translations

• Brazilian Portuguese
• Czech
• French
• Japanese
• Polish
• Spanish

15.2 Daemon improvements

• While item net.tcp.service[ntp] has existed for a long time, it almost never worked, because it tried to probe NTP
protocol over TCP. It was rewritten to work over UDP and it now works.

• For Java gateway, it is now possible to specify timeout for JMX network operations using TIMEOUT configuration option in
startup.sh.

• In actions, it is now possible to execute a custom script on the server if trigger expression contains multiple hosts.

35

16 What’s new in Zabbix 2.2.11

16.1 Frontend improvements 16.1.1 Updated translations

• Czech
• Italian
• Russian

16.2 Daemon improvements Zabbix now tries to differentiate item timeouts from host timeouts. If another item check was
successful between two failed checks of a problematic item, then the problematic item is marked as not supported after the second
failed check without affecting host availability.

16.3 Miscellaneous improvements Input file description in the zabbix_sender manpage has been improved by adding rules
and examples.

17 What’s new in Zabbix 2.2.12

17.1 Frontend improvements 17.1.1 Updated translations

• Chinese (China)
• Chinese (Taiwan)
• English (United States)
• French
• Japanese
• Korean
• Polish
• Russian
• Ukrainian
• Vietnamese

Enabled Chinese (China), Greek, Korean, Romanian, Ukrainian, Vietnamese translations to be displayed by default

17.1.2 Performance improvements

• Improved performance and memory usage in screens with a large amount of screen elements

17.1.3 Dashboard host status widget

• Previously, when using the dashbaord filter Unacknowledged only option, acknowledged problem triggers were displayed
neither in With problems nor Without problems columns of the host status widget, resulting in a wrong host count in total.
Now the acknowledged problem triggers are displayed in the Without problems column.

17.2 Daemon improvements

• Item key length limitation of 2KB has been removed on Zabbix server when sending item key to the agent
• Item key length limitation of 1KB has been removed from the -k option of zabbix_get
• wmi.get item was improved to accept UTF-8 encoded namespace, WQL query and encode returned string in UTF-8
• The detection of a single item failing with network/timeout error introduced in Zabbix 2.2.11 was removed because of inability
to distinguish possible network errors.

• VMware items have been changed to become unsupported if no VMware collector processes are started.

17.3 Miscellaneous improvements

18 What’s new in Zabbix 2.2.13

36

18.1 Frontend improvements 18.1.1 Updated translations

• French
• Spanish
• Vietnamese

18.2 Daemon improvements

• Instead of switching trigger to unknown state if there are no data in period the sum, str, regexp and iregexp functions
will return 0.

• If an “icmppingsec” item would return a value less than 0.0001 seconds, the value will be set to 0.0001 seconds.

18.3 Miscellaneous improvements Fixed issues with mysql user parameter configuration script mysql.size parameter. It con-
tained a complex bash expression and was failing if the default shell was not bash (CVE-2016-4338).

19 What’s new in Zabbix 2.2.15

19.1 Daemon improvements 19.1.1 ODBC monitoring

Now there is no answer size limitation for ODBC requests (ZBX-8489).

20 What’s new in Zabbix 2.2.16

20.1 Frontend improvements

• {HOST.*} macros used in web scenario configuration are now correctly resolved in several frontend locations, including
Monitoring → Web, Monitoring → Latest data, simple graphs, etc.

• {HOST.*} macros in item key parameters are now also resolved for items without interfaces, resolving to either Zabbix
agent, SNMP, JMX or IPMI interface of the host.

• User macros are now resolved on allowed hosts even if the macros are defined on a template that the user does not have
permissions to.

20.1.1 Updated translations

• English (United States)
• Spanish
• Ukrainian
• Vietnamese

20.2 Daemon improvements

• Active agent auto-registration events are not generated any more if there is no action for auto registration.
• Item creation/update by low-level discovery will now return errors in case macro resolving cannot be fully accomplished
(instead of making such items that will inevitably fail on later stages). A corresponding error message will be displayed in
Configuration → Hosts → Discovery.

20.3 Item changes 20.3.1 VMware monitoring

A new vmware.hv.sensor.health.state key has been added to monitor VMware hypervisor health state rollup sensor. The
vmware.hv.status key, which was changed in Zabbix 2.2.10 to use health state rollup sensor, was reverted back to the pre-
Zabbix 2.2.10 implementation and now uses the hypervisor overall status property.

20.3.2 Chassis information

Changed system.hw.chassis key to read the DMI table from sysfs, if sysfs access fails then try reading directly from memory.

21 What’s new in Zabbix 2.2.17

37

https://support.zabbix.com/browse/ZBX-8489

21.1 Frontend improvements 21.1.1 Updated translations

• Czech, French
• Italian
• Japanese
• Korean
• Polish
• Portuguese (Brazil)

21.2 Daemon improvements

22 What’s new in Zabbix 2.2.18

22.1 Frontend improvements * In Windows event log history events with a zero ”Event ID” now have their ”Event ID” displayed
as ”0”.

22.1.1 Updated translations

22.2 Daemon improvements

23 What’s new in Zabbix 2.2.19

This minor version does not have any functional changes.

24 What’s new in Zabbix 2.2.20

This minor version does not have any functional changes.

25 What’s new in Zabbix 2.2.21

This minor version does not have any functional changes.

26 What’s new in Zabbix 2.2.22

This minor version does not have any functional changes.

27 What’s new in Zabbix 2.2.23

This minor version does not have any functional changes.

28 What’s new in Zabbix 2.2.24

This minor version is not released yet.

Daemons

Windows agent compilation revision

Generating a Windows file properties revision number has been added for agent compilation on MS Windows. It follows a
{b}{t}{nn} format where:

38

• {b} - source (1 - feature or release, 2 - tag)
• {t} - type (1 - alpha, 2 - beta, 3 - release candidate, 4 - release)
• {nn} - sequence number for the ’type’

For example:

Tag Branch Version Result

2.2.24 Zabbix 2.2.24 2.2.24.2400
release/2.2 Zabbix 2.2.24rc3 2.2.24.1303
feature/ZBX-16074 Zabbix 2.2.24rc1 2.2.24.1301

2. Zabbix concepts

Please use the sidebar to access content in the Zabbix concepts section.

1 Zabbix definitions

Overview

In this section you can learn the meaning of some terms commonly used in Zabbix.

Definitions

host

- a networked device that you want to monitor, with IP/DNS.

host group

- a logical grouping of hosts; it may contain hosts and templates. Hosts and templates within a host group are not in any way linked
to each other. Host groups are used when assigning access rights to hosts for different user groups.

item

- a particular piece of data that you want to receive off of a host, a metric of data.

trigger

- a logical expression that defines a problem threshold and is used to ”evaluate” data received in items

When received data are above the threshold, triggers go from ’Ok’ into a ’Problem’ state. When received data are below the
threshold, triggers stay in/return to an ’Ok’ state.

event

- a single occurrence of something that deserves attention such as a trigger changing state or a discovery/agent auto-registration
taking place

action

- a predefined means of reacting to an event.

An action consists of operations (e.g. sending a notification) and conditions (when the operation is carried out)

escalation

- a custom scenario for executing operations within an action; a sequence of sending notifications/executing remote commands

media

- a means of delivering notifications; delivery channel

notification

- a message about some event sent to a user via the chosen media channel

remote command

- a pre-defined command that is automatically executed on a monitored host upon some condition

39

template

- a set of entities (items, triggers, graphs, screens, applications, low-level discovery rules, web scenarios) ready to be applied to
one or several hosts

The job of templates is to speed up the deployment of monitoring tasks on a host; also to make it easier to apply mass changes to
monitoring tasks. Templates are linked directly to individual hosts.

application

- a grouping of items in a logical group

web scenario

- one or several HTTP requests to check the availability of a web site

frontend

- the web interface provided with Zabbix

dashboard

- section of the web interface displaying summaries and visualisations of important information in visual blocks.

Zabbix API

- Zabbix API allows you to use the JSON RPC protocol to create, update and fetch Zabbix objects (like hosts, items, graphs and
others) or perform any other custom tasks

Zabbix server

- a central process of Zabbix software that performs monitoring, interacts with Zabbix proxies and agents, calculates triggers,
sends notifications; a central repository of data

Zabbix agent

- a process deployed on monitoring targets to actively monitor local resources and applications

Zabbix proxy

- a process that may collect data on behalf of Zabbix server, taking some processing load off of the server

node

- a full Zabbix server configured as an element within a hierarchy of distributed monitoring; it is responsible for monitoring its own
location

network discovery

- automated discovery of network devices.

low-level discovery

- automated discovery of low-level entities on a particular device (e.g. file systems, network interfaces, etc).

low-level discovery rule

- set of definitions for automated discovery of low-level entities on a device.

item prototype

- a metric with certain parameters as variables, ready for low-level discovery. After low-level discovery the variables are automati-
cally substituted with the real discovered parameters and the metric automatically starts gathering data.

trigger prototype

- a trigger with certain parameters as variables, ready for low-level discovery. After low-level discovery the variables are automat-
ically substituted with the real discovered parameters and the trigger automatically starts evaluating data.

graph prototype

- a graph with certain parameters as variables, ready for low-level discovery. After low-level discovery the variables are automati-
cally substituted with the real discovered parameters and the graph automatically starts displaying data.

agent auto-registration

- automated process whereby a Zabbix agent itself is registered as a host and started to monitor.

40

2 Server

Overview

Zabbix server is the central process of Zabbix software.

The server performs the polling and trapping of data, it calculates triggers, sends notifications to users. It is the central component
to which Zabbix agents and proxies report data on availability and integrity of systems. The server can itself remotely check
networked services (such as web servers and mail servers) using simple service checks.

The server is the central repository in which all configuration, statistical and operational data is stored, and it is the entity in Zabbix
that will actively alert administrators when problems arise in any of the monitored systems.

The functioning of a basic Zabbix server is broken into three distinct components; they are: Zabbix server, web frontend and
database storage.

All of the configuration information for Zabbix is stored in the database, which both the server and the web frontend interact with.
For example, when you create a new item using the web frontend (or API) it is added to the items table in the database. Then,
about once a minute Zabbix server will query the items table for a list of the items which are active that is then stored in a cache
within the Zabbix server. This is why it can take up to two minutes for any changes made in Zabbix frontend to show up in the
latest data section.

Server process

If installed as package

Zabbix server runs as a daemon process. The server can be started by executing:

shell> service zabbix-server start

This will work on most of GNU/Linux systems. On other systems you may need to run:

shell> /etc/init.d/zabbix-server start

Similarly, for stopping/restarting/viewing status, use the following commands:

shell> service zabbix-server stop
shell> service zabbix-server restart
shell> service zabbix-server status

Start up manually

If the above does not work you have to start it manually. Find the path to the zabbix_server binary and execute:

shell> zabbix_server

You can use the following command line parameters with Zabbix server:

-c --config <file> absolute path to the configuration file (default is /usr/local/etc/zabbix_server.conf)
-n --new-nodeid <nodeid> convert database data to new nodeid
-R --runtime-control <option> perform administrative functions
-h --help give this help
-V --version display version number

Note:
Runtime control is not supported on OpenBSD and NetBSD.

Examples of running Zabbix server with command line parameters:

shell> zabbix_server -c /usr/local/etc/zabbix_server.conf
shell> zabbix_server --help
shell> zabbix_server -V

Runtime control

Runtime control options:

Option Description

config_cache_reload Reload configuration cache. Ignored if cache is being currently loaded.

41

Example of using runtime control to reload the server configuration cache:

shell> zabbix_server -c /usr/local/etc/zabbix_server.conf -R config_cache_reload

Process user

Zabbix server is designed to run as a non-root user. It will run as whatever non-root user it is started as. So you can run server as
any non-root user without any issues.

If you will try to run it as ’root’, it will switch to a hardcoded ’zabbix’ user, which must be present on your system. You can only run
server as ’root’ if you modify the ’AllowRoot’ parameter in the server configuration file accordingly.

If Zabbix server and agent are run on the same machine it is recommended to use a different user for running the server than for
running the agent. Otherwise, if both are run as the same user, the agent can access the server configuration file and any Admin
level user in Zabbix can quite easily retrieve, for example, the database password.

Configuration file

See the configuration file options for details on configuring zabbix_server.

Start-up scripts

The scripts are used to automatically start/stop Zabbix processes during system’s start-up/shutdown. The scripts are located under
directory misc/init.d.

Supported platforms

Due to the security requirements and mission-critical nature of server operation, UNIX is the only operating system that can
consistently deliver the necessary performance, fault tolerance and resilience. Zabbix operates on market leading versions.

Zabbix server is tested on the following platforms:

• Linux
• Solaris
• AIX
• HP-UX
• Mac OS X
• FreeBSD
• OpenBSD
• NetBSD
• SCO Open Server
• Tru64/OSF1

Note:
Zabbix may work on other Unix-like operating systems as well.

Locale

Note that the server requires a UTF-8 locale so that some textual items can be interpreted correctly. Most modern Unix-like systems
have a UTF-8 locale as default, however, there are some systems where that may need to be set specifically.

3 Agent

Overview

Zabbix agent is deployed on a monitoring target to actively monitor local resources and applications (hard drives, memory, pro-
cessor statistics etc).

The agent gathers operational information locally and reports data to Zabbix server for further processing. In case of failures
(such as a hard disk running full or a crashed service process), Zabbix server can actively alert the administrators of the particular
machine that reported the failure.

Zabbix agents are extremely efficient because of use of native system calls for gathering statistical information.

Passive and active checks

Zabbix agents can perform passive and active checks.

In a passive check the agent responds to a data request. Zabbix server (or proxy) asks for data, for example, CPU load, and Zabbix
agent sends back the result.

42

Active checks require more complex processing. The agent must first retrieve a list of items from Zabbix server for independent
processing. Then it will periodically send new values to the server.

Whether to perform passive or active checks is configured by selecting the respectivemonitoring item type. Zabbix agent processes
items of type ’Zabbix agent’ or ’Zabbix agent (active)’.

Supported platforms

Zabbix agent is supported for:

• Linux
• IBM AIX
• FreeBSD
• NetBSD
• OpenBSD
• HP-UX
• Mac OS X
• Solaris: 9, 10, 11
• Windows: all desktop and server versions since 2000

Agent on UNIX-like systems

Zabbix agent on UNIX-like systems is run on the host being monitored.

Installation

See the package installation section for instructions on how to install Zabbix agent as package.

Alternatively see instructions for manual installation if you do not want to use packages.

Attention:
In general, 32bit Zabbix agents will work on 64bit systems, but may fail in some cases.

If installed as package

Zabbix agent runs as a daemon process. The agent can be started by executing:

shell> service zabbix-agent start

This will work on most of GNU/Linux systems. On other systems you may need to run:

shell> /etc/init.d/zabbix-agent start

Similarly, for stopping/restarting/viewing status of Zabbix agent, use the following commands:

shell> service zabbix-agent stop
shell> service zabbix-agent restart
shell> service zabbix-agent status

Start up manually

If the above does not work you have to start it manually. Find the path to the zabbix_agentd binary and execute:

shell> zabbix_agentd

Agent on Windows systems

Zabbix agent on Windows runs as a Windows service.

Preparation

Zabbix agent is distributed as a zip archive. After you download the archive you need to unpack it. Choose any folder to store
Zabbix agent and the configuration file, e. g.

C:\zabbix

Copy bin\win64\zabbix_agentd.exe and conf\zabbix_agentd.win.conf files to c:\zabbix.

Edit the c:\zabbix\zabbix_agentd.win.conf file to your needs, making sure to specify a correct ”Hostname” parameter.

Installation

After this is done use the following command to install Zabbix agent as Windows service:

C:\> c:\zabbix\zabbix_agentd.exe -c c:\zabbix\zabbix_agentd.win.conf -i

43

Now you should be able to configure ”Zabbix agent” service normally as any other Windows service.

See more details on installing and running Zabbix agent on Windows.

Other agent options

It is possible to run multiple instances of the agent on a host. A single instance can use the default configuration file or a config-
uration file specified in the command line. In case of multiple instances each agent instance must have its own configuration file
(one of the instances can use the default configuration file).

The following command line parameters can be used with Zabbix agent:

Parameter Description

UNIX and Windows agent
-c --config <config-file> Absolute path to the configuration file.

You may use this option to specify a configuration file that is not
the default one.
On UNIX, default is /usr/local/etc/zabbix_agentd.conf or as set by
compile-time variables --sysconfdir or --prefix
On Windows, default is c:\zabbix_agentd.conf

-p --print Print known items and exit.
Note: To return user parameter results as well, you must specify
the configuration file (if it is not in the default location).

-t --test <item key> Test specified item and exit.
Note: To return user parameter results as well, you must specify
the configuration file (if it is not in the default location).

-h --help Display help information
-V --version Display version number
Windows agent only
-m --multiple-agents Use multiple agent instances (with -i,-d,-s,-x functions).

To distinguish service names of instances, each service name will
include the Hostname value from the specified configuration file.

Windows agent only (functions)
-i --install Install Zabbix Windows agent as service
-d --uninstall Uninstall Zabbix Windows agent service
-s --start Start Zabbix Windows agent service
-x --stop Stop Zabbix Windows agent service

Specific examples of using command line parameters:

• printing all built-in agent items with values
• testing a user parameter with ”mysql.ping” key defined in the specified configuration file
• installing a ”Zabbix Agent” service for Windows using the default path to configuration file c:\zabbix_agentd.conf
• installing a ”Zabbix Agent [Hostname]” service for Windows using the configuration file zabbix_agentd.conf located in the
same folder as agent executable and make the service name unique by extending it by Hostname value from the config file

shell> zabbix_agentd --print
shell> zabbix_agentd -t "mysql.ping" -c /etc/zabbix/zabbix_agentd.conf
shell> zabbix_agentd.exe -i
shell> zabbix_agentd.exe -i -m -c zabbix_agentd.conf

Process user

Zabbix agent on UNIX is designed to run as a non-root user. It will run as whatever non-root user it is started as. So you can run
agent as any non-root user without any issues.

If you will try to run it as ’root’, it will switch to a hardcoded ’zabbix’ user, which must be present on your system. You can only run
agent as ’root’ if you modify the ’AllowRoot’ parameter in the agent configuration file accordingly.

Configuration file

For details on configuring Zabbix agent see the configuration file options for zabbix_agentd or Windows agent.

Locale

Note that the agent requires a UTF-8 locale so that some textual agent items can return the expected content. Most modern
Unix-like systems have a UTF-8 locale as default, however, there are some systems where that may need to be set specifically.

Exit code

44

Before version 2.2 Zabbix agent returned 0 in case of successful exit and 255 in case of failure. Starting from version 2.2 and
higher Zabbix agent returns 0 in case of successful exit and 1 in case of failure.

4 Proxy

Overview

Zabbix proxy is a process that may collect monitoring data from one or more monitored devices and send the information to the
Zabbix server, essentially working on behalf of the server. All collected data is buffered locally and then transferred to the Zabbix
server the proxy belongs to.

Deploying a proxy is optional, but may be very beneficial to distribute the load of a single Zabbix server. If only proxies collect
data, processing on the server becomes less CPU and disk I/O hungry.

A Zabbix proxy is the ideal solution for centralized monitoring of remote locations, branches and networks with no local adminis-
trators.

Zabbix proxy requires a separate database.

Attention:
Note that databases supported with Zabbix proxy are SQLite, MySQL and PostgreSQL. Using Oracle or IBM DB2 is at your
own risk and may contain some limitations as, for example, in return values of low-level discovery rules.

See also: Using proxies in a distributed environment

Proxy process

If installed as package

Zabbix proxy runs as a daemon process. The proxy can be started by executing:

shell> service zabbix-proxy start

This will work on most of GNU/Linux systems. On other systems you may need to run:

shell> /etc/init.d/zabbix-proxy start

Similarly, for stopping/restarting/viewing status of Zabbix proxy, use the following commands:

shell> service zabbix-proxy stop
shell> service zabbix-proxy restart
shell> service zabbix-proxy status

Start up manually

If the above does not work you have to start it manually. Find the path to the zabbix_proxy binary and execute:

shell> zabbix_proxy

You can use the following command line parameters with Zabbix proxy:

-c --config <file> absolute path to the configuration file
-R --runtime-control <option> perform administrative functions
-h --help give this help
-V --version display version number

Examples of running Zabbix proxy with command line parameters:

shell> zabbix_proxy -c /usr/local/etc/zabbix_proxy.conf
shell> zabbix_proxy --help
shell> zabbix_proxy -V

Runtime control

Runtime control options:

Option Description

config_cache_reload Reload configuration cache. Ignored if cache is being currently loaded.
Active Zabbix proxy will connect to the Zabbix server and request
configuration data.

45

Example of using runtime control to reload the proxy configuration cache:

shell> zabbix_proxy -c /usr/local/etc/zabbix_proxy.conf -R config_cache_reload

Note:
Runtime control is not supported on OpenBSD and NetBSD.

Process user

Zabbix proxy is designed to run as a non-root user. It will run as whatever non-root user it is started as. So you can run proxy as
any non-root user without any issues.

If you will try to run it as ’root’, it will switch to a hardcoded ’zabbix’ user, which must be present on your system. You can only run
proxy as ’root’ if you modify the ’AllowRoot’ parameter in the proxy configuration file accordingly.

Configuration file

See the configuration file options for details on configuring zabbix_proxy.

Supported platforms

Zabbix proxy runs on the same list of server#supported platforms as Zabbix server.

Locale

Note that the proxy requires a UTF-8 locale so that some textual items can be interpreted correctly. Most modern Unix-like systems
have a UTF-8 locale as default, however, there are some systems where that may need to be set specifically.

5 Java gateway

Overview

Native support for monitoring JMX applications exists in the form of a Zabbix daemon called ”Zabbix Java gateway”, available
since Zabbix 2.0. Zabbix Java gateway is a daemon written in Java. To find out the value of a particular JMX counter on a host,
Zabbix server queries Zabbix Java gateway, which uses the JMX management API to query the application of interest remotely. The
application does not need any additional software installed, it just has to be started with -Dcom.sun.management.jmxremote
option on the command line.

Java gateway accepts incoming connection from Zabbix server or proxy and can only be used as a ”passive proxy”. As opposed
to Zabbix proxy, it may also be used from Zabbix proxy (Zabbix proxies cannot be chained). Access to each Java gateway is
configured directly in Zabbix server or proxy configuration file, thus only one Java gateway may be configured per Zabbix server
or Zabbix proxy. If a host will have items of type JMX agent and items of other type, only the JMX agent items will be passed to
Java gateway for retrieval.

When an item has to be updated over Java gateway, Zabbix server or proxy will connect to the Java gateway and request the value,
which Java gateway in turn retrieves and passes back to the server or proxy. As such, Java gateway does not cache any values.

Zabbix server or proxy has a specific type of processes that connect to Java gateway, controlled by the option StartJavaPollers.
Internally, Java gateway starts multiple threads, controlled by the START_POLLERS option. On the server side, if a connection
takes more than Timeout seconds, it will be terminated, but Java gateway might still be busy retrieving value from the JMX counter.
To solve this, since Zabbix 2.0.15 and Zabbix 2.2.10 there is the TIMEOUT option in Java gateway that allows to set timeout for
JMX network operations.

Zabbix server or proxy will try to pool requests to a single JMX target together as much as possible (affected by item intervals) and
send them to the Java Gateway in a single connection for better performance.

It is suggested to have StartJavaPollers less than or equal to START_POLLERS, otherwise there might be situations when no
threads are available in the Java gateway to service incoming requests; in such a case Java gateway uses ThreadPoolExecu-
tor.CallerRunsPolicy, meaning that the main thread will service the incoming request and temporarily will not accept any new
requests.

Sections below describe how to get and run Zabbix Java gateway, how to configure Zabbix server (or Zabbix proxy) to use Zabbix
Java gateway for JMX monitoring, and how to configure Zabbix items in Zabbix GUI that correspond to particular JMX counters.

5.1 Getting Java gateway

There are two ways to get Java gateway. One is to download Java gateway package from Zabbix website and the other is to compile
Java gateway from source.

5.1.1 Downloading from Zabbix website

46

http://java.sun.com/javase/technologies/core/mntr-mgmt/javamanagement/

Zabbix Java gateway packages (RHEL, Debian, Ubuntu) are available for download at http://www.zabbix.com/download.php.

5.1.2 Compiling from source

In order to compile Java gateway, you first run ./configure script with --enable-java option. It is advisable that you specify
--prefix option to request installation path other than the default /usr/local, because installing Java gateway will create a whole
directory tree, not just a single executable.

$./configure --enable-java --prefix=$PREFIX

To compile and package Java gateway into a JAR file, run make. Note that for this step you will need javac and jar executables
in your path.

$ make

Now you have zabbix-java-gateway-$VERSION.jar file in src/zabbix_java/bin. If you are comfortable with running Java gateway
from src/zabbix_java in the distribution directory, then you can proceed to instructions for configuring and running Java gateway.
Otherwise, make sure you have enough privileges and run make install.

$ make install

5.2 Overview of files in Java gateway distribution

Regardless of how you obtained Java gateway, you should have ended up with a collection of shell scripts, JAR and configuration
files under $PREFIX/sbin/zabbix_java. The role of these files is summarized below.

bin/zabbix-java-gateway-$VERSION.jar

Java gateway JAR file itself.

lib/logback-core-0.9.27.jar
lib/logback-classic-0.9.27.jar
lib/slf4j-api-1.6.1.jar
lib/android-json-4.3_r3.1.jar

Dependencies of Java gateway: Logback, SLF4J, and Android JSON library (note that up to Zabbix 2.2.5 JSON.org library was used).

lib/logback.xml
lib/logback-console.xml

Configuration files for Logback.

shutdown.sh
startup.sh

Convenience scripts for starting and stopping Java gateway.

settings.sh

Configuration file that is sourced by startup and shutdown scripts above.

5.3 Configuring and running Java gateway

By default, Java gateway listens on port 10052. If you plan on running Java gateway on a different port, you can specify that in
settings.sh script. See the description of Java gateway configuration file for how to specify this and other options.

Warning:
Port 10052 is not IANA registered.

Once you are comfortable with the settings, you can start Java gateway by running the startup script:

$./startup.sh

Likewise, once you no longer need Java gateway, run the shutdown script to stop it:

$./shutdown.sh

Note that unlike server or proxy, Java gateway is lightweight and does not need a database.

5.4 Configuring server for use with Java gateway

Now that Java gateway is running, you have to tell Zabbix server where to find Zabbix Java gateway. This is done by specifying
JavaGateway and JavaGatewayPort parameters in server configuration file. If the host on which JMX application is running is
monitored by Zabbix proxy, then you specify the connection parameters in proxy configuration file instead.

JavaGateway=192.168.3.14
JavaGatewayPort=10052

47

http://www.zabbix.com/download.php
http://logback.qos.ch/
http://www.slf4j.org/
https://android.googlesource.com/platform/libcore/+/master/json
http://www.json.org/
http://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.txt

By default, server does not start any processes related to JMX monitoring. If you wish to use it, however, you have to specify the
number of pre-forked instances of Java pollers. You do this in the same way you specify regular pollers and trappers.

StartJavaPollers=5

Do not forget to restart server or proxy, once you are done with configuring them.

5.5 Debugging Java gateway

In case there are any problems with Java gateway or an error message that you see about an item in the frontend is not descriptive
enough, you might wish to take a look at Java gateway log file.

By default, Java gateway logs its activities into /tmp/zabbix_java.log file with log level ”info”. Sometimes that information is not
enough and there is a need for information at log level ”debug”. In order to increase logging level, modify file lib/logback.xml and
change the level attribute of <root> tag to ”debug”:

<root level="debug">
<appender-ref ref="FILE" />

</root>

Note that unlike Zabbix server or Zabbix proxy, there is no need to restart Zabbix Java gateway after changing logback.xml file -
changes in logback.xml will be picked up automatically. When you are done with debugging, you can return the logging level to
”info”.

If you wish to log to a different file or a completely different medium like database, adjust logback.xml file to meet your needs.
See Logback Manual for more details.

Sometimes for debugging purposes it is useful to start Java gateway as a console application rather than a daemon. To do that,
comment out PID_FILE variable in settings.sh. If PID_FILE is omitted, startup.sh script starts Java gateway as a console application
and makes Logback use lib/logback-console.xml file instead, which not only logs to console, but has logging level ”debug” enabled
as well.

Finally, note that since Java gateway uses SLF4J for logging, you can replace Logback with the framework of your choice by placing
an appropriate JAR file in lib directory. See SLF4J Manual for more details.

6 Sender

Overview

Zabbix sender is a command line utility that may be used to send performance data to Zabbix server for processing.

The utility is usually used in long running user scripts for periodical sending of availability and performance data.

For sending results directly to Zabbix server or proxy, a trapper item type must be configured.

Sending one value

An example of sending a value to Zabbix server using Zabbix sender:

shell> zabbix_sender -z zabbix -s "Linux DB3" -k db.connections -o 43

where:

• z - Zabbix server host (IP address can be used as well)
• s - technical name of monitored host (as registered in Zabbix frontend)
• k - item key
• o - value to send

Attention:
If objects have whitespaces, these objects must be quoted using double quotes.

Attention:
Zabbix trapper process does not expand macros used in the item key in attempt to check corresponding item key existence
for targeted host.

See the Zabbix sender manpage for more information.

Zabbix sender on Windows can be run similarly:

zabbix_sender.exe [options]

48

http://logback.qos.ch/manual/
http://www.slf4j.org/manual.html

Since Zabbix 1.8.4, zabbix_sender realtime sending scenarios have been improved to gather multiple values passed to it in close
succession and send them to the server in a single connection. A value that is not further apart from the previous value than 0.2
seconds can be put in the same stack, but maximum pooling time still is 1 second.

Sending many values

It is possible to specify an input file containing the values to be sent to Zabbix server.

See the --input-file option in Zabbix sender manpage on how to properly format the file.

Without value timestamps

If you don’t need to specify the timestamp of each value, here is an example contents of the input file:

"Linux DB1" db.ping 1
"Linux DB3" db.ping 0
"Zabbix server" db.status 0
"Zabbix server" db.error "Linux DB3 down"

With value timestamps

It is possible to specify the timestamp of each value that is to be sent. Use option --with-timestamps in that case. Here is an
example of the input file with timestamps:

"Linux DB1" db.ping 1429533600 1
"Linux DB3" db.ping 1429533602 0
"Zabbix server" db.status 1429533603 0
"Zabbix server" db.error 1429533603 "Linux DB3 down"

If the target item has triggers referencing it, all timestamps in an input file must be in an increasing order, otherwise event
calculation will not be correct.

Attention:
The timestamps specified in the input file will be adjusted to match server time. For instance, if the timestamp specified is
”10:30:50”, the current time on Zabbix sender’s machine is ”10:40:03”, and the current time on Zabbix server’s machine
is ”10:40:05”, then the item’s value will be stored in the database with a timestamp of ”10:30:52”.
Similarly, if a value is first sent to Zabbix proxy, which later sends it to Zabbix server, the timestamp will be first adjusted
to match Zabbix proxy time, and then it will be adjusted to match Zabbix server time.

Zabbix sender accepts strings in UTF-8 encoding (for both UNIX-like systems and Windows) without byte order mark (BOM) first in
the file.

Quoting in the input file

Zabbix sender manpage contains the rules how to properly format the entries in the input file in --input-file section. Here are the
examples on how the values are stored in the database when different quoting is used:

value in the input file result in the database error message on the screen
failed failed
”status: failed” status: failed
”status: \”failed\”” status: ”failed”
”C:\\” C:
C: C:
”C:\” Warning: [line 1] ’Key value’ required
”C:\My Documents” C:\My Documents
status:\nfailed status:\nfailed
”status:\tfailed” status:\tfailed
”status:\nfailed” status:

failed
”status:\nfailed\n” status:

failed
”\nstatus:\nfailed”

status:
failed

”\n\n”

Example of the output

Here is an example of sending 300 values from the input file:

49

zabbix_sender -z 127.0.0.1 -i /tmp/trapper.txt
Info from server: "Processed 250 Failed 0 Total 250 Seconds spent 0.002668"
Info from server: "Processed 50 Failed 0 Total 50 Seconds spent 0.000540"
sent: 300; skipped: 0; total: 300

Note:
Zabbix sender will terminate if invalid (not following parameter=value notation) parameter entry is present in specified
configuration file.

7 Get

Overview

Zabbix get is a command line utility which can be used to communicate with Zabbix agent and retrieve required information from
the agent.

The utility is usually used for the troubleshooting of Zabbix agents.

Running Zabbix get

An example of running Zabbix get under UNIX to get the processor load value from the agent:

shell> cd bin
shell> ./zabbix_get -s 127.0.0.1 -p 10050 -k system.cpu.load[all,avg1]

Another example of running Zabbix get for capturing a string from a website:

shell> cd bin
shell> ./zabbix_get -s 192.168.1.1 -p 10050 -k "web.page.regexp[www.zabbix.com,,,\"USA: ([a-zA-Z0-9.-]+)\",,\1]"

Note that the item key here contains a space so quotes are used to mark the item key to the shell. The quotes are not part of the
item key; they will be trimmed by the shell and will not be passed to Zabbix agent.

Zabbix get accepts the following command line parameters:

-s --host <host name or IP> Specify host name or IP address of a host.
-p --port <port number> Specify port number of agent running on the host. Default is 10050.
-I --source-address <IP address> Specify source IP address.
-k --key <item key> Specify key of item to retrieve value of.
-h --help Give this help.
-V --version Display version number.

Zabbix get on Windows can be run similarly:

zabbix_get.exe [options]

3. Installation

Please use the sidebar to access content in the Installation section.

1 Getting Zabbix

Overview

There are four ways of getting Zabbix:

• Install it from the distribution packages
• Download the latest source archive and compile it yourself
• Download the virtual appliance

To download the latest distribution packages, pre-compiled sources or the virtual appliance, go to the Zabbix download page, where
direct links to latest versions are provided.

50

https://www.zabbix.com/download

Getting Zabbix source code

There are several ways of getting Zabbix source code:

• You can download the released stable versions from the official Zabbix website
• You can download nightly builds from the official Zabbix website developer page
• You can get the latest development version from the Git source code repository system:

– The primary location of the full repository is at https://git.zabbix.com/scm/zbx/zabbix.git
– Master and supported releases are also mirrored to Github at https://github.com/zabbix/zabbix

A Git client must be installed to clone the repository. The official commandline Git client package is commonly called git in
distributions. To install, for example, on Debian/Ubuntu, run:

sudo apt-get update
sudo apt-get install git

To grab all Zabbix source, change to the directory you want to place the code in and execute:

git clone https://git.zabbix.com/scm/zbx/zabbix.git

2 Requirements

Hardware

Memory

Zabbix requires both physical and disk memory. 128 MB of physical memory and 256 MB of free disk space could be a good
starting point. However, the amount of required disk memory obviously depends on the number of hosts and parameters that are
being monitored. If you’re planning to keep a long history of monitored parameters, you should be thinking of at least a couple of
gigabytes to have enough space to store the history in the database. Each Zabbix daemon process requires several connections
to a database server. Amount of memory allocated for the connection depends on configuration of the database engine.

Note:
The more physical memory you have, the faster the database (and therefore Zabbix) works!

CPU

Zabbix and especially Zabbix database may require significant CPU resources depending on number of monitored parameters and
chosen database engine.

Other hardware

A serial communication port and a serial GSM modem are required for using SMS notification support in Zabbix. USB-to-serial
converter will also work.

Examples of hardware configuration

The table provides several examples of hardware configurations:

Name Platform CPU/Memory Database Monitored hosts

Small CentOS Virtual Appliance MySQL InnoDB 100
Medium CentOS 2 CPU cores/2GB MySQL InnoDB 500
Large RedHat Enterprise

Linux
4 CPU cores/8GB RAID10 MySQL

InnoDB or
PostgreSQL

>1000

Very large RedHat Enterprise
Linux

8 CPU cores/16GB Fast RAID10 MySQL
InnoDB or
PostgreSQL

>10000

Note:
Actual configuration depends on the number of active items and refresh rates very much. It is highly recommended to run
the database on a separate box for large installations.

Supported platforms

51

https://www.zabbix.com/download_sources#tab:22LTS
https://www.zabbix.com/developers
https://git.zabbix.com/scm/zbx/zabbix.git
https://github.com/zabbix/zabbix

Due to security requirements and mission-critical nature of monitoring server, UNIX is the only operating system that can consis-
tently deliver the necessary performance, fault tolerance and resilience. Zabbix operates on market leading versions.

Zabbix is tested on the following platforms:

• Linux
• IBM AIX
• FreeBSD
• NetBSD
• OpenBSD
• HP-UX
• Mac OS X
• Solaris
• Windows: all desktop and server versions since 2000 (Zabbix agent only)

Note:
Zabbix may work on other Unix-like operating systems as well.

Software

Zabbix is built around a modern Apache web server, leading database engines, and PHP scripting language.

Database management system

Software Version Comments

MySQL 5.0.3 - 5.7.x Required if MySQL is used as Zabbix
backend database. InnoDB engine is
required.
MariaDB also works with Zabbix.
Note that MySQL 8.0 is not supported in
Zabbix pre-4.0 versions.

Oracle 10g or later Required if Oracle is used as Zabbix
backend database.

PostgreSQL 8.1 or later Required if PostgreSQL is used as Zabbix
backend database.
It is suggested to use at least PostgreSQL
8.3, which introduced much better
VACUUM performance.

SQLite 3.3.5 or later Required if SQLite is used as Zabbix
backend database.

IBM DB2 9.7 or later Required if IBM DB2 is used as Zabbix
backend database.

Attention:
IBM DB2 support is experimental!

Attention:
While SQLite3 can be used with Zabbix proxies without any problems, using SQLite3 with Zabbix server is not recom-
mended. Since Zabbix 2.2.5, simultaneous database access with server and frontend may even lead to database corrup-
tion!

Frontend

The following software is required to run Zabbix frontend:

Software Version Comments

Apache 1.3.12 or later
PHP 5.3.0 or later PHP v7 is not supported.
PHP extensions:

52

http://www.postgresql.org/docs/8.3/static/release-8-3.html
http://www.postgresql.org/docs/8.3/static/release-8-3.html

Software Version Comments

gd 2.0 or later PHP GD extension must support PNG
images (--with-png-dir), JPEG
(--with-jpeg-dir) images and FreeType 2
(--with-freetype-dir).

bcmath php-bcmath (--enable-bcmath)
ctype php-ctype (--enable-ctype)
libXML 2.6.15 or later php-xml or php5-dom, if provided as a

separate package by the distributor.
xmlreader php-xmlreader, if provided as a separate

package by the distributor.
xmlwriter php-xmlwriter, if provided as a separate

package by the distributor.
session php-session, if provided as a separate

package by the distributor.
sockets php-net-socket (--enable-sockets).

Required for user script support.
mbstring php-mbstring (--enable-mbstring)
gettext php-gettext (--with-gettext). Required for

translations to work.
ldap php-ldap. Required only if LDAP

authentication is used in the frontend.
ibm_db2 Required if IBM DB2 is used as Zabbix

backend database.
mysqli Required if MySQL is used as Zabbix

backend database.
oci8 Required if Oracle is used as Zabbix

backend database.
pgsql Required if PostgreSQL is used as Zabbix

backend database.
sqlite3 Required if SQLite is used as Zabbix

backend database.

Note:
Zabbix may work on previous versions of Apache, MySQL, Oracle, and PostgreSQL as well.

Attention:
For other fonts than the default DejaVu, PHP function imagerotate might be required. If it is missing, these fonts might be
rendered incorrectly when a graph is displayed. This function is only available if PHP is compiled with bundled GD, which
is not the case in Debian and other distributions.

Web browser on client side

Cookies and Java Script must be enabled.

Latest versions of Google Chrome, Mozilla Firefox, Microsoft Internet Explorer and Opera are supported. Other browsers (Apple
Safari, Konqueror) may work with Zabbix as well.

Warning:
Starting with Zabbix 2.2.21, the same origin policy for IFrames is implemented, which means that Zabbix cannot be placed
in frames on a different domain.

Still, pages placed into a Zabbix frame will have access to Zabbix frontend (through JavaScript) if the page that is placed
in the frame and Zabbix frontend are on the same domain. A page like http://secure-zabbix.com/cms/page.html,
if placed into screens on http://secure-zabbix.com/zabbix/, will have full JS access to Zabbix.

Server

Requirement Description

OpenIPMI Required for IPMI support.

53

http://php.net/manual/en/function.imagerotate.php

Requirement Description

libssh2 Required for SSH support. Version 1.0 or higher.
fping Required for ICMP ping items.
libcurl Required for web monitoring and VMware monitoring.
libiksemel Required for Jabber support.
libxml2 Required for VMware monitoring.
net-snmp Required for SNMP support.

Java gateway

If you obtained Zabbix from the source repository or an archive, then the necessary dependencies are already included in the
source tree.

If you obtained Zabbix from your distribution’s package, then the necessary dependencies are already provided by the packaging
system.

In both cases above, the software is ready to be used and no additional downloads are necessary.

If, however, you wish to provide your versions of these dependencies (for instance, if you are preparing a package for some Linux
distribution), below is the list of library versions that Java gateway is known to work with. Zabbix may work with other versions of
these libraries, too.

The following table lists JAR files that are currently bundled with Java gateway in the original code:

Library License Website Comments

logback-core-0.9.27.jar EPL 1.0, LGPL 2.1 http://logback.qos.ch/ Tested with 0.9.27, 1.0.13, and
1.1.1.

logback-classic-0.9.27.jar EPL 1.0, LGPL 2.1 http://logback.qos.ch/ Tested with 0.9.27, 1.0.13, and
1.1.1.

slf4j-api-1.6.1.jar MIT License http://www.slf4j.org/ Tested with 1.6.1, 1.6.6, and
1.7.6.

android-json-4.3_r3.1.jar Apache License 2.0 https:
//android.googlesource.
com/platform/libcore/+/
master/json

Tested with 2.3.3_r1.1 and
4.3_r3.1. See
src/zabbix_java/lib/README for
instructions on creating a JAR
file.

Java gateway compiles and runs with Java 1.6 and above. It is recommended that those who provide a precompiled version of the
gateway for others use Java 1.6 for compilation, so that it runs on all versions of Java up to the latest one.

Database size

Zabbix configuration data require a fixed amount of disk space and do not grow much.

Zabbix database size mainly depends on these variables, which define the amount of stored historical data:

• Number of processed values per second

This is the average number of new values Zabbix server receives every second. For example, if we have 3000 items for monitoring
with refresh rate of 60 seconds, the number of values per second is calculated as 3000/60 = 50.

It means that 50 new values are added to Zabbix database every second.

• Housekeeper settings for history

Zabbix keeps values for a fixed period of time, normally several weeks or months. Each new value requires a certain amount of
disk space for data and index.

So, if we would like to keep 30 days of history and we receive 50 values per second, total number of values will be around
(30*24*3600)* 50 = 129.600.000, or about 130M of values.

Depending on the database engine used, type of received values (floats, integers, strings, log files, etc), the disk space for keeping
a single value may vary from 40 bytes to hundreds of bytes. Normally it is around 90 bytes per value for numeric items. In our
case, it means that 130M of values will require 130M * 90 bytes = 10.9GB of disk space.

Note:
The size of text/log item values is impossible to predict exactly, but you may expect around 500 bytes per value.

54

http://logback.qos.ch/
http://logback.qos.ch/
http://www.slf4j.org/
https://android.googlesource.com/platform/libcore/+/master/json
https://android.googlesource.com/platform/libcore/+/master/json
https://android.googlesource.com/platform/libcore/+/master/json
https://android.googlesource.com/platform/libcore/+/master/json

• Housekeeper setting for trends

Zabbix keeps a 1-hour max/min/avg/count set of values for each item in the table trends. The data is used for trending and long
period graphs. The one hour period can not be customised.

Zabbix database, depending on database type, requires about 90 bytes per each total. Suppose we would like to keep trend data
for 5 years. Values for 3000 items will require 3000*24*365* 90 = 2.2GB per year, or 11GB for 5 years.

• Housekeeper settings for events

Each Zabbix event requires approximately 170 bytes of disk space. It is hard to estimate the number of events generated by
Zabbix daily. In the worst case scenario, we may assume that Zabbix generates one event per second.

It means that if we want to keep 3 years of events, this would require 3*365*24*3600* 170 = 15GB

The table contains formulas that can be used to calculate the disk space required for Zabbix system:

Parameter Formula for required disk space (in bytes)

Zabbix configuration Fixed size. Normally 10MB or less.
History days*(items/refresh rate)*24*3600*bytes

items : number of items
days : number of days to keep history
refresh rate : average refresh rate of items
bytes : number of bytes required to keep single value, depends on database engine, normally ~90
bytes.

Trends days*(items/3600)*24*3600*bytes
items : number of items
days : number of days to keep history
bytes : number of bytes required to keep single trend, depends on database engine, normally ~90
bytes.

Events days*events*24*3600*bytes
events : number of event per second. One (1) event per second in worst case scenario.
days : number of days to keep history
bytes : number of bytes required to keep single trend, depends on database engine, normally ~170
bytes.

Note:
Average values such as ~90 bytes for numeric items, ~170 bytes for events have been gathered from real-life statistics
using a MySQL backend database.

So, the total required disk space can be calculated as:
Configuration + History + Trends + Events
The disk space will NOT be used immediately after Zabbix installation. Database size will grow then it will stop growing at some
point, which depends on housekeeper settings.

Note:
Disk space requirements for nodes in distributed setup are calculated in a similar way, but this also depends on a total
number of child nodes linked to a node.

Time synchronisation

It is very important to have precise system date on server with Zabbix running. ntpd is the most popular daemon that synchronizes
the host’s time with the time of other machines.

Best practices for secure Zabbix setup

Overview

This section contains best practices that should be observed in order to set up Zabbix in a secure way.

The practices contained here are not required for the functioning of Zabbix. They are recommended for better security of the
system.

Principle of least privilege

55

http://www.ntp.org/

The principle of least privilege should be used at all times for Zabbix. This principle means that user accounts (in Zabbix frontend)
or process user (for Zabbix server/proxy or agent) have only those privileges that are essential to perform intended functions. In
other words, user accounts at all times should run with as few privileges as possible.

Attention:
Giving extra permissions to ’zabbix’ user will allow it to access configuration files and execute operations that can compro-
mise the overall security of infrastructure.

When implementing the least privilege principle for user accounts, Zabbix frontend user types should be taken into account. It is
important to understand that while a ”Zabbix Admin” user type has less privileges than ”Zabbix Super Admin” user type, it has
administrative permissions that allow managing configuration and execute custom scripts.

Note:
Some information is available even for non-privileged users. For example, while Administration → Scripts is not available
for non-Super Admins, scripts themselves are available for retrieval by using Zabbix API. Limiting script permissions and
not adding sensitive information (like access credentials, etc) should be used to avoid exposure of sensitive information
available in global scripts.

Secure user for Zabbix agent

In the default configuration, Zabbix server and Zabbix agent processes share one ’zabbix’ user. If you wish to make sure that
the agent cannot access sensitive details in server configuration (e.g. database login information), the agent should be run as a
different user:

1. Create a secure user
2. Specify this user in the agent configuration file (’User’ parameter)
3. Restart the agent with administrator privileges. Privileges will be dropped to the specified user.

UTF-8 encoding

UTF-8 is the only encoding supported by Zabbix. It is known to work without any security flaws. Users should be aware that there
are known security issues if using some of the other encodings.

Setting up SSL for Zabbix frontend

On RHEL/Centos, install mod_ssl package:

yum install mod_ssl

Create directory for SSL keys:

mkdir /etc/httpd/ssl

Add settings for SSL setup:

Country Name (2 letter code) [XX]:
State or Province Name (full name) []:
Locality Name (eg, city) [Default City]:
Organization Name (eg, company) [Default Company Ltd]:
Organizational Unit Name (eg, section) []:
Common Name (eg, your name or your server's hostname) []:localhost
Email Address []:

Edit Apache SSL configuration:

/etc/httpd/conf.d/ssl.conf

DocumentRoot "/usr/share/zabbix"
ServerName localhost:443
SSLCertificateFile /etc/httpd/ssl/apache.crt
SSLCertificateKeyFile /etc/httpd/ssl/apache.key

Restart the Apache service to apply the changes:

systemctl restart httpd.service

Enabling Zabbix on root directory of URL

Add a virtual host to Apache configuration and set permanent redirect for document root to Zabbix SSL URL. Replace localhost with
the actual name of the server.

56

/etc/httpd/conf/httpd.conf

#Add lines

<VirtualHost *:*>
ServerName localhost
Redirect permanent / http://localhost

</VirtualHost>

Restart the Apache service to apply the changes:

systemctl restart httpd.service

Disabling web server information exposure

It is recommended to disable all web server signatures as part of the web server hardening process. The web server is exposing
software signature by default:

The signature can be disabled by adding two lines to the Apache (used as an example) configuration file:

ServerSignature Off
ServerTokens Prod

PHP signature (X-Powered-By HTTP header) can be disabled by changing the php.ini configuration file (signature is disabled by
default):

expose_php = Off

Web server restart is required for configuration file changes to be applied.

Additional security level can be achieved by using the mod_security (package libapache2-mod-security2) with Apache.
mod_security allows to remove server signature instead of only removing version from server signature. Signature can be
altered to any value by changing ”SecServerSignature” to any desired value after installing mod_security.

Please refer to documentation of your web server to find help on how to remove/change software signatures.

Disabling default web server error pages

It is recommended to disable default error pages to avoid information exposure. Web server is using built-in error pages by default:

Default error pages should be replaced/removed as part of the web server hardening process. The ”ErrorDocument” directive can
be used to define a custom error page/text for Apache web server (used as an example).

Please refer to documentation of your web server to find help on how to replace/remove default error pages.

57

Removing web server test page

It is recommended to remove the web server test page to avoid information exposure. By default, web server webroot contains a
test page called index.html (Apache2 on Ubuntu is used as an example):

The test page should be removed or should be made unavailable as part of the web server hardening process.

3 Installation from packages

From distribution packages Several popular OS distributions have Zabbix packages provided. You can use these packages to
install Zabbix.

Note:
OS distributions may lack the latest version of Zabbix in their repositiories.

From Zabbix official repository Zabbix SIA provides official RPM and DEB packages for Red Hat Enterprise Linux, Debian and
Ubuntu LTS.

Package files are available at repo.zabbix.com . yum and apt repositories are also available on the server. A step-by-step tutorial
for installing Zabbix from packages is provided here.

Red Hat Enterprise Linux / CentOS Supported for versions: RHEL 5, RHEL 6, RHEL 7, Oracle Linux 5, Oracle Linux 6, Oracle
Linux 7, CentOS 5, CentOS 6, CentOS 7

Installing repository configuration package

Install the repository configuration package. This package contains yum configuration files.

Zabbix 2.2 for RHEL5, Oracle Linux 5, CentOS 5:

rpm -ivh https://repo.zabbix.com/zabbix/2.2/rhel/5/x86_64/zabbix-release-2.2-1.el5.noarch.rpm

Zabbix 2.2 for RHEL6, Oracle Linux 6, CentOS 6:

rpm -ivh https://repo.zabbix.com/zabbix/2.2/rhel/6/x86_64/zabbix-release-2.2-1.el6.noarch.rpm

Zabbix 2.2 for RHEL7, Oracle Linux 7, CentOS 7:

rpm -ivh https://repo.zabbix.com/zabbix/2.2/rhel/7/x86_64/zabbix-release-2.2-1.el7.noarch.rpm

Installing Zabbix packages

Install Zabbix packages. Example for Zabbix server and web frontend with mysql database.

Note:
Zabbix official repository provides fping, iksemel, libssh2 packages as well. These packages are located in the non-
supported directory.

yum install zabbix-server-mysql zabbix-web-mysql

Example for installing Zabbix agent only.

58

yum install zabbix-agent

Creating initial database

Create zabbix database and user on MySQL.

mysql -uroot
mysql> create database zabbix character set utf8 collate utf8_bin;
mysql> grant all privileges on zabbix.* to zabbix@localhost identified by 'zabbix';
mysql> exit

Import initial schema and data.

cd /usr/share/doc/zabbix-server-mysql-2.2.0/create
mysql -uroot zabbix < schema.sql
mysql -uroot zabbix < images.sql
mysql -uroot zabbix < data.sql

Starting Zabbix server process

Edit database configuration in zabbix_server.conf

vi /etc/zabbix/zabbix_server.conf
DBHost=localhost
DBName=zabbix
DBUser=zabbix
DBPassword=zabbix

Start Zabbix server process.

service zabbix-server start

Editing PHP configuration for Zabbix frontend

Apache configuration file for Zabbix frontend is located in /etc/httpd/conf.d/zabbix.conf. Some PHP settings are already configured.

php_value max_execution_time 300
php_value memory_limit 128M
php_value post_max_size 16M
php_value upload_max_filesize 2M
php_value max_input_time 300
php_value date.timezone Europe/Riga

It’s necessary to uncomment the ”date.timezone” setting and set the right timezone for you. After changing the configuration file
restart the apache web server.

service httpd restart

Zabbix frontend is available at http://zabbix-frontend-hostname/zabbix in the browser. Default username/password is Ad-
min/zabbix.

Debian / Ubuntu Supported for version: Debian 6 (Squeeze), Debian 7 (Wheezy), Ubuntu 12.04 LTS (Precise Pangolin), Ubuntu
14.04 LTS (Trusty Tahr)

Installing repository configuration package

Install the repository configuration package. This package contains apt configuration files.

Zabbix 2.2 for Debian 6:

wget https://repo.zabbix.com/zabbix/2.2/debian/pool/main/z/zabbix-release/zabbix-release_2.2-1+squeeze_all.deb
dpkg -i zabbix-release_2.2-1+squeeze_all.deb
apt-get update

Zabbix 2.2 for Debian 7:

wget https://repo.zabbix.com/zabbix/2.2/debian/pool/main/z/zabbix-release/zabbix-release_2.2-1+wheezy_all.deb
dpkg -i zabbix-release_2.2-1+wheezy_all.deb
apt-get update

Zabbix 2.2 for Ubuntu 12.04 LTS:

wget https://repo.zabbix.com/zabbix/2.2/ubuntu/pool/main/z/zabbix-release/zabbix-release_2.2-1+precise_all.deb
dpkg -i zabbix-release_2.2-1+precise_all.deb
apt-get update

59

http://zabbix-frontend-hostname/zabbix

Zabbix 2.2 for Ubuntu 14.04 LTS:

wget https://repo.zabbix.com/zabbix/2.2/ubuntu/pool/main/z/zabbix-release/zabbix-release_2.2-1+trusty_all.deb
dpkg -i zabbix-release_2.2-1+trusty_all.deb
apt-get update

Installing Zabbix packages

Install Zabbix packages. dbconfig-common will create the database and populate the initial schema and data automatically. If
backend db is located on a different server, please set dbc_remote_questions_default=’true’ in /etc/dbconfig-common/config.

Example for Zabbix server and web frontend with mysql database.

apt-get install zabbix-server-mysql zabbix-frontend-php

Note:
The zabbix-frontend-php package, during installation, will configure a font, which is used on generated images. If you
updated the package from any other repository and text is empty on graphs or maps, please check if a ”ttf-dejavu-core”
package is installed and try to execute ”dpkg-reconfigure zabbix-frontend-php” command.

Example for installing Zabbix agent only.

apt-get install zabbix-agent

Editing PHP configuration for Zabbix frontend

Apache configuration file for Zabbix frontend is located in /etc/apache2/conf.d/zabbix. Some PHP settings are already configured.
(For ubuntu 14.04, the file is located in /etc/apache2/conf-available/zabbix.conf)

php_value max_execution_time 300
php_value memory_limit 128M
php_value post_max_size 16M
php_value upload_max_filesize 2M
php_value max_input_time 300
php_value date.timezone Europe/Riga

It’s necessary to uncomment the ”date.timezone” setting and set the correct timezone for you. After changing the configuration
file restart the apache web server.

service apache2 restart

Zabbix frontend is available at http://zabbix-frontend-hostname/zabbix in the browser. Default username/password is Ad-
min/zabbix.

Troubleshooting See the section on installation-specific issue troubleshooting.

4 Installation from sources

You can get the very latest version of Zabbix by compiling it from the sources.

A step-by-step tutorial for installing Zabbix from the sources is provided here.

1 Installing Zabbix daemons

1 Download the source archive

Go to the Zabbix download page and download the source archive. Once downloaded, extract the sources, by running:

$ tar -zxvf zabbix-2.2.0.tar.gz

Note:
Enter the correct Zabbix version in the command. It must match the name of the downloaded archive.

2 Create user account

For all of the Zabbix daemon processes, an unprivileged user is required. If a Zabbix daemon is started from an unprivileged user
account, it will run as that user.

However, if a daemon is started from a ’root’ account, it will switch to a ’zabbix’ user account, which must be present. To create
such a user account (in its own group, ”zabbix”),

60

http://zabbix-frontend-hostname/zabbix
http://www.zabbix.com/download_sources

on a RedHat-based system, run:

groupadd --system zabbix
useradd --system -g zabbix -d /usr/lib/zabbix -s /sbin/nologin -c "Zabbix Monitoring System" zabbix

on a Debian-based system, run:

addgroup --system --quiet zabbix
adduser --quiet --system --disabled-login --ingroup zabbix --home /var/lib/zabbix --no-create-home zabbix

Attention:
Zabbix processes do not need a home directory, which is why we do not recommend creating it. However, if you are using
some functionality that requires it (e. g. store MySQL credentials in $HOME/.my.cnf) you are free to create it using the
following commands.

On RedHat-based systems, run:
mkdir -m u=rwx,g=rwx,o= -p /usr/lib/zabbix
chown zabbix:zabbix /usr/lib/zabbix
On Debian-based systems, run:
mkdir -m u=rwx,g=rwx,o= -p /var/lib/zabbix
chown zabbix:zabbix /var/lib/zabbix

A separate user account is not required for Zabbix frontend installation.

If Zabbix server and agent are run on the same machine it is recommended to use a different user for running the server than for
running the agent. Otherwise, if both are run as the same user, the agent can access the server configuration file and any Admin
level user in Zabbix can quite easily retrieve, for example, the database password.

Attention:
Running Zabbix as root, bin, or any other account with special rights is a security risk.

3 Create Zabbix database

For Zabbix server and proxy daemons, as well as Zabbix frontend, a database is required. It is not needed to run Zabbix agent.

SQL scripts are provided for creating database schema and inserting the dataset. Zabbix proxy database needs only the schema
while Zabbix server database requires also the dataset on top of the schema.

Having created a Zabbix database, proceed to the following steps of compiling Zabbix.

4 Configure the sources

When configuring the sources for a Zabbix server or proxy, you must specify the database type to be used. Only one database
type can be compiled with a server or proxy process at a time.

To see all of the supported configuration options, inside the extracted Zabbix source directory run:

./configure --help

To configure the sources for a Zabbix server and agent, you may run something like:

./configure --enable-server --enable-agent --with-mysql --enable-ipv6 --with-net-snmp --with-libcurl --with-libxml2

Note:
--with-libxml2 configuration option is required for virtual machine monitoring, supported since Zabbix 2.2.0.

To configure the sources for a Zabbix server (with PostgreSQL etc.), you may run:

./configure --enable-server --with-postgresql --with-net-snmp

To configure the sources for a Zabbix proxy (with SQLite etc.), you may run:

./configure --prefix=/usr --enable-proxy --with-net-snmp --with-sqlite3 --with-ssh2

To configure the sources for a Zabbix agent, you may run:

./configure --enable-agent

You may use the --enable-static flag to statically link libraries. If you plan to distribute compiled binaries among different servers,
you must use this flag to make these binaries work without required libraries. Note that --enable-static does not work in Solaris.

61

https://docs.oracle.com/cd/E18659_01/html/821-1383/bkajp.html

Attention:
Using --enable-static option is not recommended when building server.// //
In order to build the server statically you must have a static version of every external library needed. There is no strict
check for that in configure script.

Note:
Command-line utilities zabbix_get and zabbix_sender are compiled if --enable-agent option is used.

Note:
Use --with-ibm-db2 flag to specify location of the CLI API.
Use --with-oracle flag to specify location of the OCI API.

5 Make and install everything

Note:
If installing from SVN, it is required to run first:
$ make dbschema

make install

This step should be run as a user with sufficient permissions (commonly ’root’, or by using sudo).

Running make install will by default install the daemon binaries (zabbix_server, zabbix_agentd, zabbix_proxy) in /usr/local/sbin
and the client binaries (zabbix_get, zabbix_sender) in /usr/local/bin.

Note:
To specify a different location than /usr/local, use a --prefix key in the previous step of configuring sources, for example --
prefix=/home/zabbix. In this case daemon binaries will be installed under <prefix>/sbin, while utilities under <prefix>/bin.
Man pages will be installed under <prefix>/share.

6 Review and edit configuration files

• edit the Zabbix agent configuration file /usr/local/etc/zabbix_agentd.conf

You need to configure this file for every host with zabbix_agentd installed.

You must specify the Zabbix server IP address in the file. Connections from other hosts will be denied.

• edit the Zabbix server configuration file /usr/local/etc/zabbix_server.conf

You must specify the database name, user and password (if using any).

Note:
With SQLite the full path to database file must be specified; DB user and password are not required.

The rest of the parameters will suit you with their defaults if you have a small installation (up to ten monitored hosts). You should
change the default parameters if you want to maximize the performance of Zabbix server (or proxy) though. See the performance
tuning section for more details.

• if you have installed a Zabbix proxy, edit the proxy configuration file /usr/local/etc/zabbix_proxy.conf

You must specify the server IP address and proxy hostname (must be known to the server), as well as the database name, user
and password (if using any).

Note:
With SQLite the full path to database file must be specified; DB user and password are not required.

7 Start up the daemons

Run zabbix_server on the server side.

shell> zabbix_server

62

Note:
Make sure that your system allows allocation of 36MB (or a bit more) of shared memory, otherwise the server may not
start and you will see ”Cannot allocate shared memory for <type of cache>.” in the server log file. This may happen on
FreeBSD, Solaris 8.
See the ”See also” section at the bottom of this page to find out how to configure shared memory.

Run zabbix_agentd on all the monitored machines.

shell> zabbix_agentd

Note:
Make sure that your system allows allocation of 2MB of shared memory, otherwise the agent may not start and you will
see ”Cannot allocate shared memory for collector.” in the agent log file. This may happen on Solaris 8.

If you have installed Zabbix proxy, run zabbix_proxy.

shell> zabbix_proxy

2 Installing Zabbix web interface

Copying PHP files

Zabbix frontend is written in PHP, so to run it a PHP supported webserver is needed. Installation is done by simply copying the PHP
files from frontends/php to the webserver HTML documents directory.

Common locations of HTML documents directories for Apache web servers include:

• /usr/local/apache2/htdocs (default directory when installing Apache from source)
• /srv/www/htdocs (OpenSUSE, SLES)
• /var/www/html (Fedora, RHEL, CentOS)
• /var/www (Debian, Ubuntu)

It is suggested to use a subdirectory instead of the HTML root. To create a subdirectory and copy Zabbix frontend files into it,
execute the following commands, replacing the actual directory:

mkdir <htdocs>/zabbix
cd frontends/php
cp -a . <htdocs>/zabbix

If installing from SVN and planning to use any other language than English, you must generate translation files. To do so, run:

locale/make_mo.sh

msgfmt utility from gettext package is required.

Note:
Additionally, to use any other language than English, its locale should be installed on the web server. See the ”See also”
section in the ”User profile” page to find out how to install it if required.

Installing frontend

Step 1

In your browser, open Zabbix URL: http://<server_ip_or_name>/zabbix

You should see the first screen of the frontend installation wizard.

63

Step 2

Make sure that all software prerequisites are met.

Pre-requisite Minimum value Description

PHP version 5.3.0
PHP memory_limit option 128MB In php.ini:

memory_limit = 128M
PHP post_max_size option 16MB In php.ini:

post_max_size = 16M
PHP upload_max_filesize option 2MB In php.ini:

upload_max_filesize = 2M
PHP max_execution_time option 300 seconds In php.ini:

max_execution_time = 300
PHP max_input_time option 300 seconds In php.ini:

max_input_time = 300

64

Pre-requisite Minimum value Description

PHP session.auto_start option must be disabled In php.ini:
session.auto_start = 0.

Database support One of: IBM DB2, MySQL, Oracle,
PostgreSQL, SQLite

One of the following modules must
be installed:
ibm_db2, mysql, oci8, pgsql,
sqlite3

bcmath php-bcmath
mbstring php-mbstring
sockets php-net-socket. Required for user

script support.
gd 2.0 or higher php-gd. PHP GD extension must

support PNG images
(--with-png-dir), JPEG
(--with-jpeg-dir) images and
FreeType 2 (--with-freetype-dir).

libxml 2.6.15 php-xml or php5-dom
xmlwriter php-xmlwriter
xmlreader php-xmlreader
ctype php-ctype
session php-session
gettext php-gettext

Starting with Zabbix 2.2.1, the
PHP gettext extension is no longer
a mandatory requirement for
installing Zabbix. If gettext is not
installed, the frontend will work as
usual, however, the translations
will not be available.

Starting with Zabbix 2.2.1, optional pre-requisites may also be present in the list. A failed optional prerequisite is displayed in
orange and has a Warning status. With a failed optional pre-requisite, the setup may continue.

Step 3

Enter details for connecting to the database. Zabbix database must already be created.

Step 4

Enter Zabbix server details.

65

Entering a name for Zabbix server is optional, however, if submitted, it will be displayed in the menu bar and page titles.

Step 5

Review a summary of settings.

Step 6

Download the configuration file and place it under conf/.

66

Note:
Providing the webserver user has write access to conf/ directory the configuration file would be saved automatically and it
would be possible to proceed to the next step right away.

Step 7

Finish the installation.

67

Step 8

Zabbix frontend is ready! The default user name is Admin, password zabbix.

Proceed to getting started with Zabbix.

Troubleshooting See the section on installation-specific issue troubleshooting.

See also

1. How to configure shared memory for Zabbix daemons

5 Upgrade procedure

Overview

This section provides the steps required for a successful upgrade from Zabbix 2.0.x to 2.2.

Database upgrade to version 2.2 may take a long time if there are a lot of events. Event table may be reduced manually to speed
up the upgrade process.

Attention:
Make sure to read upgrade notes before proceeding with the upgrade.

68

http://www.zabbix.org/wiki/How_to/configure_shared_memory

1 Stop Zabbix server

Stop Zabbix server to make sure that no new data is inserted into database.

2 Back up the existing Zabbix database

This is a very important step. Make sure that you have a backup of your database. It will help if the upgrade procedure fails (lack
of disk space, power off, any unexpected problem).

3 Back up configuration files, PHP files and Zabbix binaries

Make a backup copy of Zabbix binaries, configuration files and PHP files.

4 Install new server binaries

You may use pre-compiled binaries or compile your own.

5 Review server configuration parameters

Some parameters of zabbix_server.conf might have changed from 2.0, new parameters added. You may want to review them.

Attention:
Housekeeper is disabled after upgrading to Zabbix 2.2. The desired housekeeper functionality should be checked and
enabled manually in Administration → General → Housekeeper, if necessary.

6 Start new Zabbix binaries

Start new binaries. Check log files to see if the binaries have started successfully.

Zabbix server will automatically upgrade the database.

Before you start the server:

• Make sure the database user has enough permissions (create table, drop table, create index, drop index)
• Make sure you have enough free disk space.

Zabbix server will automatically upgrade the database only from Zabbix 2.0.x to 2.2. For upgrading from earlier versions consult
Zabbix documentation for 2.0 and earlier.

7 Install new Zabbix web interface

Follow installation instructions.

Minor upgrade procedure

Minor upgrade procedure using sources is almost the same as major upgrade procedure. It means for example upgrading from
Zabbix 2.2.0 to 2.2.x. It is required to execute the same actions as during the major upgrade. The only difference is that during
minor upgrade no changes to the database are made.

6 Known issues

Agent items

• net.dns[] Zabbix agent item does not support IPv6 addresses in its first parameter.

IPMI checks

IPMI checks will not work with the standard OpenIPMI library package on Debian prior to 9 (stretch) and Ubuntu prior to 16.04
(xenial). To fix that, recompile OpenIPMI library with OpenSSL enabled as discussed in ZBX-6139.

SSH checks

Some Linux distributions like Debian, Ubuntu do not support encrypted private keys (with passphrase) if the libssh2 library is
installed from packages. Please see ZBX-4850 for more details.

ODBC checks

Zabbix server or proxy that uses MySQL as its database may or may not work correctly with MySQL ODBC library due to an upstream
bug. Please see ZBX-7665 for more information and available workarounds.

Simple checks

69

https://support.zabbix.com/browse/ZBX-6139
https://support.zabbix.com/browse/ZBX-4850
https://bugs.mysql.com/bug.php?id=73709
https://bugs.mysql.com/bug.php?id=73709
https://support.zabbix.com/browse/ZBX-7665

There is a bug in fping versions earlier than v3.10 that mishandles duplicate echo replay packets. This may cause unexpected
results for icmpping, icmppingloss, icmppingsec items. It is recommended to use the latest version of fping. Please see
ZBX-11726 for more details.

SNMP checks

If the OpenBSD operating system is used, a use-after-free bug in the Net-SNMP library up to the 5.7.3 version can cause a crash
of Zabbix server if the SourceIP parameter is set in the Zabbix server configuration file. As a workaround, please do not set the
SourceIP parameter. The same problem applies also for Linux, but it does not cause Zabbix server to stop working. A local patch
for the net-snmp package on OpenBSD was applied and will be released with OpenBSD 6.3.

Flipping frontend locales

It has been observed that frontend locales may flip without apparent logic. A known workaround to this is to disable multithreading
in PHP and Apache. Please see ZBX-10911 for more information.

Slow MySQL queries

Zabbix server may generate slow select queries in case of non-existing values for items. This is caused by a known issue in MySQL
5.6/5.7 versions. A workaround to this is disabling the index_condition_pushdown optimizer in MySQL. For an extended discussion,
see ZBX-10652.

Escalations

Several operations can be assigned to the same step. If these operations have different step duration defined, the shortest one is
taken into account and applied to the step. But due to bug there was exception to this rule when step duration is set to 0, it would
use default value instead of shortest one. Now there will be no exception and default step duration will only be used if it’s shortest,
this is equivalent to behavior that frontend shows and user expects. Affects all versions, fixed in 2.2.17rc1, (see ZBX-11534 for
more information).

API login

A large number of open user sessions can be created when using custom scripts with the user.loginmethod without a following
user.logout.

IPv6 address issue in SNMPv3 traps

Due to a net-snmp bug, IPv6 address may not be correctly displayed when using SNMPv3 in SNMP traps. For more details and a
possible workaround, see ZBX-14541.

Known issues for 2.2.0

• Long host or host group names, when selected, may overflow the target field (for example, in the item filter).

Known issues for 2.2.0 - 2.2.1

• LDAP authetication bind password, once stored in the database, was accessible to Zabbix Super Admin level users in clear
text in HTML source code. Fixed for 2.2.2, by hiding the password from clear view.

Known issues for 2.2.2

• In certain cases it was not possible to add a trigger expression using the expression constructor. Fixed for 2.2.3.

Known issues for 2.2.3

• logrt[] item processing is broken in Zabbix agent (see ZBX-8238 for more information). As a workaround use Zabbix agent
2.2.2 on hosts with logrt[] items or apply a patch. The problem does not affect 2.2.3 server/proxy.

Known issues for 2.2.4 and later

• log[] and logrt[] items repeatedly reread log file from the beginning if file system is 100% full and the log file is being
appended (see ZBX-10884 for more information).

7 Template changes

This page lists all changes to the stock templates that are shipped with Zabbix. It is suggested to modify these templates in
existing installations - depending on the changes, it can be done either by importing the latest version or by performing the
change manually.

Changes since version 2.2.1 only are listed here, older changes are not documented.

See upgrade notes for specific version of Zabbix for hints on fixing templates in existing installations.

70

https://support.zabbix.com/browse/ZBX-11726
https://support.zabbix.com/browse/ZBX-10911
https://bugs.mysql.com/bug.php?id=74602
https://support.zabbix.com/browse/ZBX-10652
https://support.zabbix.com/browse/ZBX-11534
https://support.zabbix.com/browse/ZBX-14541
https://support.zabbix.com/browse/ZBX-8238
https://support.zabbix.com/secure/attachment/28385/zbx-8238-2.2.3.patch
https://support.zabbix.com/browse/ZBX-10884

Template changes in 2.2.1

Item prototypes have been fixed for Template OS FreeBSD and Template OS OpenBSD.

Template changes in 2.2.2

Corrected typo in discovery rule description on template Template SNMP Disks.

Template changes in 2.2.4

In Template App Zabbix Proxy item Values processed by Zabbix proxy has been renamed to Values processed by Zabbix proxy per
second to match server template.

In Template App Zabbix Proxy graph Zabbix proxy performance y axis side for the queue item has been changed from left to right
to match server template and separate unrelated items.

All operating system template Memory usage graphs now have their Y axis minimum value set to 0 and Y axis maximum value to
the maximum amount of memory detected on the system.

Affected templates:

• Template OS AIX
• Template OS FreeBSD
• Template OS HP-UX
• Template OS Linux
• Template OS Mac OS X
• Template OS OpenBSD
• Template OS Solaris
• Template OS Windows

Template changes in 2.2.5

Typos in item descriptions have been fixed for the following templates:

• Template JMX Tomcat
• Template OS FreeBSD
• Template OS HP-UX
• Template OS Linux
• Template OS OpenBSD

Template changes in 2.2.6

Items discovered by VMware virtual machine disk and network discovery will now have descriptions rather than instance IDs in
their names for Template Virt VMware Guest.

Item name ”mpTenured” has been fixed to be ”mp Tenured” in Template JMX Generic.

Template changes in 2.2.9

Disk device discovery transfer rate item prototype names now correctly identify item value as bytes per second rather than kilobytes
per second in Template Virt VMware Guest. The affected items are vmware.vm.vfs.dev.read[{$URL},{HOST.HOST},{#DISKNAME},bps]
and vmware.vm.vfs.dev.write[{$URL},{HOST.HOST},{#DISKNAME},bps].

Template changes in 2.2.10

Value typewas changed from ”Numeric (unsigned)” to ”Numeric (float)” for items system.stat[kthr,b] and system.stat[kthr,r]
in Template OS AIX. Both items were also added to ”Performance” application.

Template changes in 2.2.11

Item vm.memory.size[total] moved from ”Filesystems” to ”Memory” application in Template OS Windows.

8 Upgrade notes for 2.2.0

Requirement changes

• Minimum supported PHP version changed from 5.1.6 to 5.3.0
• Minimum supported MySQL version changed from 5.0.0 to 5.0.3
• The ”mysqli” PHP extension is required instead of ”mysql”
• Accepted data limit when using Zabbix protocol was changed from 128MB to 64MB.

71

Case-sensitive MySQL database

A case-sensitive MySQL database is required for proper server work. It is recommended to create a case-sensitive MySQL database
during new installations. If you created a MySQL database with the utf8 character set previously, in order to support case sensi-
tiveness of stored data, you need to convert the charset to utf8_bin.

New upgrade procedure

There are no upgrade SQL scripts anymore - database upgrade is performed by the Zabbix server/proxy.

Warning:
Database upgrade is automatic - make sure to have a backup before starting the new Zabbix server binary.

Note:
Automatic database upgrade for SQLite is not supported.

Permission changes

Since Zabbix 2.2 ”Read-write” permissions have precedence over ”Read” permissions. Previously, if a user (through two different
user groups) had both ”Read” and ”Read-write” permissions to a specific host, the host was only ”Read” to them. Now it will be
”Read-write”.

Trigger calculation changes with item history=0

Previously you could set the Keep history option in item configuration to 0 and still have those triggers working that used only the
last value in calculation. Starting with the introduction of value cache in Zabbix 2.2, no trigger functions will be calculated if item
history is set to 0.

Changed maintenance period logic

Previously, a maintenance period for every second/third/etc day would first occur on the second/third/etc day after the Active since
day. Now the first occurrence will take place on the Active since day and then every second/third/etc day.

64-bit range for object IDs

Zabbix now supports a signed 64-bit range for internal object IDs in a standalone, non-distributed setup. Thus the highest available
number of one-type objects is 263-1 now.

Database monitor item changes

Before all ODBC parameters were stored in the item additional parameter field in the following format:

DSN=<data source name>
user=<user name>
password=<password>
sql=<query>

In Zabbix 2.2.0, ODBC parameter storage is changed:

• <data source name> is stored as the second parameter in the item key
• <user name> is stored in the item username field
• <password> is stored in the item password field
• <query> is stored in the item additional parameter field

The database upgrade will automatically convert database monitor items into the new format. The only exception is items that
exceed the following limits:

• Length of <data source name> plus length of item key must be less than 255 symbols.
• Length of <user name> must be less than 65 bytes
• Length of <password> must be less than 65 bytes

If an item can’t be converted because of the above limits, then it will be left unchanged and a warning message will be written to
the log file. Such items must be converted manually (shortening the problematic parameters so that they fit the new limits):

1. add <data source name> to item key as the second parameter
2. move <user name>, <password> into respective Username, Password fields
3. leave only <query> in the <SQL query> field

Item conversion failure warning message examples:

25208:20130807:103348.467 Failed to convert host "dbmonitor" db monitoring item because key "db.odbc.select[query4__123456789_123456789_123456789_123456789_123456789_123456789_123456789_123456789_123456789_123456789_123456789_123456789_123456789_123456789_123456789_123456789]" is too long. See upgrade notes for manual database monitor item conversion.
25208:20130807:103348.467 Failed to convert host "dbmonitor" db monitoring item because ODBC username "123456789_123456789_123456789_123456789_123456789_123456789_123456789_" is too long. See upgrade notes for manual database monitor item conversion.

72

25208:20130807:103348.467 Failed to convert host "dbmonitor" db monitoring item because ODBC password "123456789_123456789_123456789_123456789_123456789_123456789_123456789_" is too long. See upgrade notes for manual database monitor item conversion.

Removed iODBC support

Zabbix supported unixODBC and iODBC for direct database monitoring. iODBC is not actively maintained and there were no known
users of it with Zabbix, thus support for iODBC has been removed in 2.2. For database monitoring unixODBC should be used.

Internal check changes

The zabbix[items] internal check will now return the number of monitored items instead of the total number of items in database.

Internal checks of the hosts monitored by proxies are now processed by the proxies.

Empty string returned instead of EOF

Several items that used to return EOF upon failure - vfs.file.contents, vfs.file.regexp, web.page.get and web.page.regexp
- now return an empty string.

Windows eventlog item changes

In Windows eventlog items, the source filter option is changed to support regular expressions.

The database upgrade will automatically convert the fourth parameter of eventlog item keys into a regular expression (adding ^
and $ symbols at the start and end of the fourth parameter respectively for all existing eventlog item keys).

Timeout and retries for SNMP checks

Zabbix server and proxy daemons will now correctly use the Timeout configuration parameter when performing SNMP checks.
Additionally now the daemons will not perform retries after single unsuccessful (the timeout/wrong credentials) SNMP request.
Previously the SNMP library default timeout and retries values (1 second and 5 retries respectively) were actually used.

Changes in item parameter validation

A more strict parameter validation by Zabbix agent has been introduced. Whereas previously parameters for items that do not
support parameters would be ignored, now the items will return ZBX_NOTSUPPORTED and become unsupported.

Since 2.2 Zabbix agent will return ZBX_NOTSUPPORTED in case of invalid timeout or count values of net.dns check. Previously
there was no validation and default or 0 values were used. From now on zero value will be also treated as an error.

Changes in system.uname item

Before Zabbix 2.2, the value for system.uname was obtained by invoking ”uname -a” on Unix systems. Since Zabbix 2.2, the
value is obtained by using the uname() system call. Hence, the value of this item might change after the upgrade and no longer
includes the additional information that ”uname -a” prints based on other sources.

Changes in {EVENT.*} macros

EVENT.* macros, such as {EVENT.ID}, {EVENT.TIME}, {EVENT.DATE}, {EVENT.AGE}, {EVENT.ACK.HISTORY}, {EVENT.ACK.STATUS},
will behave differently in recovery notifications starting with Zabbix 2.2.

Previously, when used in recovery messages they would return information of the recovery event. In Zabbix 2.2 they will return
information of the original problem event.

To return information about the recovery event, separate recovery (EVENT.RECOVERY.*)macros are introduced - {EVENT.RECOVERY.ID},
{EVENT.RECOVERY.TIME}, etc. For more information see Macros supported by location.

Changes in {ESC.HISTORY} macro

Previously, if one escalation step resulted in multiple messages being generated, the value of {ESC.HISTORY} macro would differ
for different recipients. Now {ESC.HISTORY} creates the same message content within the same escalation step when notification
is sent to multiple recipients.

Regular expression testing

The logic of displaying testing results of regular expressions has been improved. Results are shown after applying the condition,
not before.

API changes

API version has been bumped to 2.2.0 and will match Zabbix version from now on.

More data sent for ’Latest data’

Latest data page now sends data for all entries, including collapsed ones. This may considerably increase page size in some
instances.

Housekeeper changes

73

The DisableHousekeeping server configuration option is supported no more. Instead, finer controls are located in the frontend,
in Administration → General → Housekeeper, allowing to selectively enable/disable housekeeping processes for specific tables.

Due to the changes in how latest item values are stored, values of items with history storage period set to ”0” will not be displayed
in the Monitoring → Latest data and Monitoring → Overview pages. The {ITEM.LASTVALUE}macro in the frontend will also not work
for such items. To avoid breaking this functionality the history storage period will be automatically changed from ”0” to ”1” for all
existing items.

Warning:
Housekeeper is disabled by default after upgrading to 2.2. The desired housekeeper functionality should be enabled
manually.

JSON validation in server

Previously, slightly incorrect JSON might be accepted by the Zabbix server. Since Zabbix 2.2, syntax validation will be performed.
If custom LLD rules have been used with incorrect JSON syntax, they might stop working. In such case custom rules should be
fixed to return properly formatted JSON.

Added UTF-8 validation for daemon parameters

Daemon configuration parameter validation has been changed to disallow non-UTF-8 characters.

Logout session verification

Logging out will now require a valid SID to be passed in the URL.

Screen element changes

Status of host triggers and Status of host group triggers screen elements have been renamed to Host issues and Host group issues
respectively.

Previously, triggers without events would not be displayed in these two widgets, nor in the Last 20 issues widget. Now triggers
wothout events are displayed as well in all three places.

Dashboard widget position saving mechanism

After upgrade to 2.2, custom dashboard layouts will be lost. This is caused by the dashboard widget positions, previously saved in
a cookie, now being saved in the database.

After the upgrade, browsers may have a dashboard cookie that is not used anymore, because in the new version there is no
functionality for working with them.

Changed trapper response to sent data

Before Zabbix 2.2.0, a trapper response to the values sent by an active agent/sender contained an info field in the following format:

Processed <N> Failed <N> Total <N> Seconds spent <N>

Starting with Zabbix 2.2.0, the formatting of the info field was changed to be more readable:

processed: <N>; failed: <N>; total: <N>; seconds spent: <N>

Zabbix sender exit status changes

Starting with Zabbix 2.2.0 the Zabbix sender will finish with exit status 0 only if all of the values were sent and processed success-
fully. If processing of at least one of values failed the exit status will be 2. If data sending failed the exit status will be 1. Additionally
if no arguments or server are specified the exit status will be 1 and for -h and -V options the exit status will be 0 (before Zabbix
2.2.0 exit status in the listed situations was 255).

Additionally when reading data from a file (-i) or working in real time mode (-r) the Zabbix sender will immediately exit with a
correct exit status after failing to parse or send an input line.

Different column order with Oracle

Column order for alerts table will be different after upgrade as compared to a fresh install (Oracle only). This is caused by inability
to change column type from varchar to nclob and insert a column in a specific place on Oracle. It should not cause any functional
differences.

Item help definition moved to PHP code

The standard item keys that were previously stored in the help_items table are now defined in the PHP CHelpItems class in fron-
tends/php/include/classes/items/CHelpItems.php. The help_items table has been dropped.

Daemon security fixes

Zabbix server now correctly enables SSL host verification when using Ez Texting service to send alerts.

74

Queue changes

As the queue (Administration → Queue) is now retrieved directly from the server it is available only when Zabbix server is running
and if the frontend has direct access to Zabbix server.

Logging changes

Before Zabbix 2.2.0, server and proxy would log messages about the availability of a particular type of checks on a host in the
following format:

SNMP item [ifInOctets.3] on host [gateway] failed: first network error, wait for 15 seconds

Starting with Zabbix 2.2.0, the type specification for SNMP, IPMI and JMX checks now includes the additional word ”agent”:

SNMP agent item [ifInOctets.3] on host [gateway] failed: first network error, wait for 15 seconds

9 Upgrade notes for 2.2.1

• Support for UCD-SNMP has been removed.
• The frontend ZBX_HISTORY_DATA_UPKEEP constant has been removed. The history data storage period should now be set
using the history ”Data storage period” field in housekeeping settings.

Fixed FreeBSD and OpenBSD templates

After upgrade to 2.2, Templates for FreeBSD and OpenBSD had several incorrect prototypes (item and graph prototypes in network
interface low level discovery). In order to fix them, please delete Template OS FreeBSD and Template OS OpenBSD in Configuration
→ Templates and import these two templates from https://www.zabbix.org/wiki/Zabbix_Templates/Official_Templates.

Daemon changes

Log messages regarding availability of a particular type of checks on a host now include item key and host name in double quotes.
Previously, they were included in square brackets:

Zabbix agent item [net.if.in[eth0]] on host [server1] failed: first network error, wait for 15 seconds

was changed to

Zabbix agent item "net.if.in[eth0]" on host "server1" failed: first network error, wait for 15 seconds

10 Upgrade notes for 2.2.2

Syslog application name change

If Zabbix is logging to syslog then after an upgrade to Zabbix 2.2.2 you will see changes in the application names appearing in
syslog:

Zabbix agent → zabbix_agent
Zabbix Agent → zabbix_agentd
Zabbix proxy → zabbix_proxy
Zabbix server → zabbix_server
Zabbix get → zabbix_get
Zabbix Sender → zabbix_sender

The old, incorrect names (on the left) contained a space which is not allowed by RFC 5424 for APP-NAME. If you are using regular
expressions in monitoring of syslog you may want to adjust them for the new application names.

Template changes

Corrected typo in discovery rule description on template Template SNMP Disks.

In order to fix it, import the template from https://www.zabbix.org/wiki/Zabbix_Templates/Official_Templates.

11 Upgrade notes for 2.2.3

IT services unlinked when deleting triggers

75

https://www.zabbix.org/wiki/Zabbix_Templates/Official_Templates
https://www.zabbix.org/wiki/Zabbix_Templates/Official_Templates

Previously, when removing triggers, the IT services linked to those triggers would also be removed. Now the IT services are simply
unlinked from the removed triggers and their SLA calculation disabled.

Log file handling

Zabbix agent startup log level was changed in order to log information about started agent processes at DebugLevel set to 0.

Daemon changes

Maximum data transfer size limit per connection increased from 64MB to 128MB.

12 Upgrade notes for 2.2.4

Latest data from 24 hours only

Only values that fall within the last 24 hours are now displayed in Monitoring → Latest data, Monitoring → Overview and the Data
overview screen element by default.

This limit has been introduced with the aim of improving initial loading times for large pages of latest data. It is also possible to
change this limitation by changing the value of ZBX_HISTORY_PERIOD constant in include/defines.inc.php.

Note also that the {ITEM.LASTVALUE} macro may resolve to UNKNOWN if the last value of item is older than the default 24 hour
limit.

Fixed Template App Zabbix Proxy template

Item Values processed by Zabbix proxy has been renamed to Values processed by Zabbix proxy per second to match server
template.

Graph Zabbix proxy performance had the same y axis side for all items. The queue item has been changed from left to right to
match server template and separate unrelated items. In order to fix it, import this template from https://www.zabbix.org/wiki/
Zabbix_Templates/Official_Templates.

Changes in Memory usage graphs

All operating system template Memory usage graphs now have their Y axis minimum value set to 0 and Y axis maximum value
to the maximum amount of memory detected on the system. To update your existing template(s), import the appropriate OS
template(s) from the 2.2.4 section of the Official Templates page.

Daemon changes

Disabled hosts, items and triggers are stored in configuration cache now. Adjusting CacheSize configuration parameter might be
needed due to increased memory usage.

Information about hosts going in and out of maintenance is no longer logged at DebugLevel=3. Instead, it is now logged at
DebugLevel=4.

Calculation of active triggers

Previously, the Status of Zabbix dashboard widget in the frontend counted enabled triggers with at least one enabled item on an
enabled host. Now, it counts enabled triggers with all items enabled on enabled hosts.

The zabbix[triggers] internal item has undergone the same change.

13 Upgrade notes for 2.2.5

Template changes

Item descriptions have been fixed in the following templates:

• Template JMX Tomcat
• Template OS FreeBSD
• Template OS HP-UX
• Template OS Linux
• Template OS OpenBSD

In order to fix it, import these templates from https://www.zabbix.org/wiki/Zabbix_Templates/Official_Templates.

Daemon changes

76

https://www.zabbix.org/wiki/Zabbix_Templates/Official_Templates
https://www.zabbix.org/wiki/Zabbix_Templates/Official_Templates
https://www.zabbix.org/wiki/Zabbix_Templates/Official_Templates
https://www.zabbix.org/wiki/Zabbix_Templates/Official_Templates

Support for PHPmutexes has been removed on the server side due to licensing issues. While it was not recommended to use Zabbix
server and frontend with SQLite3 database before, this change makes it even less recommended, because simultaneous database
access with Zabbix server and frontend may now corrupt the database. Note that using Zabbix proxy with SQLite3 database is still
a perfectly valid solution.

14 Upgrade notes for 2.2.6

Template changes

Items discovered by VMware virtual machine disk and network discovery will now have descriptions rather than instance IDs in
their names. This change has been done in Template Virt VMware Guest.

Item name ”mpTenured” has been fixed to be ”mp Tenured” in Template JMX Generic.

In order to fix it, import these templates from https://www.zabbix.org/wiki/Zabbix_Templates/Official_Templates.

Daemon changes

Java gateway now uses Android JSON library instead of JSON.org library. When upgrading, apart from the gateway itself, it is
necessary to replace the JSON library file and update startup.sh script. See Java gateway file overview for details.

Dropped support of round-off constants

The descriptions of ZBX_UNITS_ROUNDOFF_THRESHOLD, ZBX_UNITS_ROUNDOFF_UPPER_LIMIT, ZBX_UNITS_ROUNDOFF_MIDDLE_LIMIT
and ZBX_UNITS_ROUNDOFF_LOWER_LIMIT definitions have been removed from the documentation since their functionality no
longer matches their intended purpose. They are still present in the code and any changes made to them will remain, but their
modification may cause unexpected results.

15 Upgrade notes for 2.2.7

Daemon changes

With validation of SNMP responses in place, bad single-variable responses with mismatching OIDs are not accepted by Zabbix
server and proxy, and will make related SNMP items go not supported. This makes it impossible to monitor very non-conformant
SNMP devices. This has later been fixed in Zabbix 2.2.8.

16 Upgrade notes for 2.2.8

Daemon changes

SNMP polling logic has been changed to always retry at least once. This should reduce the number of network errors, and might
affect poller and network load.

Strict validation of SNMP responses has been turned off for single-variable SNMP requests. Items on misbehaving devices will now
be monitored normally, but messages about such responses will be logged at DebugLevel=4.

If an IPMI device reports a threshold sensor and a discrete sensor under the same name, the threshold sensor is now preferred.
This might fix strange readings (like ”1” for fan RPM) or ”not supported” errors.

Frontend changes

History related macros - {ITEM.VALUE}, {ITEM.LASTVALUE} and the {host:key.last()} functional macro - now obey the
ZBX_HISTORY_PERIOD constant. This limits the amount of data the macro has to sift through and results in better perfor-
mance.

17 Upgrade notes for 2.2.9

Daemon changes

Previously, if Zabbix could not send ICMP ping packets to a particular host, all ICMP ping items would attain a value of 0 in some
cases. Now, they always become unsupported.

77

https://www.zabbix.org/wiki/Zabbix_Templates/Official_Templates

In Zabbix 2.2.9 monitoring of Windows processes was improved. After upgrade to 2.2.9 Zabbix agent may report different amount
of processes when using proc.num item. E. g.

before:c:\> zabbix_agentd.exe -c \zabbix_agentd.conf -t proc.num[zabbix_agentd.exe] proc.num[zabbix_agentd.exe]
[u|1]

after:c:\> zabbix_agentd.exe -c \zabbix_agentd.conf -t proc.num[zabbix_agentd.exe] proc.num[zabbix_agentd.exe]
[u|4]

Validation of global regular expressions in LLD rules

A check for valid reference has been added for global regular expressions in LLD rules. If entered reference is not valid, due to
misspelling or missing referenced global regular expression, the respective LLD rule will become unsupported and appropriate
error message will be displayed.

VMware monitoring changes

VMware performance collector based statistics retrieval was separated from VMware data retrieval. Therefore it is recommended
to enable more collectors than monitored VMware services (StartVMwareCollectors=<N>). Otherwise retrieval of VMware
performance collector based statistics might be delayed by retrieval of VMware configuration data (which takes a while for large
installations).

A new configuration option VMwarePerfFrequency was added to configure statistics data retrieval period.

The bpsmode value of the following items are now correctly reported in bytes per second instead of kilobytes per second as before:

• vmware.hv.network.in
• vmware.hv.network.out
• vmware.vm.net.if.in
• vmware.vm.net.if.out
• vmware.vm.vfs.dev.read
• vmware.vm.vfs.dev.write

Please see VMware configuration parameters description for more details on how to configure Zabbix server/proxy for VMware
monitoring.

Template changes

Disk device discovery transfer rate item prototype names were fixed for Template Virt VMware Guest. The hypervisor network
interface, virtual machine network interface and virtual machine disk device transfer rates were incorrectly reported in kilobytes
rather than bytes. Now they will be correctly reported in bytes per second.

In order to fix it, import this template from https://www.zabbix.org/wiki/Zabbix_Templates/Official_Templates.

18 Upgrade notes for 2.2.10

Template changes

Value type was changed from ”Numeric (unsigned)” to ”Numeric (float)” for items system.stat[kthr,b] and system.stat[kthr,r]
in Template OS AIX. Both items were also added to ”Performance” application.

In order to fix it, import this template from https://www.zabbix.org/wiki/Zabbix_Templates/Official_Templates.

19 Upgrade notes for 2.2.11

Daemon changes

Monitoring of Windows protected processes was improved. Therefore in some cases on Windows (2008 Server and later) proc.num
may return more found processes than previously.

Zabbix now tries to differentiate item timeouts from host timeouts. If another item check was successful between two failed checks
of a problematic item, then the problematic item is marked as not supported after the second failed check without affecting host
availability.

Template changes

Item vm.memory.size[total] moved from ”Filesystems” to ”Memory” application in Template OS Windows.

In order to fix it, import this template from https://www.zabbix.org/wiki/Zabbix_Templates/Official_Templates.

78

https://www.zabbix.org/wiki/Zabbix_Templates/Official_Templates
https://www.zabbix.org/wiki/Zabbix_Templates/Official_Templates
https://www.zabbix.org/wiki/Zabbix_Templates/Official_Templates

20 Upgrade notes for 2.2.12

Item changes

Correct resolution of low-level discovery macros has been improved in calculated item formulas. Function parameters now will be
quoted if, after resolving low-level discovery macros, they contain ,,) characters or start with ", <space> characters.

Item value macro resolution

The {ITEM.VALUE} macro was previously resolved like {ITEM.LASTVALUE} when displaying trigger name:

• on a mouse over pop-up in the Dashboard System status widget
• on a mouse over pop-up on the System status screen element
• in Monitoring → Triggers

Now the macro will be resolved to the historical (at-the-time-of-event) value of the item in these places.

Dashboard host status widget

Previously, when using the dashbaord filter Unacknowledged only option, acknowledged problem triggers were displayed neither
in With problems nor Without problems columns of the host status widget, resulting in a wrong host count in total. Now the
acknowledged problem triggers are displayed in the Without problems column.

Daemon changes

The detection of a single item failing with network/timeout error introduced in Zabbix 2.2.11 was removed because of inability to
distinguish possible network errors.

21 Upgrade notes for 2.2.13

Daemon changes

• Instead of switching trigger to unknown state if there are no data in period the sum, str, regexp and iregexp functions
will return 0.

• If an ”icmppingsec” item would return a value less than 0.0001 seconds, the value will be set to 0.0001 seconds.

22 Upgrade notes for 2.2.14

This minor version does not have any upgrade notes.

23 Upgrade notes for 2.2.15

This minor version does not have any upgrade notes.

24 Upgrade notes for 2.2.16

Frontend changes

• The link for adding descriptions to triggers created by low-level discovery has been removed from Monitoring → Triggers.
Such descriptions were later deleted anyway by low-level discovery, if they were not present in the original trigger prototype.

Daemon changes

• Active agent auto-registration events are not generated any more if there is no action for auto registration.

Miscellaneous changes

• Zabbix server and frontend now try to set the MySQL autocommit variable to ”autocommit=1” (enable MySQL autocommit
mode) at the beginning of each connection to the database. Failing to do so results in failed database connection.

79

25 Upgrade notes for 2.2.17

Daemon changes

In escalations, several operations can be assigned to the same step. If these operations have different step duration defined, the
shortest one is taken into account and applied to the step. But due to bug there was exception to this rule when step duration is
set to 0, it would use default value instead of shortest one. Now there will be no exception and default step duration will only be
used when it’s shortest, this is equivalent to behavior that frontend shows and user expects.

Reduced log message severity in web scenarios

The severity of web scenario failed step log messages has been reduced from debug level 3 (warnings) to 4 (debugging).

26 Upgrade notes for 2.2.18

This minor version does not have any upgrade notes.

27 Upgrade notes for 2.2.19

This minor version does not have any upgrade notes.

28 Upgrade notes for 2.2.20

This minor version does not have any upgrade notes.

29 Upgrade notes for 2.2.21

More secure Zabbix setup

Several features have been implemented as part of an effort to ”harden” the Zabbix web interface:

• Same origin policy for IFrames. Zabbix now cannot be placed in frames on a different domain. Still, pages placed into a
Zabbix frame will have access to Zabbix frontend (through JavaScript) if the page that is placed in the frame and Zabbix
frontend are on the same domain. A page like http://secure-zabbix.com/cms/page.html, if placed into screens on
http://secure-zabbix.com/zabbix/, will have full JS access to Zabbix.

• Technical errors (PHP/SQL) are now hidden by default from non-Zabbix Super admin users and from users that are not part
of user groups with debug mode enabled. This is configurable via the new ZBX_SHOW_TECHNICAL_ERRORS constant, set to
’false’ by default.

• From now on HttpOnly flag is set for all session cookies.

30 Upgrade notes for 2.2.22

Item changes

• web.page.get[], web.page.perf[] and web.page.regexp[] items now turn unsupported if the resource specified in
the host parameter does not exist or is unavailable. For more details, see Zabbix agent items.

31 Upgrade notes for 2.2.23

This minor version does not have any upgrade notes.

80

4. Quickstart

Please use the sidebar to access content in the Quickstart section.

1 Login and configuring user

Overview

In this section you will learn how to log in and set up a system user in Zabbix.

Login

This is the Zabbix ”Welcome” screen. Enter the user name Admin with password zabbix to log in as a Zabbix superuser.

When logged in, you will see ’Connected as Admin’ in the lower right corner of the page. Access to Configuration and Administration
menus will be granted.

Protection against brute force attacks

In case of five consecutive failed login attempts, Zabbix interface will pause for 30 seconds in order to prevent brute force and
dictionary attacks.

The IP address of a failed login attempt will be displayed after a successful login.

Adding user

To view information about users, go to Administration → Users and select Users in the dropdown.

Initially there are only two users defined in Zabbix.

• ’Admin’ user is a Zabbix superuser, which has full permissions.
• ’Guest’ user is a special default user. If you are not logged in, you are accessing Zabbix with ”guest” permissions. By default,
”guest” has no permissions on Zabbix objects.

To add a new user, click on Create user.

In the new user form, make sure to add your user to one of the existing user groups, for example ’Network administrators’.

81

By default, new users have no media (notification delivery methods) defined for them. To create one, go to the ’Media’ tab and
click on Add.

82

In this pop-up, enter an e-mail address for the user.

You can specify a time period when the medium will be active (see Time period specification page for description of the format),
by default a medium is always active. You can also customise trigger severity levels for which the medium will be active, but leave
all of them enabled for now.

Click on Add, then click Save in the user properties form. The new user appears in the userlist.

Adding permissions

By default, a new user has no permissions to access hosts. To grant the user rights, click on the group of the user in the Groups
column (in this case - ’Network administrators’). In the group properties form, go to the Permissions tab.

This user is to have read-only access to Linux servers group, so click on Add below the ’Read only’ listbox.

83

In this pop-up, mark the checkbox next to ’Linux servers’, then click Select. Linux servers should be displayed in the respective
box. In the user group properties form, click Save.

Attention:
In Zabbix, access rights to hosts are assigned to user groups, not individual users.

Done! You may try to log in using the credentials of the new user.

2 New host

Overview

In this section you will learn how to set up a new host.

A host in Zabbix is a networked entity (physical, virtual) that you wish to monitor. The definition of what can be a ”host” in Zabbix
is quite flexible. It can be a physical server, a network switch, a virtual machine or some application.

Adding host

Information about configured hosts in Zabbix is available in Configuration → Hosts. There is already one pre-defined host, called
’Zabbix server’, but we want to learn adding another.

To add a new host, click on Create. This will present us with a host configuration form.

The bare minimum to enter here is:

84

Host name

• Enter a host name. Alphanumerics, spaces, dots, dashes and underscores are allowed.

Groups

• Select one or several groups from the right hand side selectbox and click on « to move them to the ’In groups’ selectbox.

Note:
All access permissions are assigned to host groups, not individual hosts. That is why a host must belong to at least one
group.

IP address

• Enter the IP address of the host. Note that if this is the Zabbix server IP address, it must be specified in the Zabbix agent
configuration file ’Server’ directive.

Other options will suit us with their defaults for now.

When done, click Save. Your new host should be visible in the hostlist.

Note:
If the Z icon in the Availability column is red, there is some error with communication - move your mouse cursor over it to
see the error message. If that icon is gray, no status update has happened so far. Check that Zabbix server is running,
and try refreshing the page later as well.

3 New item

Overview

In this section you will learn how to set up an item.

Items are the basis of gathering data in Zabbix. Without items, there is no data - because only an item defines a single metric or
what data to get off of a host.

Adding item

All items are grouped around hosts. That is why to configure a sample item we go to Configuration → Hosts and find the ’New host’
we have created.

The Items link in the row of ’New host’ should display a count of ’0’. Click on the link, and then click on Create item. This will
present us with an item definition form.

85

For our sample item, the essential information to enter is:

Name

• Enter CPU Load as the value. This will be the item name displayed in lists and elsewhere.

Key

• Enter system.cpu.load as the value. This is a technical name of an item that identifies the type of information that will be
gathered. The particular key is just one of pre-defined keys that come with Zabbix agent.

Type of information

• Select Numeric (float) here. This attribute defines the format of expected data.

Note:
You may also want to reduce the amount of days item history will be kept, to 7 or 14. This is good practice to relieve the
database from keeping lots of historical values.

Other options will suit us with their defaults for now.

When done, click Save. The new item should appear in the itemlist. Click on Details above the list to view what exactly was done.

86

Seeing data

With an item defined, you might be curious if it is actually gathering data. For that, go to Monitoring → Latest data, click on the +
before - other - and expect your item to be there and displaying data.

With that said, first data may take up to 60 seconds to arrive. That, by default, is how often the server reads configuration changes
and picks up new items to execute.

If you see no value in the ’Change’ column, maybe only one value has been received so far. Wait 30 seconds for another value to
arrive.

If you do not see information about the item as in the screenshot, make sure that:

• you entered item ’Key’ and ’Type of information’ fields exactly as in the screenshot
• both agent and server are running
• host status is ’Monitored’ and its availability icon is green
• host is selected in the host dropdown, item is active

Graphs

With the item working for a while, it might be time to see something visual. Simple graphs are available for any monitored numeric
item without any additional configuration. These graphs are generated on runtime.

To view the graph, go to Monitoring → Latest data and click on the ’Graph’ link next to the item.

4 New trigger

Overview

In this section you will learn how to set up a trigger.

Items only collect data. To automatically evaluate incoming data we need to define triggers. A trigger contains an expression that
defines a threshold of what is an acceptable level for the data.

If that level is surpassed by the incoming data, a trigger will ”fire” or go into a ’Problem’ state - letting us know that something has
happened that may require attention. If the level is acceptable again, trigger returns to an ’Ok’ state.

Adding trigger

To configure a trigger for our item, go to Configuration → Hosts, find ’New host’ and click on Triggers next to it and then on Create
trigger. This presents us with a trigger definition form.

87

For our trigger, the essential information to enter here is:

Name

• Enter CPU load too high on ’New host’ for 3 minutes as the value. This will be the trigger name displayed in lists and
elsewhere.

Expression

• Enter: {New host:system.cpu.load.avg(180)}>2

This is the trigger expression. Make sure that the expression is entered right, down to the last symbol. The item key here (sys-
tem.cpu.load) is used to refer to the item. This particular expression basically says that the problem threshold is exceeded when
the CPU load average value for 3 minutes is over 2. You can learn more about the syntax of trigger expressions.

When done, click Save. The new trigger should appear in the trigger list.

Displaying trigger status

With a trigger defined, you might be interested to see its status.

For that, go to Monitoring → Triggers. After 3 minutes or so (we asked to evaluate a 3-minute average after all) your trigger should
appear there, presumably with a green ’OK’ flashing in the ’Status’ column.

The flashing indicates a recent change of trigger status, one that has taken place in the last 30 minutes.

If a red ’PROBLEM’ is flashing there, then obviously the CPU load has exceeded the threshold level you defined in the trigger.

5 Receiving problem notification

Overview

In this section you will learn how to set up alerting in the form of notifications in Zabbix.

With items collecting data and triggers designed to ”fire” upon problem situations, it would also be useful to have some alerting
mechanism in place that would notify us about important events even when we are not directly looking at Zabbix frontend.

This is what notifications do. E-mail being the most popular delivery method for problem notifications, we will learn how to set up
an e-mail notification.

88

E-mail settings

Initially there are several predefined notification delivery methods in Zabbix. E-mail is one of those.

To configure e-mail settings, go to Administration → Media types and click on Email in the list of pre-defined media types.

This will present us with the e-mail settings definition form.

Set the values of SMTP server, SMTP helo and SMTP e-mail to the appropriate for your environment.

Note:
’SMTP email’ will be used as the ’From’ address for the notifications sent from Zabbix.

Press Save when ready.

Now you have configured ’Email’ as a working media type. A media type must be linked to users by defining specific delivery
addresses (like we did when configuring a new user), otherwise it will not be used.

New action

Delivering notifications is one of the things actions do in Zabbix. Therefore, to set up a notification, go to Configuration → Actions
and click on Create action.

89

In this form, enter a name for the action.

{TRIGGER.STATUS} and {TRIGGER.NAME} macros (or variables), visible in the Default subject and Default message fields, will be
replaced with the actual trigger status and trigger name values.

In the most simple case, if we do not add any more specific conditions, the action will be taken upon any trigger change from ’Ok’
to ’Problem’.

We still should define what the action should do - and that is done in the Operations tab. Click on New in there, which opens a new
operation form.

Here, click on Add in the Send to Users block and select the user (’user’) we have defined. Select ’Email’ as the value of Send only

90

to. When done with this, click on Add.

That is all for a simple action configuration, so click Save in the action form.

Receiving notification

Now, with delivering notifications configured it would be fun to actually receive one. To help with that, we might on purpose
increase the load on our host - so that our trigger ”fires” and we receive a problem notification.

Open the console on your host and run:

cat /dev/urandom | md5sum

You may run one or several of these processes.

Now go to Monitoring → Latest data and see how the values of ’CPU Load’ have increased. Remember, for our trigger to fire, the
’CPU Load’ value has to go over ’2’ for 3 minutes running. Once it does:

• in Monitoring → Triggers you should see the trigger with a flashing ’Problem’ status
• you should receive a problem notification in your e-mail

Attention:
If notifications do not work:

• verify once again that both the e-mail settings and the action have been configured properly
• make sure the user you created has at least read permissions on the host which generated the event, as noted in the
Adding user step. The user, being part of the ’Network administrators’ user group must have at least read access
to ’Linux servers’ host group that our host belongs to.

• Additionally, you can check out the action log by going to Administration → Audit, and choosing Actions in the
dropdown, located in the upper right corner.

6 New template

Overview

In this section you will learn how to set up a template.

Previously we learned how to set up an item, a trigger and how to get a problem notification for the host.

While all of these steps offer a great deal of flexibility in themselves, it may appear like a lot of steps to take if needed for, say, a
thousand hosts. Some automation would be handy.

This is where templates come to help. Templates allow to group useful items, triggers and other entities so that those can be
reused again and again by applying to hosts in a single step.

When a template is linked to a host, the host inherits all entities of the template. So, basically a pre-prepared bunch of checks can
be applied very quickly.

Adding template

To start working with templates, we must first create one. To do that, in Configuration → Templates click on Create. This will present
us with a template configuration form.

91

http://en.wikipedia.org/wiki/Md5sum

The required parameters to enter here are:

Template name

• Enter a template name. Alpha-numericals, spaces and underscores are allowed.

Groups

• Select one or several groups from the right hand side selectbox and click on « to move them to the ’In groups’ selectbox.
The template must belong to a group.

When done, click Save. Your new template should be visible in the list of templates.

As you may see, the template is there, but it holds nothing in it - no items, triggers or other entities.

Adding item to template

To add an item to the template, go to the item list for ’New host’. In Configuration → Hosts click on Items next to ’New host’.

Then:

• mark the checkbox of the ’CPU Load’ item in the list
• select Copy selected to... in the dropdown below the list and click on Go
• select the template to copy item to

• click on Copy

92

If you now go to Configuration → Templates, ’New template’ should have one new item in it.

We will stop at one item only for now, but similarly you can add any other items, triggers or other entities to the template until it’s
a fairly complete set of entities for given purpose (monitoring OS, monitoring single application).

Linking template to host

With a template ready, it only remains to add it to a host. For that, go to Configuration → Hosts, click on ’New host’ to open its
property form and go to the Templates tab.

There, click on Add, mark the template we have created (’New template’) and click on Select. The template should appear in the
form.

Click Save in the form to save the changes. The template is now added to the host, with all entities that it holds.

As you may have guessed, this way it can be applied to any other host as well. Any changes to the items, triggers and other
entities at the template level will propagate to the hosts the template is linked to.

Linking pre-defined templates to hosts

As you may have noticed, Zabbix comes with a set of predefined templates for various OS, devices and applications. To get started
with monitoring very quickly, you may link the appropriate one of them to a host, but beware that these templates need to be
fine-tuned for your environment. Some checks may not be needed, and polling intervals may be way too frequent.

More information about templates is available.

5. Zabbix appliance

As an alternative to setting up manually or reusing existing server for Zabbix, users may download Zabbix appliance.

To get started, boot the appliance and point your browser at the IP it has received over DHCP.

|<| |<| |-|

Zabbix appliance versions are based upon the following OpenSUSE versions:

Zabbix appliance version OpenSUSE version

2.2.0 12.3

It is available in the following formats:

• vmdk (VMware/Virtualbox)
• OVF (Open Virtualisation Format)
• KVM
• CD ISO
• HDD/flash image
• Preload ISO
• Xen guest
• Microsoft VHD
• Preload USB

It has Zabbix server configured and running on MySQL, as well as frontend available.

The appliance has been built using SUSE Studio.

93

http://www.zabbix.com/download_appliance
http://blog.susestudio.com/2010/10/new-preload-iso-build-format.html
http://susestudio.com

1 Changes to SUSE configuration There are some changed applied to the base OpenSUSE configuration.

1.1 MySQL configuration changes

• Binary log is disabled;
• InnoDB is configured to store data for each table in a separate file.

1.2 Using a static IP address

By default the appliance uses DHCP to obtain IP address. To specify a static IP address:

• Log in as root user;
• Open file /etc/sysconfig/network/ifcfg-eth0 in your favourite editor;
• Set BOOTPROTO variable to static;
• Set IPADDR, NETMASK and any other parameters as required for your network;
• Create file /etc/sysconfig/network/routes. For the default route, use default 192.168.1.1 - - (replacing with your gateway
address).

• Run the command rcnetwork restart.

To configure DNS, add nameserver entries in /etc/resolv.conf, specifying each nameserver on its own line: nameserver
192.168.1.2.

Alternatively, just use yast configuration utility to update network settings.

1.3 Changing time zone

By default the appliance uses UTC for the system clock. To change the time zone, copy appropriate file from /usr/share/zoneinfo
to /etc/localtime, for example:

cp /usr/share/zoneinfo/Europe/Riga /etc/localtime

1.4 Other changes

• Network is configured to use DHCP to obtain IP address;
• Utility fping is set to have permissions 4710 and is owned by group zabbix - suid and only alowed to be used by zabbix
group;

• ntpd configured to synchronise to the public pool servers;
• Various basic utilities have been added that could make working with Zabbix and monitoring in general easier.

2 Zabbix configuration Appliance Zabbix setup has the following passwords and other configuration changes:

2.1 Passwords

System:

• root:zabbix
• zabbix:zabbix

Database:

• root:zabbix
• zabbix:zabbix

Zabbix frontend:

• Admin:zabbix

Attention:
If you change frontend password, do not forget to update password setting web monitoring (Configuration → Hosts, Web
for host ”Zabbix server”).

To change the database user password it has to be changed in the following locations:

• MySQL;
• zabbix_server.conf;
• zabbix.conf.php.

2.2 File locations

• Configuration files are placed in /etc.
• Zabbix logfiles are placed in /var/log/zabbix.
• Zabbix frontend is placed in /usr/share/zabbix.
• Home directory for user zabbix is /var/lib/zabbix.

94

2.3 Changes to Zabbix configuration

• Server name for Zabbix frontend set to ”Zabbix 2.2 Appliance”;
• Frontend timezone is set to Europe/Riga, Zabbix home (this can be modified in /etc/php5/apache2/php.ini);
• Disabled triggers and web scenarios are shown by default to reduce confusion.

2.4 Preserving configuration

If you are running live CD version of the appliance or for some other reason can’t have persistent storage, you can create a backup
of whole database, including all configuration and gathered data.

To create the backup, run:

mysqldump zabbix | bzip2 -9 > dbdump.bz2

Now you can transfer file dbdump.bz2 to another machine.

To restore from the backup, transfer it to the appliance and execute:

bzcat dbdump.bz2 | mysql zabbix

Attention:
Make sure that Zabbix server is stopped while performing the restore.

3 Frontend access Access to frontend by default is allowed from:

• 127.0.0.1
• 192.168.0.0/16
• 10.0.0.0/8
• ::1

Root (/) is redirected to /zabbix on the webserver, thus frontend can be accessed both as http://<host> and http://<host>/zabbix.

This can be customised in /etc/apache2/conf.d/zabbix.conf. You have to restart webserver after modifying this file. To do so,
log in using SSH as root user and execute:

service apache2 restart

4 Firewall By default, only two ports are open - 22 (SSH) and 80 (HTTP). To open additional ports - for example, Zabbix server
and agent ports - modify iptables rules with SuSEfirewall2 utility:

SuSEfirewall2 open EXT TCP zabbix-trapper zabbix-agent

Then reload the firewall rules:

SuSEfirewall2 start

5 Monitoring capabilities Zabbix server is compiled with support for the following:

• SNMP;
• IPMI;
• Web monitoring;
• SSH2;
• IPv6.

In the provided configuration Zabbix server itself is monitored with the help of locally installed agent for some base parameters,
additionally Zabbix frontend is monitored as well using web monitoring.

|<| |<| |-|

Note:
Note that web frontend monitoring logs in - this can add lots of entries to the audit log.

6 Naming, init and other scripts Appropriate init scripts are provided. To control Zabbix server, use any of these:

service zabbix_server status
rczabbix_server status
/etc/init.d/zabbix_server status

95

Replace server with agentd for Zabbix agent daemon.

6.1 Scheduled scripts

There is a scheduled script, run from the crontab every 10minutes that restarts Zabbix server if it is not running, /var/lib/zabbix/bin.
It logs timestamped problems and starting attempts at /var/log/zabbix/server_problems.log.

Attention:
Make sure to disable this crontab entry if stopping of Zabbix server is desired.

6.2 Increasing available diskspace

Warning:
Create a backup of all data before attempting any of the steps.

Available diskspace on the appliance might not be sufficient. In that case it is possible to expand the disk. To do so, first expand
the block device in your virtualisation environment, then follow these steps.

Start fdisk to change the partition size. As root, execute:

fdisk /dev/sda

This will start fdisk on disk sda. Next, switch to sectors by issuing:

u

Attention:
Don’t disable DOS compatibility mode by entering c. Proceeding with it disabled will damage the partition.

Then delete the existing partition and create new one with desired size. In majority of cases you will accept the available maximum,
which will expand the filesystem to whatever size you made available for the virtual disk. To do so, enter the following sequence
in fdisk prompt:

d
n
p
1
(accept default 63)
(accept default max)

If you wish to leave some space for additional partitions (swap etc), you can enter another value for last sector. When done, save
the changes by issuing:

w

Reboot the virtual machine (as the partition we modified is in use currently). After reboot, filesystem resizing can take place.

resize2fs /dev/sda1

That’s it, filesystem should be grown to the partition size now.

7 Format-specific notes 7.1 Xen

To use images in Xen server, run:

xm create -c file-with-suffix.xenconfig

See the following pages for more information on using Xen images:

• http://en.opensuse.org/openSUSE:How_to_use_downloaded_SUSE_Studio_appliances#Using_Xen_guests
• http://old-en.opensuse.org/SUSE_Studio_Xen_Howtos

Converting image for XenServer

To use Xen images with Citrix Xenserver you have to convert the disk image. To do so:

• Create a virtual disk which is at least as large as the image
• Find out the UUID for this disk

xe vdi-list params=all

• If there are lots of disks, they can be filtered by name parameter name-label, as assigned when creating the virtual disk

96

http://en.opensuse.org/openSUSE:How_to_use_downloaded_SUSE_Studio_appliances#Using_Xen_guests
http://old-en.opensuse.org/SUSE_Studio_Xen_Howtos

• Import the image

xe vdi-import filename="image.raw" uuid="<UUID>"

Instructions from Brian Radford blog.

7.2 VMware

The images in vmdk format are usable directly in VMware Player, Server and Workstation products. For use in ESX, ESXi and
vSphere they must be converted using VMware converter.

7.3 HDD/flash image (raw)

See http://en.opensuse.org/openSUSE:SUSE_Studio_Disc_Image_Howtos for more information on disk images.

8 Known issues 8.1 Extracting on Windows

Windows archive management software is known to mishandle the appliance archives. If extraction fails, try different software.
Open source tool 7-zip might work.

8.2 Connectivity problems with IPv6

In some environments, the appliance might obtain IPv6 addresses (for example, for operating system updates), but be unable to
use IPv6. To disable IPv6, add net.ipv6.conf.all.disable_ipv6 = 1 in /etc/sysctl.conf and restart the appliance.

6. Configuration

Please use the sidebar to access content in the Configuration section.

1 Configuring a template

Overview

Configuring a template requires that you first create a template by defining its general parameters and then you add entities
(items, triggers, graphs etc.) to it.

Creating a template

To create a template, do the following:

• Go to Configuration → Templates
• Click on Create template
• Edit template attributes

The Template tab contains general template attributes.

97

http://www.vmware.com/products/converter/
http://en.opensuse.org/openSUSE:SUSE_Studio_Disc_Image_Howtos
http://www.7-zip.org/

Template attributes:

Parameter Description

Template name Unique template name.
Visible name If you set this name, it will be the one visible in lists, maps, etc.
Groups Host/template groups the template belongs to.
New group A new group can be created to hold the template.

Ignored, if empty.
Hosts/Templates List of hosts/templates the template is applied to.

The Linked templates tab allows you to link one or more ”nested” templates to this template. All entities (items, triggers, graphs
etc.) will be inherited from the linked templates.

To link a new template, start typing in the Link new templates field until a list of templates corresponding to the entered letter(s)
appear. Scroll down to select. When all templates to be linked are selected, click on Add.

To unlink a template, use one of the two options in the Linked templates block:

• Unlink - unlink the template, but preserve its items, triggers and graphs
• Unlink and clear - unlink the template and remove all its items, triggers and graphs

The Macros tab allows you to define template-level user macros.

Buttons:

Save the template. The saved template should appear in the
list.

Create another template based on the properties of the
current template, including the entities (items, triggers, etc)
inherited from linked templates.

98

Create another template based on the properties of the
current template, including the entities (items, triggers, etc)
both inherited from linked templates and directly attached
to the current template.

Delete the template; entities of the template (items,
triggers, etc) remain with the linked hosts.

Delete the template and all its entities from linked hosts.

Cancel the editing of template properties.

With a template created, it is time to add some entities to it.

Attention:
Items have to be added to a template first. Triggers and graphs cannot be added without the corresponding item.

Adding items, triggers, graphs

To add items to the template, do the following:

• Go to Configuration → Hosts (or Templates)
• Click on Items in the row of the required host/template
• Mark the checkboxes of items you want add to the template
• Select Copy selected to... below the item list and click on Go
• Select the template (or group of templates) the items should be copied to and click on Copy

All the selected items should be copied to the template.

Adding triggers and graphs is done in similar fashion (from the list of triggers and graphs respectively), again, keeping in mind that
they can only be added if the required items are added first.

Adding screens

To add screens to a template in Configuration → Templates, do the following:

• Click on Screens in the row of the template
• Configure a screen following the usual method of configuring screens

Attention:
The elements that can be included in a template screen are: simple graph, custom graph, clock, plain text, URL.

Configuring low-level discovery rules

See the low-level discovery section of the manual.

Adding web scenarios

To add web scenarios to a template in Configuration → Templates, do the following:

• Click on Web in the row of the template
• Configure a web scenario following the usual method of configuring web scenarios

2 Linking/unlinking

Overview

Linking is a process whereby templates are applied to hosts, whereas unlinking removes the association with the template from a
host.

Attention:
Templates are linked directly to individual hosts and not to host groups. Simply adding a template to a host group will not
link it. Host groups are used only for logical grouping of hosts and templates.

99

Linking a template

To link a template to the host, do the following:

• Go to Configuration → Hosts
• Click on the required host and switch to the Templates tab
• Click on Add
• Select one or several templates in the popup window
• Click on Save in the host attributes form

The host will now have all the entities (items, triggers, graphs, etc) of the template.

Attention:
Linking multiple templates to the same host will fail if in those templates there are items with the same item key. And, as
triggers and graphs use items, they cannot be linked to a single host from multiple templates either, if using identical item
keys.

When entities (items, triggers, graphs etc.) are added from the template:

• previously existing identical entities on the host are updated as entities of the template
• entities from the template are added
• any directly linked entities that, prior to template linkage, existed only on the host remain untouched

In the lists, all entities from the template now are prefixed by the template name, indicating that these belong to the particular
template. The template name itself (in grey text) is a link allowing to access the list of those entities on the template level.

If some entity (item, trigger, graph etc.) is not prefixed by the template name, it means that it existed on the host before and was
not added by the template.

Entity uniqueness criteria

When adding entities (items, triggers, graphs etc.) from a template it is important to know what of those entities already exist on
the host and need to be updated and what entities differ. The uniqueness criteria for deciding upon the sameness/difference are:

• for items - the item key
• for triggers - trigger name and expression
• for custom graphs - graph name and its items
• for applications - application name

Linking templates to several hosts

There are some ways of mass-applying templates (to many hosts at once):

• To link a template to many hosts, in Configuration → Templates, click on the template, then select hosts from the respective
group in the Other box, click on « and save the template.

Vice versa, if you select the linked hosts in the In box, click on » and save the template, you unlink the template from these hosts
(while the hosts will still inherit the items, triggers, graphs etc. from the template).

• To update template linkage of many hosts, in Configuration → Hosts select some hosts by marking their checkboxes, then
choose Mass update below the list, click on Go and then in the Templates tab select to link additional templates:

Select Link templates and start typing the template name in the auto-complete field until a dropdown appears offering thematching
templates. Just scroll down to select the template to link.

The Replace option will allow to link a new template while unlinking any template that was linked to the hosts before. The Clear
when unlinking option will allow to not only unlink any previously linked templates, but also remove all elements inherited from
them (items, triggers, etc.).

100

Note:
Zabbix offers a sizable set of predefined templates. You can use these for reference, but beware of using them unchanged
in production as they may contain too many items and poll for data too often. If you feel like using them, finetune them to
fit you real needs.

Editing linked entities

If you try to edit an item or trigger that was linked from the template, you may realize that many key options are disabled for
editing. This makes sense as the idea of templates is that things are edited in one-touch manner on the template level. However,
you still can, for example, enable/disable an item on the individual host and set the update interval, history length and some other
parameters.

If you want to edit the entity fully, you have to edit it on the template level (template level shortcut is displayed in the form name),
keeping in mind that these changes will affect all hosts that have this template linked to them.

Unlinking a template

To unlink a template from a host, do the following:

• Go to Configuration → Hosts
• Click on the required host and switch to the Templates tab
• Click on Unlink or Unlink and clear next to the template to unlink
• Click on Save in the host attributes form

Choosing the Unlink option will simply remove association with the template, while leaving all its entities (items, triggers, graphs
etc.) with the host.

Choosing the Unlink and clear option will remove both the association with the template and all its entities (items, triggers, graphs
etc.).

3 Nesting

Overview

Nesting is a way of one template encompassing one or more other templates.

As it makes sense to separate out on individual templates entities for various services, applications etc. you may end up with quite
a few templates all of which may need to be linked to quite a few hosts. To simplify the picture, it is possible to link some templates
together, in one ”nested” template.

The benefit of nesting is that then you have to link only the one template to the host and the host will inherit all entities of the
linked templates automatically.

Configuring a nested template

If you want to link some templates, to begin with you can take an existing template or a new one, then:

• Open the template properties form
• Look for the Linked templates tab
• Click on Add, select the templates to link in the popup window
• Click on Save in the template properties form

Now the template should have all the entities (items, triggers, custom graphs etc.) of the linked templates.

To unlink any of the linked templates, in the same form use the Unlink or Unlink and clear buttons and click on Save.

Choosing the Unlink option will simply remove the association with the other template, while not removing all its entities (items,
triggers, graphs etc).

Choosing the Unlink and clear option will remove both the association with the other template and all its entities (items, triggers,
graphs etc).

Permission issues

• You may have a setup where an Admin level user has Read-write access to some Template A while not having Read-write
access to Template B that holds Template A in a nested setup. In this case, an item created on Template A, while inherited
by the hosts of Template A, will not be inherited by the hosts of Template B. Thus, creating a trigger for such an item will
fail altogether, because of missing corresponding items on hosts of Template B.

101

1 Hosts and host groups

What is a ”host”?

Typical Zabbix hosts are the devices you wish to monitor (servers, workstations, switches, etc).

Creating hosts is one of the first monitoring tasks in Zabbix. For example, if you want to monitor some parameters on a server ”x”,
you must first create a host called, say, ”Server X” and then you can look to add monitoring items to it.

Hosts are organized into host groups.

Proceed to creating and configuring a host.

1 Configuring a host

Overview

To configure a host in Zabbix frontend, do the following:

• Go to: Configuration → Hosts
• Click on Create to the right (or on the host name to edit an existing host)
• Enter parameters of the host in the form

You can also use the Clone and Full clone buttons in the form of an existing host to create a new host. Clicking on Clone will retain
all host parameters and template linkage (keeping all entities from those templates). Full clone will additionally retain directly
attached entities (applications, items, triggers, graphs, low-level discovery rules and web scenarios).

Attention:
Cloning web scenarios with the host is supported since Zabbix 2.2.6.

Note: When a host is cloned, it will retain all template entities as they are originally on the template. Any changes to those entities
made on the existing host level (such as changed item interval, modified regular expression or added prototypes to the low-level
discovery rule) will not be cloned to the new host; instead they will be as on the template.

Configuration

The Host tab contains general host attributes:

102

Parameter Description

Host name Enter a unique host name. Alphanumerics, spaces, dots, dashes
and underscores are allowed.
Note: With Zabbix agent running on the host you are configuring,
the agent configuration file parameter Hostname must have the
same value as the host name entered here. The name in the
parameter is needed in the processing of active checks.

Visible name If you set this name, it will be the one visible in lists, maps, etc.
This attribute has UTF-8 support.

Groups Select host groups the host belongs to. A host must belong to at
least one host group.

New host group A new group can be created and linked to the host. Ignored, if
empty.

Interfaces Several host interface types are supported for a host: Agent,
SNMP, JMX and IPMI.
To add a new interface, click on Add in the Interfaces block and
enter IP/DNS, Connect to and Port info.
Note: Interfaces that are used in any items cannot be removed and
link Remove is greyed out for them.

IP address Host IP address (optional).
DNS name Host DNS name (optional).
Connect to Clicking the respective button will tell Zabbix server what to use to

retrieve data from agents:
IP - Connect to the host IP address (recommended)
DNS - Connect to the host DNS name

Port TCP/UDP port number. Default values are: 10050 for Zabbix agent,
161 for SNMP agent, 12345 for JMX and 623 for IPMI.

Default Check the radio button to set the default interface.
Monitored by proxy The host can be monitored either by Zabbix server or one of

Zabbix proxies:
(no proxy) - host is monitored by Zabbix server
Proxy name - host is monitored by Zabbix proxy ”Proxy name”

Status Host status:
Monitored - Host is active, ready to be monitored
Not monitored - Host is not active, thus not monitored

The Templates tab allows you to link templates to the host. All entities (items, triggers, graphs and applications) will be inherited
from the template.

To link a new template, start typing in the Link new templates field until a list of matching templates appear. Scroll down to select.
When all templates to be linked are selected, click on Add.

To unlink a template, use one of the two options in the Linked templates block:

• Unlink - unlink the template, but preserve its items, triggers and graphs
• Unlink and clear - unlink the template and remove all its items, triggers and graphs

The IPMI tab contains IPMI management attributes.

Parameter Description

Authentication algorithm Select the authentication algorithm.
Privilege level Select the privilege level.
Username User name for authentication.
Password Password for authentication.

The Macros tab allows you to define host-level user macros.

The Host inventory tab allows you to manually enter inventory information for the host. You can also select to enable Automatic
inventory population, or disable inventory population for this host.

Configuring a host group

To configure a host group in Zabbix frontend, do the following:

103

• Go to: Configuration → Host groups
• Click on Create Group in the upper right corner of the screen
• Enter parameters of the group in the form

Parameter Description

Group name Enter a unique host group name. The name must be unique within
a Zabbix node.

Hosts Select hosts, members of the group. A host group may have zero,
one or more hosts.

2 Inventory

Overview

You can keep the inventory of networked devices in Zabbix.

There is a special Inventory menu in the Zabbix frontend. However, you will not see any data there initially and it is not where you
enter data. Building inventory data is done manually when configuring a host or automatically by using some automatic population
options.

Building inventory

Manual mode

When configuring a host, in the Host inventory tab you can enter such details as the type of device, serial number, location,
responsible person, etc - data that will populate inventory information.

If a URL is included in host inventory information and it starts with ’http’ or ’https’, it will result in a clickable link in the Inventory
section.

Automatic mode

Host inventory can also be populated automatically. For that to work, when configuring a host the inventory mode in the Host
inventory tab must be set to Automatic.

Then you can configure host items to populate any host inventory field with their value, indicating the destination field with the
respective attribute (called Item will populate host inventory field) in item configuration.

Items that are especially useful for automated inventory data collection:

• system.hw.chassis[full|type|vendor|model|serial] - default is [full], root permissions needed
• system.hw.cpu[all|cpunum,full|maxfreq|vendor|model|curfreq] - default is [all,full]
• system.hw.devices[pci|usb] - default is [pci]
• system.hw.macaddr[interface,short|full] - default is [all,full], interface is regexp
• system.sw.arch

104

• system.sw.os[name|short|full] - default is [name]
• system.sw.packages[package,manager,short|full] - default is [all,all,full], package is regexp

Inventory overview

The details of all existing inventory data are available in the Inventory menu.

In Inventory → Overview you can get a host count by various fields of the inventory.

In Inventory → Hosts you can see all hosts that have inventory information. Clicking on the host name will reveal the inventory
details in a form.

The Overview tab shows:

Parameter Description

Host name Name of the host.
Clicking on the name opens a menu with the
scripts defined for the host.
Host name is displayed with an orange icon, if
the host is in maintenance.

Visible name Visible name of the host (if defined).
Host (Agent, SNMP, JMX,
IPMI)
interfaces

This block provides details of the interfaces
configured for the host.

OS Operating system inventory field of the host (if
defined).

Hardware Host hardware inventory field (if defined).
Software Host software inventory field (if defined).
Latest data Links to monitoring sections with data for this

host: Web, Latest data, Triggers, Events, Graphs,
Screens.

Configuration Links to configuration sections for this host:
Host, Applications, Items, Triggers, Graphs,
Discovery, Web.
The amount of configured entities is listed in
parenthesis after each link.

The Details tab shows all inventory fields that are populated (are not empty).

Inventory macros

There are host inventory macros {INVENTORY.*} available for use in notifications, for example:

”Server in {INVENTORY.LOCATION1} has a problem, responsible person is {INVENTORY.CONTACT1}, phone number {INVEN-
TORY.POC.PRIMARY.PHONE.A1}.”

Attention:
{PROFILE.*} macros from previous Zabbix versions are still supported but it’s highly recommended to change those to
{INVENTORY.*}

105

For more details, see the Macros supported by location page.

3 Mass update

Overview

Sometimes you may want to change some attribute for a number of hosts at once. Instead of opening each individual host for
editing, you may use the mass update function for that.

Using mass update

To mass-update some hosts, do the following:

• Mark the checkboxes before the hosts you want to update in the host list
• Select Mass update from the dropdown below and click on Go
• Navigate to the desired tab of attributes (Host, Templates, IPMI or Inventory)
• Mark the checkboxes of any attribute to update and enter a new value for them

Replace host groups will remove the host from any existing host groups and replace those with the one(s) specified in this field.

Add new or existing host groups allows to specify additional host groups from the existing ones or enter completely new host
groups for the hosts.

Both these fields are auto-complete - starting to type in them offers a dropdown of matching host groups. If the host group is new,
it also appears in the dropdown and it is indicated by (new) after the string. Just scroll down to select.

To update template linkage in the Templates tab, select Link templates and start typing the template name in the auto-complete
field until a dropdown appears offering the matching templates. Just scroll down to select the template to link.

The Replace option will allow to link a new template while unlinking any template that was linked to the hosts before. The Clear
when unlinking option will allow to not only unlink any previously linked templates, but also remove all elements inherited from
them (items, triggers, etc.).

106

To be able to mass update inventory fields, the Inventory mode should be set to ’Manual’ or ’Automatic’.

When done with all required changes, click on Update. The attributes will be updated accordingly for all the selected hosts.

2 Items

Overview

Items are the ones that gather data from a host.

Once you have configured a host, you need to add some monitoring items to start getting actual data.

An item is an individual metric. One way of quickly adding many items is to attach one of the predefined templates to a host.
For optimized system performance though, you may need to fine-tune the templates to have only as many items and as frequent
monitoring as is really necessary.

In an individual item you specify what sort of data will be gathered from the host.

For that purpose you use the item key. Thus an item with the key name system.cpu.load will gather data of the processor load,
while an item with the key name net.if.in will gather incoming traffic information.

To specify further parameters with the key, you include those in square brackets after the key name. Thus, system.cpu.load[avg5]
will return processor load average for the last 5 minutes, while net.if.in[eth0] will show incoming traffic in the interface eth0.

Note:
For all supported item types and item keys, see individual sections of item types.

Proceed to creating and configuring an item.

1 Creating an item

Overview

To create an item in Zabbix frontend, do the following:

• Go to: Configuration → Hosts
• Click on Items in the row of the host

107

• Click on Create item in the upper right corner of the screen
• Enter parameters of the item in the form

Configuration

Item attributes:

Parameter Description

Host Select the host or template.

108

Parameter Description

Name This is how the item will be named.
The following macros can be used:
$1, $2...$9 - referring to the first, second... ninth parameter of the
item key
For example: Free disk space on $1
If the item key is ”vfs.fs.size[/,free]”, the description will
automatically change to ”Free disk space on /”

Type Item type. See individual item type sections.
Key Item key.

The supported item keys can be found in individual item type
sections.
The key must be unique within a single host.
If key type is ’Zabbix agent’, ’Zabbix agent (active)’, ’Simple check’
or ’Zabbix aggregate’, the key value must be supported by Zabbix
agent or Zabbix server.
See also: the correct key format.

Host interface Select the host interface. This field is available when editing an
item on the host level.

Type of information Type of data as stored in the database after performing
conversions, if any.
Numeric (unsigned) - 64bit unsigned integer
Numeric (float) - floating point number
Negative values can be stored.
Allowed range (for MySQL): -999999999999.9999 to
999999999999.9999 (double(16,4)).
Starting with Zabbix 2.2, receiving values in scientific notation is
also supported. E.g. 1e+70, 1e-70.
Character - character (string) data limited to 255 bytes
Log - log file. Must be set for log*, eventlog item keys.
Text - text of unlimited size

Data type Data type is used for integer items in order to specify the expected
data type:
Boolean - textual representation translated into either 0 or 1.
Thus, ’TRUE’ is stored as 1 and ’FALSE’ is stored as 0. All values are
matched in a case-insensitive way. Currently recognized values
are, for:
TRUE - true, t, yes, y, on, up, running, enabled, available
FALSE - false, f, no, n, off, down, unused, disabled, unavailable
Additionally, any non-zero numeric value is considered to be TRUE
and zero is considered to be FALSE.
Octal - data in octal format
Decimal - data in decimal format
Hexadecimal - data in hexadecimal format
Zabbix will automatically perform the conversion to numeric.
The conversion is done by Zabbix server (even when a host is
monitored by Zabbix proxy).

109

Parameter Description

Units If a unit symbol is set, Zabbix will add post processing to the
received value and display it with the set unit postfix.
By default, if the raw value exceeds 1000, it is divided by 1000 and
displayed accordingly. For example, if you set bps and receive a
value of 881764, it will be displayed as 881.76 Kbps.
Special processing is used for B (byte), Bps (bytes per second)
units, which are divided by 1024. Thus, if units are set to B or Bps
Zabbix will display:
1 as 1B/1Bps
1024 as 1KB/1KBps
1536 as 1.5KB/1.5KBps
Special processing is used if the following time-related units are
used:
unixtime - translated to ”yyyy.mm.dd hh:mm:ss”. To translate
correctly, the received value must be a Numeric (unsigned) type of
information.
uptime - translated to ”hh:mm:ss” or ”N days, hh:mm:ss”
For example, if you receive the value as 881764 (seconds), it will
be displayed as ”10 days, 04:56:04”
s - translated to ”yyy mmm ddd hhh mmm sss ms”; parameter is
treated as number of seconds.
For example, if you receive the value as 881764 (seconds), it will
be displayed as ”10d 4h 56m”
Only 3 upper major units are shown, like ”1m 15d 5h” or ”2h 4m
46s”. If there are no days to display, only two levels are displayed -
”1m 5h” (no minutes, seconds or milliseconds are shown). Will be
translated to ”< 1 ms” if the value is less than 0.001.
See also the unit blacklist.

Use custom multiplier If you enable this option, all received values will be multiplied by
the integer or floating-point value set in the value field.
Use this option to convert values received in KB, MBps, etc into B,
Bps. Otherwise Zabbix cannot correctly set prefixes (K, M, G etc).
Note that if the item type of information is Numeric (unsigned),
incoming values with a fractional part will be trimmed (i.e. ’0.9’ will
become ’0’) before the custom multiplier is applied.
Starting with Zabbix 2.2, using scientific notation is also supported.
E.g. 1e+70.

Update interval (in sec) Retrieve a new value for this item every N seconds. Maximum
allowed update interval is 86400 seconds (1 day).
Note: If set to ”0”, the item will not be polled. However, if a flexible
interval also exists with a non-zero value, the item will be polled
during the flexible interval duration.
Note that the first item poll after the item became active or after
update interval change might occur earlier than the configured
value.

110

Parameter Description

Flexible intervals You can create exceptions to Update interval. For example:
Interval: 10, Period: 1-5,09:00-18:00 - will check the item every
10 seconds during working hours.
Interval: 0, Period: 1-7,00:00-7:00 - will disable checking the
item at night.
Interval: 0, Period: 7-7,00:00-24:00 - will disable checking the
item on Sundays.
To check an item once per day at a specific time (say, 12:00), set
the default Update interval to ’0’, but specify 60 in the flexible
interval and a period like 1-7,12:00-12:01
Up to seven flexible intervals can be defined. If multiple flexible
intervals overlap, the smallest Interval value is used for the
overlapping period. Note that if the smallest value of overlapping
flexible intervals is ’0’, no polling will take place.
Outside the flexible intervals the default update interval is used.
See the page about setting time periods for description of the
Period format.
Note that if the flexible interval equals the length of the period, the
item will be checked exactly once. If the flexible interval is greater
than the period, the item might be checked once or it might not be
checked at all (thus such configuration is not advisable). If the
flexible interval is less than the period, the item will be checked at
least once.
If the flexible interval is set to ’0’, the item is not polled during the
flexible interval period and resumes polling according to the
default Update interval once the period is over.
Note: Not available for Zabbix agent active items.

History storage period
(in days) Number of days to keep detailed history in the database. Older
data will be removed by the housekeeper.
Starting with Zabbix 2.2, this value can be overridden globally in
Administration → General → Housekeeper. If the global setting
exists, a warning message is displayed:

It is recommended to keep the recorded values for the smallest
possible number of days to reduce the size of value history in the
database. Instead of keeping long history of values, you can keep
longer data of trends.
If set to ”0” no data is stored in the history table for the item. Host
inventory data only are updated.
See also History and trends.

Trend storage period
(in days) Keep aggregated (hourly min, max, avg, count) detailed history for
N days in the database. Older data will be removed by the
housekeeper.
Starting with Zabbix 2.2, this value can be overridden globally in
Administration → General → Housekeeper. If the global setting
exists, a warning message is displayed:

Note: Keeping trends is not available for non-numeric data -
character, log and text.
If set to ”0” no trends are kept.
See also History and trends.

111

Parameter Description

Store value As is - no pre-processing
Delta (speed per second) - evaluate value as
(value-prev_value)/(time-prev_time), where
value - current value
value_prev - previously received value
time - current timestamp
prev_time - timestamp of previous value
This setting is extremely useful to get speed per second for a
constantly growing value.
If current value is smaller than the previous value, Zabbix discards
that difference (stores nothing) and waits for another value. This
helps to work correctly with, for instance, a wrapping (overflow) of
32-bit SNMP counters.
Note: As this calculation may produce floating point numbers, it is
recommended to set the ’Type of information’ to Numeric (float),
even if the incoming raw values are integers. This is especially
relevant for small numbers where the decimal part matters. If the
floating point values are large and may exceed the ’float’ field
length in which case the entire value may be lost, it is actually
suggested to use Numeric (unsigned) and thus trim only the
decimal part.
Delta (simple change) - evaluate as (value-prev_value), where
value - current value
value_prev - previously received value
This setting can be useful to measure a constantly growing value.
If the current value is smaller than the previous value, Zabbix
discards that difference (stores nothing) and waits for another
value.

Show value Apply value mapping to this item. Value mapping does not change
received values, it is for displaying data only.
It works with Numeric(unsigned), Numeric(float) and Character
items.
For example, ”Windows service states”.

Log time format Available for items of type Log only. Supported placeholders:
* y: Year (1970-2038)
* M: Month (01-12)
* d: Day (01-31)
* h: Hour (00-23)
* m: Minute (00-59)
* s: Second (00-59)
If left blank the timestamp will not be parsed.
For example, consider the following line from the Zabbix agent log
file:
” 23480:20100328:154718.045 Zabbix agent started. Zabbix 1.8.2
(revision 11211).”
It begins with six character positions for PID, followed by date,
time, and the rest of the line.
Log time format for this line would be
”pppppp:yyyyMMdd:hhmmss”.
Note that ”p” and ”:” chars are just placeholders and can be
anything but ”yMdhms”.

New application Enter the name of a new application for the item.
Applications Link item to one or more existing applications.
Populates host inventory field You can select a host inventory field that the value of item will

populate. This will work if automatic inventory population is
enabled for the host.

Description Enter an item description.
Enabled Mark the checkbox to enable the item so it will be processed.

You can also create an item by opening an existing one, pressing the Clone button and then saving under a different name.

112

Note:
When editing an existing template level item on a host level, a number of fields are read-only. You can use the link in the
form header and go to the template level and edit them there, keeping in mind that the changes on a template level will
change the item for all hosts that the template is linked to.

Unit blacklist

By default, specifying a unit for an item will result in a multiplier prefix being added - for example, value 2048 with unit B would
be displayed as 2KB. For a pre-defined, hardcoded list of units this is prevented:

• ms
• RPM
• rpm
• %

Note that both lowercase and uppercase rpm (rpm and RPM) strings are blacklisted.

Unsupported items

An item can become unsupported if its value cannot be retrieved for some reason. Such items are still rechecked at a fixed interval,
configurable in Administration section.

Unsupported items are reported as having a NOT SUPPORTED state.

1 Item key format

Item key format, including key parameters, must follow syntax rules. The following illustrations depict the supported syntax.
Allowed elements and characters at each point can be determined by following the arrows - if some block can be reached through
the line, it is allowed, if not - it is not allowed.

To construct a valid item key, one starts with specifying the key name, then there’s a choice to either have parameters or not - as
depicted by the two lines that could be followed.

Key name

The key name itself has a limited range of allowed characters, which just follow each other. Allowed characters are:

0-9a-zA-Z_-.

Which means:

• all numbers;
• all lowercase letters;
• all uppercase letters;
• underscore;
• dash;
• dot.

Key parameters

An item key can have multiple parameters that are comma separated.

113

Each key parameter can be either a quoted string, an unquoted string or an array.

The parameter can also be left empty, thus using the default value. In that case, the appropriate number of commas must
be added if any further parameters are specified. For example, item key icmpping[„200„500] would specify that the interval
between individual pings is 200 milliseconds, timeout - 500 milliseconds, and all other parameters are left at their defaults.

Parameter - quoted string

If the key parameter is a quoted string, any Unicode character is allowed, and included double quotes must be backslash escaped.

Warning:
To quote item key parameters, use double quotes only. Single quotes are not supported.

Parameter - unquoted string

If the key parameter is an unquoted string, any Unicode character is allowed except comma and right square bracket (]). Unquoted
parameter cannot start with left square bracket ([).

114

Parameter - array

If the key parameter is an array, it is again enclosed in square brackets, where individual parameters come in line with the rules
and syntax of specifying multiple parameters.

2 Item types

Overview

Item types cover various methods of acquiring data from your system. Each item type comes with its own set of supported item
keys and required parameters.

The following items types are currently offered by Zabbix:

• Zabbix agent checks
• SNMP agent checks
• SNMP traps
• IPMI checks
• Simple checks

– VMware monitoring
• Log file monitoring
• Calculated items
• Zabbix internal checks
• SSH checks
• Telnet checks
• External checks
• Aggregate checks
• Trapper items
• JMX monitoring
• ODBC checks

Details for all item types are included in the subpages of this section. Even though item types offer a lot of options for data
gathering, there are further options through user parameters or loadable modules.

Some checks are performed by Zabbix server alone (as agent-less monitoring) while others require Zabbix agent or even Zabbix
Java gateway (with JMX monitoring).

Attention:
If a particular item type requires a particular interface (like an IPMI check needs an IPMI interface on the host) that interface
must exist in the host definition.

Multiple interfaces can be set in the host definition: Zabbix agent, SNMP agent, JMX and IPMI. If an item can use more than one
interface, it will search the available host interfaces (in the order: Agent→SNMP→JMX→IPMI) for the first appropriate one to be
linked with.

All items that return text (character, log, text types of information) can return whitespace only as well (where applicable) setting
the return value to an empty string (supported since 2.0).

115

1 Zabbix agent

Overview

These checks use the communication with Zabbix agent for data gathering.

There are passive and active agent checks. When configuring an item, you can select the required type:

• Zabbix agent - for passive checks
• Zabbix agent (active) - for active checks

Supported item keys

The table provides details on the item keys that you can use with Zabbix agent items.

See also:

• Items supported by platform
• Item keys specific for WIN32 agent

** Mandatory and optional parameters **

Parameters without angle brackets are mandatory. Parameters marked with angle brackets < > are optional.

Key

Description Return value Parameters Comments
agent.hostname

Agent host
name.

String Returns the
actual value of
the agent
hostname from
a configuration
file.

agent.ping
Agent
availability
check.

Nothing -
unavailable

1 - available

Use function
nodata() to
check for host
unavailability.

agent.version
Version of
Zabbix agent.

String Example of
returned value:
1.8.2

kernel.maxfiles
Maximum
number of
opened files
supported by
OS.

Integer

kernel.maxproc
Maximum
number of
processes
supported by
OS.

Integer

log[file,<regexp>,<encoding>,<maxlines>,<mode>,<output>]

116

Key

Monitoring of
log file.

Log file - full path
and name of
log file
regexp -
regular
expression
describing the
required
pattern
encoding -
code page
identifier
maxlines -
maximum
number of new
lines per
second the
agent will send
to Zabbix
server or
proxy. This
parameter
overrides the
value of
’MaxLinesPer-
Second’ in
zab-
bix_agentd.conf
mode -
possible
values:
all (default),
skip - skip
processing of
older data
(affects only
newly created
items that
have not
returned any
data yet).
The mode
parameter is
supported from
version 2.0.
output - an
optional output
formatting
template. The
\0 escape
sequence is
replaced with
the matched
part of text
(from the first
character
where match
begins until the
character
where match
ends) while an
\N (where
N=1...9)
escape
sequence is
replaced with
Nth matched
group (or an
empty string if
the N exceeds
the number of
captured
groups).
If <output> is
left empty - the
whole line
containing the
matched text is
returned.
Note that all
global regular
expression
types except
’Result is TRUE’
always return
the whole
matched line
and the
<output>
parameter is
ignored.
The output
parameter is
supported from
version 2.2.

The item must
be configured
as an active
check.
If file is missing
or permissions
do not allow
access, item
turns
unsupported.

Content
extraction
using the
output
parameter
takes place on
the agent.

Examples:
log[/var/log/syslog]
log[/var/log/syslog,error]
log[/home/zabbix/logs/logfile„,100]

Example of
using output
parameter for
extracting a
number from
log record:
log[/app1/app.log,”task
run [0-9.]+
sec, processed
([0-9]+)
records, [0-9]+
errors”„„\1]→
will match a
log record
”2015-11-13
10:08:26 task
run 6.08 sec,
processed
6080 records,
0 errors” and
send only
number 6080
to server.
Because a
number is
being sent, the
”Type of
information”
for this log
item can be
changed from
”Log” to
”Numeric
(unsigned)”
and the value
can be used in
graphs,
triggers etc.

Example of
using output
parameter for
rewriting log
record before
sending to
server:
log[/app1/app.log,”([0-
9 :-]+) task run
([0-9.]+) sec,
processed
([0-9]+)
records,
([0-9]+)
errors”„„”\1
RECORDS: \3,
ERRORS: \4,
DURATION:
\2”]→ will
match a log
record
”2015-11-13
10:08:26 task
run 6.08 sec,
processed
6080 records,
0 errors” and
send a
modified
record
”2015-11-13
10:08:26
RECORDS:
6080, ERRORS:
0, DURATION:
6.08” to server.

See also
additional
information on
log monitoring.

117

Key

logrt[file_regexp,<regexp>,<encoding>,<maxlines>,<mode>,<output>]

118

Key

Monitoring of
log file with log
rotation
support.

Log file_regexp -
absolute path
to file and
regexp
describing the
file name
pattern
regexp -
regular
expression
describing the
required
content pattern
encoding -
code page
identifier
maxlines -
maximum
number of new
lines per
second the
agent will send
to Zabbix
server or
proxy. This
parameter
overrides the
value of
’MaxLinesPer-
Second’ in
zab-
bix_agentd.conf
mode -
possible
values:
all (default),
skip - skip
processing of
older data
(affects only
newly created
items that
have not
returned any
data yet).
The mode
parameter is
supported from
version 2.0.
output - an
optional output
formatting
template. The
\0 escape
sequence is
replaced with
the matched
part of text
(from the first
character
where match
begins until the
character
where match
ends) while an
\N (where
N=1...9)
escape
sequence is
replaced with
Nth matched
group (or an
empty string if
the N exceeds
the number of
captured
groups).
If <output> is
left empty - the
whole line
containing the
matched text is
returned.
Note that all
global regular
expression
types except
’Result is TRUE’
always return
the whole
matched line
and the
<output>
parameter is
ignored.
The output
parameter is
supported from
version 2.2.

The item must
be configured
as an active
check.
Log rotation is
based on the
last
modification
time of files.

Note that logrt
is designed to
work with one
currently
active log file,
with several
other matching
inactive files
rotated. If, for
example, a
directory has
many active
log files, a
separate logrt
item should be
created for
each one.
Otherwise if
one logrt item
picks up too
many files it
may lead to
exhausted
memory and a
crash of
monitoring.

Content
extraction
using the
output
parameter
takes place on
the agent.

Examples:
logrt[”/home/zabbix/logs/^logfile[0-
9]{1,3}$”„,100]→
will match a file
like ”logfile1”
(will not match
”.logfile1”)
logrt[”/home/user/^logfile_.*_[0-
9]{1,3}$”,”pattern_to_match”,”UTF-
8”,100] - will
collect data
from files such
”logfile_abc_1”
or
”logfile__001”.

Example of
using output
parameter for
extracting a
number from
log record:
logrt[/app1/^test.*log$,”task
run [0-9.]+
sec, processed
([0-9]+)
records, [0-9]+
errors”„„\1]→
will match a
log record
”2015-11-13
10:08:26 task
run 6.08 sec,
processed
6080 records,
0 errors” and
send only
number 6080
to server.
Because a
number is
being sent, the
”Type of
information”
for this log
item can be
changed from
”Log” to
”Numeric
(unsigned)”
and the value
can be used in
graphs,
triggers etc.

Example of
using output
parameter for
rewriting log
record before
sending to
server:
logrt[/app1/^test.*log$,”([0-
9 :-]+) task run
([0-9.]+) sec,
processed
([0-9]+)
records,
([0-9]+)
errors”„„”\1
RECORDS: \3,
ERRORS: \4,
DURATION:
\2”]→ will
match a log
record
”2015-11-13
10:08:26 task
run 6.08 sec,
processed
6080 records,
0 errors” and
send a
modified
record
”2015-11-13
10:08:26
RECORDS:
6080, ERRORS:
0, DURATION:
6.08” to server.

See also
additional
information on
log monitoring.

119

Key

net.dns[<ip>,name,<type>,<timeout>,<count>]
Checks if DNS
service is up.

0 - DNS is down
(server did not
respond or
DNS resolution
failed)

1 - DNS is up

ip - IP address
of DNS server
(leave empty
for the default
DNS server,
ignored on
Windows)
name - DNS
name to query
type - record
type to be
queried
(default is SOA)
timeout
(ignored on
Windows) -
timeout for the
request in
seconds
(default is 1
second)
count (ignored
on Windows) -
number of tries
for the request
(default is 2)

Example key:
net.dns[8.8.8.8,zabbix.com,MX,2,1]

The possible
values for type
are:
ANY, A, NS,
CNAME, MB,
MG, MR, PTR,
MD, MF, MX,
SOA, NULL,
WKS (except
for Windows),
HINFO, MINFO,
TXT, SRV

SRV record
type is
supported
since Zabbix
agent versions
1.8.6 (Unix)
and 2.0.0
(Windows).

Internationalized
domain names
are not
supported,
please use
IDNA encoded
names instead.

Naming before
Zabbix 2.0 (still
supported):
net.tcp.dns

net.dns.record[<ip>,name,<type>,<timeout>,<count>]

120

Key

Performs a
DNS query.

Character
string with the
required type
of information

ip - IP address
of DNS server
(leave empty
for the default
DNS server,
ignored on
Windows)
name - DNS
name to query
type - record
type to be
queried
(default is SOA)
timeout
(ignored on
Windows) -
timeout for the
request in
seconds
(default is 1
second)
count (ignored
on Windows) -
number of tries
for the request
(default is 2)

Example key:
net.dns.record[8.8.8.8,zabbix.com,MX,2,1]

The possible
values for type
are:
ANY, A, NS,
CNAME, MB,
MG, MR, PTR,
MD, MF, MX,
SOA, NULL,
WKS (except
for Windows),
HINFO, MINFO,
TXT, SRV

SRV record
type is
supported
since Zabbix
agent versions
1.8.6 (Unix)
and 2.0.0
(Windows).

Internationalized
domain names
are not
supported,
please use
IDNA encoded
names instead.

Naming before
Zabbix 2.0 (still
supported):
net.tcp.dns.query

net.if.collisions[if]
Number of
out-of-window
collisions.

Integer if - interface

net.if.discovery

121

Key

List of network
interfaces.
Used for
low-level
discovery.

JSON object Supported
since Zabbix
agent version
2.0.

On FreeBSD,
OpenBSD and
NetBSD
supported
since Zabbix
agent version
2.2.

Some Windows
versions (for
example,
Server 2008)
might require
the latest
updates
installed to
support
non-ASCII
characters in
interface
names.

net.if.in[if,<mode>]
Incoming
traffic statistics
on network
interface.

Integer if - network
interface name
(Unix); network
interface full
description or
IPv4 address
(Windows)
mode -
possible
values:
bytes - number
of bytes
(default)
packets -
number of
packets
errors -
number of
errors
dropped -
number of
dropped
packets

Multi-byte
interface
names on
Windows are
supported
since Zabbix
agent version
1.8.6.

Examples:
=>
net.if.in[eth0,errors]
=>
net.if.in[eth0]

You may obtain
network
interface
descriptions on
Windows with
net.if.discovery
or net.if.list
items.

You may use
this key with a
Delta (speed
per second)
store value in
order to get
bytes per
second
statistics.

net.if.out[if,<mode>]

122

Key

Outgoing
traffic statistics
on network
interface.

Integer if - network
interface name
(Unix); network
interface full
description or
IPv4 address
(Windows)
mode -
possible
values:
bytes - number
of bytes
(default)
packets -
number of
packets
errors -
number of
errors
dropped -
number of
dropped
packets

Multi-byte
interface
names on
Windows are
supported
since Zabbix
agent 1.8.6
version.

Examples:
=>
net.if.out[eth0,errors]
=>
net.if.out[eth0]

You may obtain
network
interface
descriptions on
Windows with
net.if.discovery
or net.if.list
items.

You may use
this key with a
Delta (speed
per second)
store value in
order to get
bytes per
second
statistics.

net.if.total[if,<mode>]

123

Key

Sum of
incoming and
outgoing traffic
statistics on
network
interface.

Integer if - network
interface name
(Unix); network
interface full
description or
IPv4 address
(Windows)
mode -
possible
values:
bytes - number
of bytes
(default)
packets -
number of
packets
errors -
number of
errors
dropped -
number of
dropped
packets

Examples:
=>
net.if.total[eth0,errors]
=>
net.if.total[eth0]

You may obtain
network
interface
descriptions on
Windows with
net.if.discovery
or net.if.list
items.

You may use
this key with a
Delta (speed
per second)
store value in
order to get
bytes per
second
statistics.

Note that
dropped
packets are
supported only
if both net.if.in
and net.if.out
work for
dropped
packets on
your platform.

net.tcp.listen[port]
Checks if this
TCP port is in
LISTEN state.

0 - it is not in
LISTEN state

1 - it is in
LISTEN state

port - TCP port
number

Example:
net.tcp.listen[80]

On Linux
supported
since Zabbix
agent version
1.8.4

net.tcp.port[<ip>,port]

124

Key

Checks if it is
possible to
make TCP
connection to
port number
port.

0 - cannot
connect

1 - can connect

ip - IP address
(default is
127.0.0.1)
port - port
number

Example:
net.tcp.port[,80]
can be used to
test availability
of web server
running on port
80.
Old naming:
check_port[*]
For simple TCP
performance
testing use
net.tcp.service.perf[tcp,<ip>,<port>]
Note that these
checks may
result in
additional
messages in
system
daemon
logfiles (SMTP
and SSH
sessions being
logged
usually).

net.tcp.service[service,<ip>,<port>]

125

Key

Checks if
service is
running and
accepting TCP
connections.

0 - service is
down

1 - service is
running

service -
either of:
ssh, ntp, ldap,
smtp, ftp, http,
pop, nntp,
imap, tcp,
https, telnet
(see details)
ip - IP address
(default is
127.0.0.1)
port - port
number (by
default
standard
service port
number is
used)

Example key:
net.tcp.service[ftp„45]
- can be used
to test the
availability of
FTP server on
TCP port 45.
Note that these
checks may
result in
additional
messages in
system
daemon
logfiles (SMTP
and SSH
sessions being
logged
usually).
Checking of
encrypted
protocols (like
IMAP on port
993 or POP on
port 995) is
currently not
supported. As
a workaround,
please use
net.tcp.port for
checks like
these.
Checking of
LDAP and
HTTPS by
Windows agent
is currently not
supported.
Note that the
telnet check
looks for a
login prompt
(’:’ at the end).
Old naming:
check_service[*]
https and
telnet services
are supported
since Zabbix
2.0.
ntp service
only works
since Zabbix
2.0.15 and
Zabbix 2.2.10,
despite being
available in
earlier
versions.

net.tcp.service.perf[service,<ip>,<port>]

126

Key

Checks
performance of
service.

0 - service is
down

seconds - the
number of
seconds spent
while
connecting to
the service

service -
either of:
ssh, ntp, ldap,
smtp, ftp, http,
pop, nntp,
imap, tcp,
https, telnet
(see details)
ip - IP address
(default is
127.0.0.1)
port - port
number (by
default
standard
service port
number is
used)

Example key:
net.tcp.service.perf[ssh]
- can be used
to test the
speed of initial
response from
SSH server.
Checking of
encrypted
protocols (like
IMAP on port
993 or POP on
port 995) is
currently not
supported. As
a workaround,
please use
net.tcp.service.perf[tcp,<ip>,<port>]
for checks like
these.
Checking of
LDAP and
HTTPS by
Windows agent
is currently not
supported.
Note that the
telnet check
looks for a
login prompt
(’:’ at the end).
Old naming:
check_service_perf[*]
https and
telnet services
are supported
since Zabbix
2.0.
ntp service
only works
since Zabbix
2.0.15 and
Zabbix 2.2.10,
despite being
available in
earlier
versions.

net.udp.listen[port]
Checks if this
UDP port is in
LISTEN state.

0 - it is not in
LISTEN state

1 - it is in
LISTEN state

port - UDP port
number

Example:
net.udp.listen[68]

On Linux
supported
since Zabbix
agent version
1.8.4

proc.mem[<name>,<user>,<mode>,<cmdline>]

127

Key

Memory used
by process in
bytes.

Integer - with
mode as max,
min, sum

Float - with
mode as avg

name -
process name
(default is all
processes)
user - user
name (default
is all users)
mode -
possible
values:
avg, max, min,
sum (default)
cmdline - filter
by command
line (it is a
regular
expression)

Example keys:
proc.mem[,root]
- memory used
by all
processes
running under
the ”root” user
proc.mem[zabbix_server,zabbix]
- memory used
by all
zabbix_server
processes
running under
the zabbix user
proc.mem[,oracle,max,oracleZABBIX]
- memory used
by the most
memory-
hungry process
running under
oracle having
oracleZABBIX
in its command
line

Note: When
several
processes use
shared
memory, the
sum of
memory used
by processes
may result in
large,
unrealistic
values.

proc.num[<name>,<user>,<state>,<cmdline>]

128

Key

The number of
processes.

Integer name -
process name
(default is all
processes)
user - user
name (default
is all users)
state -
possible
values: all
(default), run,
sleep, zomb
cmdline - filter
by command
line (it is a
regular
expression)

Example keys:
proc.num[,mysql]
- number of
processes
running under
the mysql user
proc.num[apache2,www-
data] - number
of apache2
processes
running under
the www-data
user
proc.num[,oracle,sleep,oracleZABBIX]
- number of
processes in
sleep state
running under
oracle having
oracleZABBIX
in its command
line
On Windows,
only the name
and user
parameters are
supported.

sensor[device,sensor,<mode>]

129

Key

Hardware
sensor reading.

Float device -
device name
sensor -
sensor name
mode -
possible
values:
avg, max, min
(if this
parameter is
omitted, device
and sensor are
treated
verbatim).

On Linux 2.4,
reads
/proc/sys/dev/sensors.
Example key:
sensor[w83781d-
i2c-0-
2d,temp1]
Prior to Zabbix
1.8.4, the
sensor[temp1]
format was
used.

On Linux 2.6+,
reads
/sys/class/hwmon.

See a more
detailed
description of
sensor item on
Linux.

On OpenBSD,
reads the
hw.sensors
MIB.
Example keys:
sensor[cpu0,temp0]
- temperature
of one CPU
sensor[”cpu[0-
2]$”,temp,avg]
- average
temperature of
the first three
CPU’s
Supported on
OpenBSD since
Zabbix 1.8.4.

system.boottime
System boot
time.

Integer (Unix
timestamp)

system.cpu.intr
Device
interrupts.

Integer

system.cpu.load[<cpu>,<mode>]

130

Key

CPU load. Float cpu - possible
values:
all (default),
percpu (total
load divided by
online CPU
count)
mode -
possible
values:
avg1
(one-minute
average,
default), avg5
(5-minute
average),
avg15 (an
average within
15 minutes)

Example key:
system.cpu.load[,avg5]

Old naming:
sys-
tem.cpu.loadX
Parameter
percpu is
supported
since Zabbix
2.0.0.

system.cpu.num[<type>]
Number of
CPUs.

Integer type - possible
values:
online
(default), max

Example key:
system.cpu.num

system.cpu.switches
Count of
context
switches.

Integer Old naming:
sys-
tem[switches]

system.cpu.util[<cpu>,<type>,<mode>]
CPU utilisation
in percent.

Float cpu - CPU
number
(default is all
CPUs)
type - possible
values:
idle, nice, user
(default),
system
(default for
Windows),
iowait,
interrupt,
softirq, steal
mode -
possible
values:
avg1
(one-minute
average,
default), avg5
(5-minute
average),
avg15 (an
average within
15 minutes)

Example key:
system.cpu.util[0,user,avg5]

Old naming:
sys-
tem.cpu.idleX,
sys-
tem.cpu.niceX,
sys-
tem.cpu.systemX,
sys-
tem.cpu.userX

system.hostname[<type>]

131

http://en.wikipedia.org/wiki/Load_(computing)

Key

System host
name.

String type (Windows
only, must not
be used on
other systems)
- possible
values: netbios
(default) or
host

The value is
acquired by
either GetCom-
puterName()
(for netbios)
or
gethostname()
(for host)
functions on
Windows and
by ”hostname”
command on
other systems.
The type
parameter
for this item
is supported
since 1.8.6
version.

Examples of
returned
values:
on Linux:
system.hostname
→ linux-w7x1
system.hostname
→
www.zabbix.com
on Windows:
system.hostname
→ WIN-
SERV2008-I6
system.hostname[host]
→
Win-Serv2008-
I6LonG

See also a
more detailed
description.

system.hw.chassis[<info>]

132

Key

Chassis
information.

String info - one of
full (default),
model, serial,
type or vendor

Example: sys-
tem.hw.chassis[full]
Hewlett-
Packard HP Pro
3010 Small
Form Factor PC
CZXXXXXXXX
Desktop]

This key
depends on the
availability of
the SMBIOS
table.
Will try to read
the DMI table
from sysfs, if
sysfs access
fails then try
reading
directly from
memory.

Root
permissions
are required
because the
value is
acquired by
reading from
sysfs or
memory.

Supported
since Zabbix
agent version
2.0.

system.hw.cpu[<cpu>,<info>]
CPU
information.

String or
integer

cpu - CPU
number or all
(default)
info - one of
full (default),
curfreq,
maxfreq,
model or
vendor

Example: sys-
tem.hw.cpu[0,vendor]
AuthenticAMD

Gathers info
from
/proc/cpuinfo
and
/sys/devices/system/cpu/[cpunum]/cpufreq/cpuinfo_max_freq.
If a CPU
number and
curfreq or
maxfreq is
specified, a
numeric value
is returned
(Hz).

Supported
since Zabbix
agent version
2.0.

system.hw.devices[<type>]

133

http://en.wikipedia.org/wiki/System_Management_BIOS

Key

Listing of PCI or
USB devices.

Text type - pci
(default) or usb

Example: sys-
tem.hw.devices[pci]
00:00.0 Host
bridge:
Advanced
Micro Devices
[AMD] RS780
Host Bridge
[..]

Returns the
output of
either lspci or
lsusb utility
(executed
without any
parameters)

Supported
since Zabbix
agent version
2.0.

system.hw.macaddr[<interface>,<format>]
Listing of MAC
addresses.

String interface - all
(default) or a
regular
expression
format - full
(default) or
short

Example: sys-
tem.hw.macaddr[”eth0$”,full]
[eth0]
00:11:22:33:44:55

Lists MAC
adresses of the
interfaces
whose names
match the
given
interface
regexp (all lists
for all
interfaces).
If format is
specified as
short,
interface
names and
identical MAC
addresses are
not listed.

Supported
since Zabbix
agent version
2.0.

system.localtime[<type>]

134

Key

System time. Integer - with
type as utc

String - with
type as local

utc - (default)
the time since
the Epoch
(00:00:00 UTC,
January 1,
1970),
measured in
seconds.
local - the
time in the
’yyyy-mm-
dd,hh:mm:ss.nnn,+hh:mm’
format
Parameters for
this item
supported from
version 2.0.

Example:
system.localtime[local]
- create an item
using this key
and then use it
to display host
time in the
Clock screen
element.

system.run[command,<mode>]
Run specified
command on
the host.

Text result of
the command

1 - with mode
as nowait
(regardless of
command
result)

command -
command for
execution
mode - one of
wait (default,
wait end of
execution),
nowait (do not
wait)

Up to 512KB of
data can be
returned,
including
trailing
whitespace
that is
truncated.
To be
processed
correctly, the
output of the
command
must be text.
Example:
system.run[ls -l
/] - detailed file
list of root
directory.
Note: To
enable this
functionality,
agent
configuration
file must have
EnableRe-
moteCom-
mands=1
option.
See also:
Command
execution.

system.stat[resource,<type>]

135

Key

System
statistics.

Integer or float ent - number
of processor
units this
partition is
entitled to
receive (float)
kthr,<type> -
information
about kernel
thread states:
r - average
number of
runnable
kernel threads
(float)
b - average
number of
kernel threads
placed in the
Virtual Memory
Manager wait
queue (float)
memory,<type>
- information
about the
usage of virtual
and real
memory:
avm - active
virtual pages
(integer)
fre - size of the
free list
(integer)
page,<type>
- information
about page
faults and
paging activity:
fi - file
page-ins per
second (float)
fo - file
page-outs per
second (float)
pi - pages
paged in from
paging space
(float)
po - pages
paged out to
paging space
(float)
fr - pages
freed (page
replacement)
(float)
sr - pages
scanned by
page-
replacement
algorithm
(float)
faults,<type>
- trap and
interrupt rate:
in - device
interrupts
(float)
sy - system
calls (float)
cs - kernel
thread context
switches (float)
cpu,<type> -
breakdown of
percentage
usage of
processor time:
us - user time
(float)
sy - system
time (float)
id - idle time
(float)
wa - idle time
during which
the system had
outstanding
disk/NFS I/O
request(s)
(float)
pc - number of
physical
processors
consumed
(float)
ec - the
percentage of
entitled
capacity
consumed
(float)
lbusy -
indicates the
percentage of
logical
processor(s)
utilization that
occurred while
executing at
the user and
system level
(float)
app - indicates
the available
physical
processors in
the shared pool
(float)
disk,<type> -
disk statistics:
bps - indicates
the amount of
data
transferred
(read or
written) to the
drive in bytes
per second
(integer)
tps - indicates
the number of
transfers per
second that
were issued to
the physical
disk/tape
(float)
This item is
supported
starting from
version 1.8.1.

136

Key

system.sw.arch
Software
architecture
information.

String Example:
system.sw.arch
i686

Info is acquired
from uname()
function.

Supported
since Zabbix
agent version
2.0.

system.sw.os[<info>]
Operating
system
information.

String info - one of
full (default),
short or name

Example: sys-
tem.sw.os[short]
Ubuntu 2.6.35-
28.50-generic
2.6.35.11

Info is acquired
from (note that
not all files are
present in all
distributions):
[full] -
/proc/version
[short] -
/proc/version_signature
[name] -
/etc/issue.net

Supported
since Zabbix
agent version
2.0.

system.sw.packages[<package>,<manager>,<format>]

137

Key

Listing of
installed
packages.

Text package - all
(default) or a
regular
expression
manager - all
(default) or a
package
manager
format - full
(default) or
short

Example: sys-
tem.sw.packages[mini,dpkg,short]
python-
minimal,
python2.6-
minimal,
ubuntu-
minimal

Lists
(alphabetically)
installed
packages
whose names
match the
given package
regexp (all lists
them all).

Supported
packages
managers:
manager
(executed
command)
dpkg (dpkg --
get-selections)
pkgtool (ls
/var/log/packages)
rpm (rpm -qa)
pacman
(pacman -Q)

If format is
specified as
full, packages
are grouped by
package
managers
(each manager
on a seperate
line beginning
with it’s name
in square
brackets).
If format is
specified as
short,
packages are
not grouped
and are listed
on a single line.

Supported
since Zabbix
agent version
2.0.

system.swap.in[<device>,<type>]

138

Key

Swap in (from
device into
memory)
statistics.

Integer device -
device used for
swapping
(default is all)
type - possible
values:
count (number
of swapins),
sectors
(sectors
swapped in),
pages (pages
swapped in).
See supported
by platform for
details on
defaults.

Example key:
system.swap.in[,pages]

The source of
this
information is:
Linux 2.4:
/proc/swaps,
/proc/partitions,
/proc/stat
Linux 2.6:
/proc/swaps,
/proc/diskstats,
/proc/vmstat

system.swap.out[<device>,<type>]
Swap out (from
memory onto
device)
statistics.

Integer device -
device used for
swapping
(default is all)
type - possible
values:
count (number
of swapouts),
sectors
(sectors
swapped out),
pages (pages
swapped out).
See supported
by platform for
details on
defaults.

Example key:
system.swap.out[,pages]

The source of
this
information is:
Linux 2.4:
/proc/swaps,
/proc/partitions,
/proc/stat
Linux 2.6:
/proc/swaps,
/proc/diskstats,
/proc/vmstat

system.swap.size[<device>,<type>]

139

Key

Swap space
size in bytes or
in percentage
from total.

Integer - for
bytes

Float - for
percentage1

device -
device used for
swapping
(default is all)
type - possible
values:
free (free swap
space, default),
pfree (free
swap space, in
percent),
pused (used
swap space, in
percent), total
(total swap
space), used
(used swap
space)

Example key:
system.swap.size[,pfree]
- free swap
space
percentage

If device is not
specified
Zabbix agent
will only take
into account
swap devices
(files), physical
memory will be
ignored. For
example, on
Solaris systems
swap -s
command
includes a
portion of
physical
memory and
swap devices
(unlike swap
-l).

Old naming:
sys-
tem.swap.free,
sys-
tem.swap.total

system.uname

140

Key

Detailed host
information.

String Example of
returned value:
FreeBSD
localhost
4.2-RELEASE
FreeBSD
4.2-RELEASE
#0: Mon Nov
i386

Since Zabbix
2.2.0, the
value for this
item is
obtained by
using the
uname()
system call,
whereas
previously it
was obtained
by invoking
”uname -a” on
Unix systems.
Hence, the
value of this
item might
differ from the
output of
”uname -a”
and does not
include
additional
information
that ”uname
-a” prints
based on other
sources.

system.uptime
System uptime
in seconds.

Integer In item
configuration,
use s or
uptime units
to get readable
values.

system.users.num
Number of
users logged
in.

Integer who command
is used on the
agent side to
obtain the
value.

vfs.dev.read[<device>,<type>,<mode>]

141

Key

Disk read
statistics.

Integer - with
type in
sectors,
operations,
bytes

Float - with
type in sps,
ops, bps

device - disk
device (default
is all2)
type - possible
values:
sectors,
operations,
bytes, sps, ops,
bps (must be
specified, since
defaults differ
under various
OSes).
sps, ops, bps
stand for:
sectors,
operations,
bytes per
second,
respectively
mode -
possible
values:
avg1
(one-minute
average,
default), avg5
(five-minute
average),
avg15
(15-minute
average).
Note: The third
parameter is
supported only
if the type is
in: sps, ops,
bps.

Default values
of ’type’
parameter for
different OSes:
FreeBSD - bps
Linux - sps
OpenBSD -
operations
Solaris - bytes

Example key:
vfs.dev.read[,operations]
Old naming:
io[*]

Usage of the
type
parameters
ops, bps and
sps on
supported
platforms used
to be limited to
8 devices (7
individual
devices and
one all).
Starting with
Zabbix 2.0.1
this limit has
been increased
to 1024 (1023
individual
devices and
one for all).

Supports LVM
since Zabbix
1.8.6.

Until Zabbix
1.8.6, only
relative device
names may be
used (for
example, sda),
since 1.8.6 an
optional /dev/
prefix may be
used (for
example,
/dev/sda)

vfs.dev.write[<device>,<type>,<mode>]

142

Key

Disk write
statistics.

Integer - with
type in
sectors,
operations,
bytes

Float - with
type in sps,
ops, bps

device - disk
device (default
is all2)
type - one of
sectors,
operations,
bytes, sps, ops,
bps (must
specify exactly
which
parameter to
use, since
defaults are
different under
various OSes).
sps, ops, bps
means:
sectors,
operations,
bytes per
second
respectively
mode - one of
avg1
(default),avg5
(average within
5 minutes),
avg15.
Note: The third
parameter is
supported only
if the type is
in: sps, ops,
bps.

Default values
of ’type’
parameter for
different OSes:
FreeBSD - bps
Linux - sps
OpenBSD -
operations
Solaris - bytes

Example:
vfs.dev.write[,operations]
Old naming:
io[*]

The type
parameters
ops, bps and
sps on
supported
platforms used
to be limited to
8 devices (7
individual
devices and
one all).
Starting with
Zabbix 2.0.1
this limit has
been increased
to 1024 (1023
individual
devices and
one for all).

Supports LVM
since Zabbix
1.8.6.

Until Zabbix
1.8.6, only
relative device
names may be
used (for
example, sda),
since 1.8.6
optional /dev/
prefix may be
used (for
example,
/dev/sda)

vfs.file.cksum[file]

143

Key

File checksum,
calculated by
the UNIX
cksum
algorithm.

Integer file - full path
to file

Example of
returned value:
1938292000

Example:
vfs.file.cksum[/etc/passwd]

Old naming:
cksum

The file size
limit depends
on large file
support.

vfs.file.contents[file,<encoding>]
Retrieving
contents of a
file.

Text file - full path
to file
encoding -
code page
identifier

Returns an
empty string if
the file is
empty or
contains LF/CR
characters
only.

Example:
vfs.file.contents[/etc/passwd]

This item is
limited to files
no larger than
64 Kbytes.

Supported
since Zabbix
agent version
2.0.

vfs.file.exists[file]
Checks if file
exists.

0 - not found

1 - regular file
or a link
(symbolic or
hard) to
regular file
exists

file - full path
to file

Example:
vfs.file.exists[/tmp/application.pid]

The return
value depends
on what
S_ISREG POSIX
macro returns.

The file size
limit depends
on large file
support.

vfs.file.md5sum[file]

144

Key

MD5 checksum
of file.

Character
string (MD5
hash of the file)

file - full path
to file

Example of
returned value:
b5052decb577e0fffd622d6ddc017e82

Example:
vfs.file.md5sum[/usr/local/etc/zabbix_agentd.conf]

The file size
limit (64 MB)
for this item
was removed
in version
1.8.6.

The file size
limit depends
on large file
support.

vfs.file.regexp[file,regexp,<encoding>,<start
line>,<end line>,<output>]

145

Key

Find string in a
file.

The line
containing the
matched
string, or as
specified by
the optional
output
parameter

file - full path
to file
regexp - GNU
regular
expression
encoding -
code page
identifier
start line - the
number of first
line to search
(first line of file
by default).
end line - the
number of last
line to search
(last line of file
by default).
output - an
optional output
formatting
template. The
\0 escape
sequence is
replaced with
the matched
part of text
(from the first
character
where match
begins until the
character
where match
ends) while an
\N (where
N=1...9)
escape
sequence is
replaced with
Nth matched
group (or an
empty string if
the N exceeds
the number of
captured
groups).

Only the first
matching line
is returned.
An empty
string is
returned if no
line matched
the expression.

Content
extraction
using the
output
parameter
takes place on
the agent.

The start
line, end
line and
output
parameters are
supported from
version 2.2.

Examples:
=>
vfs.file.regexp[/etc/passwd,zabbix]
=>
vfs.file.regexp[/path/to/some/file,”([0-
9]+)$”„3,5,\1]
=>
vfs.file.regexp[/etc/passwd,”^zabbix:.:([0-
9]+)”„„\1] →
getting the ID
of user zabbix

vfs.file.regmatch[file,regexp,<encoding>,<start
line>,<end line>]

146

Key

Find string in a
file.

0 - match not
found

1 - found

file - full path
to file
regexp - GNU
regular
expression
encoding -
code page
identifier
start line - the
number of first
line to search
(first line of file
by default).
end line - the
number of last
line to search
(last line of file
by default).

The start
line and end
line
parameters are
supported from
version 2.2.

Example:
=>
vfs.file.regmatch[/var/log/app.log,error]

vfs.file.size[file]
File size (in
bytes).

Integer file - full path
to file

File must have
read
permissions for
user zabbix

Example:
vfs.file.size[/var/log/syslog]

The file size
limit depends
on large file
support.

vfs.file.time[file,<mode>]
File time
information.

Integer (Unix
timestamp)

file - full path
to the file
mode -
possible
values:
modify
(default) - last
time of
modifying file
content,
access - last
time of reading
file,
change - last
time of
changing file
properties

Example:
vfs.file.time[/etc/passwd,modify]

The file size
limit depends
on large file
support.

vfs.fs.discovery
List of mounted
filesystems.
Used for
low-level
discovery.

JSON object Supported
since Zabbix
agent version
2.0.

vfs.fs.inode[fs,<mode>]

147

Key

Number or
percentage of
inodes.

Integer - for
number

Float - for
percentage

fs - filesystem
mode - one of
total (default),
free, used,
pfree (free,
percentage),
pused (used,
percentage)

Example:
vfs.fs.inode[/,pfree]
Old naming:
vfs.fs.inode.free[*],
vfs.fs.inode.pfree[*],
vfs.fs.inode.total[*]

vfs.fs.size[fs,<mode>]
Disk space in
bytes or in
percentage
from total.

Integer - for
bytes

Float - for
percentage

fs - filesystem
mode - one of
total (default),
free, used,
pfree (free,
percentage),
pused (used,
percentage)

In case of a
mounted
volume, disk
space for local
file system is
returned.

Example:
vfs.fs.size[/tmp,free]

Reserved
space of a file
system is
taken into
account and
not included
when using the
free mode.

Old naming:
vfs.fs.free[*],
vfs.fs.total[*],
vfs.fs.used[*],
vfs.fs.pfree[*],
vfs.fs.pused[*]

vm.memory.size[<mode>]

148

Key

Memory size in
bytes or in
percentage
from total.

Integer - for
bytes

Float - for
percentage

mode - one of
total (default),
active, anon,
buffers,
cached, exec,
file, free,
inactive,
pinned, shared,
wired, used,
pused,
available,
pavailable

Old naming:
vm.memory.buffers,
vm.memory.cached,
vm.memory.free,
vm.memory.shared,
vm.memory.total

Item
vm.memory.size[]
accepts three
categories of
parameters.

First category
consists of
total - total
amount of
memory.

Second
category
contains
platform-
specific
memory types:
active, anon,
buffers,
cached, exec,
file, free,
inactive,
pinned,
shared,
wired.

Third category
are user-level
estimates on
how much
memory is
used and
available:
used, pused,
available,
pavailable.

See a more
detailed
description of
vm.memory.size
parameters.

web.page.get[host,<path>,<port>]

149

Key

Get content of
web page.

Web page
source as text
(including
headers)

host -
hostname
path - path to
HTML
document
(default is /)
port - port
number
(default is 80)

This item turns
unsupported if
the resource
specified in
host does not
exist or is
unavailable.
Note that
before version
2.2.22 it would
return an
empty string
on fail.

Example:
web.page.get[www.zabbix.com,index.php,80]

web.page.perf[host,<path>,<port>]
Loading time of
full web page
(in seconds).

Float host -
hostname
path - path to
HTML
document
(default is /)
port - port
number
(default is 80)

This item turns
unsupported if
the resource
specified in
host does not
exist or is
unavailable.
Note that
before version
2.2.22 it would
return ’0’ on
fail.

Example:
web.page.perf[www.zabbix.com,index.php,80]

web.page.regexp[host,<path>,<port>,regexp,<length>,<output>]

150

Key

Find string on a
web page.

The matched
string, or as
specified by
the optional
output
parameter

host -
hostname
path - path to
HTML
document
(default is /)
port - port
number
(default is 80)
regexp - GNU
regular
expression
length -
maximum
number of
characters to
return
output - an
optional output
formatting
template. The
\0 escape
sequence is
replaced with
the matched
part of text
(from the first
character
where match
begins until the
character
where match
ends) while an
\N (where
N=1...9)
escape
sequence is
replaced with
Nth matched
group (or an
empty string if
the N exceeds
the number of
captured
groups).

This item turns
unsupported if
the resource
specified in
host does not
exist or is
unavailable.
Note that
before version
2.2.22 it would
return an
empty string if
no match was
found or on
fail.

Content
extraction
using the
output
parameter
takes place on
the agent.

The output
parameter is
supported from
version 2.2.

Example:
=>
web.page.regexp[www.zabbix.com,index.php,80,OK,2]

Note:
[1] The system.swap.size key might report incorrect data on virtualized (VMware ESXi, VirtualBox) Windows platforms. In
this case use perf_counter[\700(_Total)\702] key to obtain correct swap usage percentage.

Note:
[2] If default all is used for the first parameter of vfs.dev.* keys then the keys will return summary statistics, including: all
block devices like sda, sbd and their partitions sda1, sda2, sdb3 ... and multiple devices (MD raid) based on those block
devices/partitions and logical volumes (LVM) based on those block devices/partitions.
In such cases returned values should be considered only as relative value (dynamic in time) but not as absolute values.

151

Note:
A Linux-specific note. Zabbix agentmust have read-only access to filesystem /proc. Kernel patches fromwww.grsecurity.org
limit access rights of non-privileged users.

Available encodings

The encoding parameter is used to specify encoding for processing corresponding item checks, so that data acquired will not be
corrupted. For a list of supported encodings (code page identifiers), please consult respective documentation, such as documen-
tation for libiconv (GNU Project) or Microsoft Windows SDK documentation for ”Code Page Identifiers”.

If empty encoding is passed, then UTF-8 (default locale for newer Unix/Linux distributions, see your system’s settings) or ANSI
with system-specific extension (Windows) is used by default.

Windows-specific item keys

Item keys

The table provides details on the item keys that you can use with Zabbix Windows agent only.

Key

Description Return value Parameters Comments
eventlog[name,<regexp>,<severity>,<source>,<eventid>,<maxlines>,<mode>]

152

http://www.gnu.org/software/libiconv/

Key

Event log
monitoring.

Log name - name
of event log
regexp -
regular
expression
describing the
required
pattern
severity -
regular
expression
describing
severity
The parameter
accepts the
following
values:
”Information”,
”Warning”,
”Error”,
”Critical”,
”Verbose”
(since Zabbix
2.2.0 running
on Windows
Vista or newer)
In older Zabbix
versions
running on any
Windows
version it
would be
”Information”,
”Warning”,
”Error”,
”Failure Audit”,
”Success
Audit”.
source -
regular
expression
describing
source
identifier
(regular
expression is
supported
since Zabbix
2.2.0)
eventid -
regular
expression
describing the
event
identifier(s)
maxlines -
maximum
number of new
lines per
second the
agent will send
to Zabbix
server or
proxy. This
parameter
overrides the
value of
’MaxLinesPer-
Second’ in
zab-
bix_agentd.win.conf
mode -
possible
values:
all (default),
skip - skip
processing of
older data
(affects only
newly created
items that
have not
returned any
data yet).
The mode
parameter is
supported
since Zabbix
2.0.0.

The item must
be configured
as an active
check.

Examples:
eventlog[Application]
eventlog[Security„”Failure
Au-
dit”„^(529|680)$]
eventlog[System„”Warning|Error”]
eventlog[System„„^1$]
eventlog[System„„@TWOSHORT]
- here a custom
regular
expression
named
TWOSHORT is
referenced
(defined as a
Result is TRUE
type, the
expression
itself being
^1$\|^70$).

Note that the
agent is unable
to send in
events from
the ”Forwarded
events” log.

”Windows
Eventing 6.0”
is supported
since Zabbix
2.2.0.

See also
additional
information on
log monitoring.

153

Key

net.if.list
Network
interface list
(includes
interface type,
status, IPv4
address,
description).

Text Supported
since Zabbix
agent version
1.8.1.
Multi-byte
interface
names
supported
since Zabbix
agent version
1.8.6. Disabled
interfaces are
not listed.

Note that en-
abling/disabling
some
components
may change
their ordering
in the Windows
interface
name.

Some Windows
versions (for
example,
Server 2008)
might require
the latest
updates
installed to
support
non-ASCII
characters in
interface
names.

perf_counter[counter,<interval>]

154

Key

Value of any
Windows
performance
counter.

Integer, float,
string or text
(depending on
the request)

counter - path
to the counter
interval - last
N seconds for
storing the
average value.
The interval
must be
between 1 and
900 seconds
(included) and
the default
value is 1.

Performance
Monitor can be
used to obtain
list of available
counters. Until
version 1.6 this
parameter will
return correct
value only for
counters that
require just
one sample
(like \Sys-
tem\Threads).
It will not work
as expected for
counters that
require more
that one
sample - like
CPU utilisation.
Since 1.6
interval is
used, so the
check returns
an average
value for last
”interval”
seconds every
time.

See also:
Windows
performance
counters.

proc_info[process,<attribute>,<type>]

155

Key

Various
information
about specific
process(es).

Float process -
process name
attribute -
requested
process
attribute.
type -
representation
type
(meaningful
when more
than one
process with
the same
name exists)

The following
attributes are
currently
supported:
vmsize
(default) - Size
of process
virtual memory
in Kbytes
wkset - Size of
process
working set
(amount of
physical
memory used
by process) in
Kbytes
pf - Number of
page faults
ktime -
Process kernel
time in
milliseconds
utime -
Process user
time in
milliseconds
io_read_b -
Number of
bytes read by
process during
I/O operations
io_read_op -
Number of
read operation
performed by
process
io_write_b -
Number of
bytes written
by process
during I/O
operations
io_write_op -
Number of
write operation
performed by
process
io_other_b -
Number of
bytes
transferred by
process during
operations
other than read
and write
operations
io_other_op -
Number of I/O
operations
performed by
process, other
than read and
write
operations
gdiobj -
Number of GDI
objects used
by process
userobj -
Number of
USER objects
used by
process

Valid types are:
avg (default) -
average value
for all
processes
named
<process>
min - minimum
value among
all processes
named
<process>
max -
maximum
value among
all processes
named
<process>
sum - sum of
values for all
processes
named
<process>

Examples:
proc_info[iexplore.exe,wkset,sum]
- to get the
amount of
physical
memory taken
by all Internet
Explorer
processes
proc_info[iexplore.exe,pf,avg]
- to get the
average
number of
page faults for
Internet
Explorer
processes

Note that on a
64-bit system,
a 64-bit Zabbix
agent is
required for
this item to
work correctly.

Note: io_*,
gdiobj and
userobj
attributes are
available only
on Windows
2000 and later
versions of
Windows, not
on Windows NT
4.0.

156

Key

service_state[service]
State of a
service.

0 - running
1 - paused
2 - start
pending
3 - pause
pending
4 - continue
pending
5 - stop
pending
6 - stopped
7 - unknown
255 - no such
service

service - a
real service
name or its
display name
as seen in MMC
Services
snap-in

services[<type>,<state>,<exclude>]
Listing of
services.

0 - if empty

Text - list of
services
separated by a
newline

type - one of
all (default),
automatic,
manual,
disabled
state - one of
all (default),
stopped,
started,
start_pending,
stop_pending,
running, con-
tinue_pending,
pause_pending,
paused
exclude - list
of services to
exclude it from
the result.
Excluded
services should
be written in
double quotes,
separated by
comma,
without spaces.
This parameter
is supported
starting with
Zabbix 1.8.1.

Examples:
services[,started]
- list of started
services
services[automatic,
stopped] - list
of stopped
services, that
should be run
services[automatic,
stopped, ”ser-
vice1,service2,service3”]
- list of stopped
services, that
should be run,
excluding
services with
names
service1,
service2 and
service3

wmi.get[<namespace>,<query>]

157

Key

Execute WMI
query and
return the first
selected
object.

Integer, float,
string or text
(depending on
the request)

namespace -
WMI
namespace
query - WMI
query returning
a single object

This key is
supported
starting with
Zabbix 2.2.0.

Examples:
wmi.get[root\cimv2,select
status from
Win32_DiskDrive
where Name
like ’%PHYSI-
CALDRIVE0%’]
- returns the
status of the
first physical
disk

Monitoring Windows services

This tutorial provides step-by-step instructions for setting up the monitoring of Windows services. It is assumed that Zabbix server
and agent are configured and operational.

To monitor the up/down status of a service you need to perform the following steps:

Step 1

Get the service name.

You can get that name by going to the services mmc and bringing up the properties of the service. In the General tab you should
see a field called ’Service name’. The value that follows is the name you will use when setting up an item for monitoring.

For example, if you wanted to monitor the ”workstation” service then your service might be: lanmanworkstation.

Step 2

Configure an item for monitoring the service, with:

• Key: service_state[lanmanworkstation]
• Type of information: Numeric (unsigned)
• Show value: select the Windows service state value mapping

2 SNMP agent

Overview

You may want to use SNMP monitoring on devices such as printers, network switches, routers or UPS that usually are SNMP-enabled
and on which it would be impractical to attempt setting up complete operating systems and Zabbix agents.

To be able to retrieve data provided by SNMP agents on these devices, Zabbix server must be initially configured with SNMP support.

SNMP checks are performed over the UDP protocol only.

Warning:
If monitoring SNMPv3 devices, make sure that msgAuthoritativeEngineID (also known as snmpEngineID or ”Engine ID”) is
never shared by two devices. According to RFC 2571 (section 3.1.1.1) it must be unique for each device.

Note:
If previously for SNMPv3 authentication and privacy only MD5 and DES protocols were supported, starting with Zabbix 2.2
also SHA authentication and AES privacy protocols are supported.

158

http://www.ietf.org/rfc/rfc2571.txt

Note:
Starting from 2.2 Zabbix server and proxy daemons will correctly use the Timeout configuration parameter when per-
forming SNMP checks. Additionally the daemons will not perform retries after single unsuccessful (the timeout/wrong
credentials) SNMP request. Previously the SNMP library default timeout and retries values (1 second and 5 retries
respectively) were actually used.

Starting from 2.2.8 Zabbix server and proxy daemons will always retry at least one time: either through the SNMP
library’s retrying mechanism or through the internal bulk processing mechanism.

Note:
Starting from 2.2.3 Zabbix server and proxy daemons will query SNMP devices for multiple values in a single request. This
affects all kinds of SNMP items (regular SNMP items, SNMP items with dynamic indexes, and SNMP low-level discovery)
and SNMP processing should now be much more efficient. Please see the technical detail section below on how it works
internally.

Note:
Starting from 2.2.7 Zabbix server and proxy daemons will log lines similar to the following if they receive an
incorrect SNMP response:SNMP response from host "gateway" does not contain all of the requested
variable bindingsWhile they do not cover all the problematic cases, they are a useful indicator that
EnableSNMPBulkRequests configuration parameter should be set to 0 in order to disable SNMP bulk requests globally.

Configuring SNMP monitoring

To start monitoring a device through SNMP, the following steps have to be performed:

Step 1

Create a host for the device with an SNMP interface.

Enter the IP address. Set the host status to NOT MONITORED. You can use one of the provided SNMP templates (Template SNMP
Device and others) that will automatically add a set of items. However, the template may not be compatible with the host.

Note:
SNMP checks do not use Agent port, it is ignored.

Step 2

Find out the SNMP string (or OID) of the item you want to monitor.

To get a list of SNMP strings, use the snmpwalk command (part of net-snmp software which you should have installed as part of
the Zabbix installation) or equivalent tool:

shell> snmpwalk -v 2c -c public <host IP> .

As ’2c’ here stands for SNMP version, you may also substitute it with ’1’, to indicate SNMP Version 1 on the device.

This should give you a list of SNMP strings and their last value. If it doesn’t then it is possible that the SNMP ’community’ is different
from the standard ’public’ in which case you will need to find out what it is.

You can then go through the list until you find the string you want to monitor, e.g. if you wanted to monitor the bytes coming in to
your switch on port 3 you would use the IF-MIB::ifInOctets.3 string from this line:

IF-MIB::ifInOctets.3 = Counter32: 3409739121

You may now use the snmpget command to find out the numeric OID for ’IF-MIB::ifInOctets.3’:

shell> snmpget -v 2c -c public -On 10.62.1.22 IF-MIB::ifInOctets.3

Note that the last number in the string is the port number you are looking to monitor. See also: Dynamic indexes.

This should give you something like the following:

.1.3.6.1.2.1.2.2.1.10.3 = Counter32: 3472126941

Again, the last number in the OID is the port number.

159

http://www.net-snmp.org/

Note:
3COM seem to use port numbers in the hundreds, e.g. port 1 = port 101, port 3 = port 103, but Cisco use regular numbers,
e.g. port 3 = 3.

Note:
Some of the most used SNMP OIDs are translated automatically to a numeric representation by Zabbix.

In the last example above value type is ”Counter32”, which internally corresponds to ASN_COUNTER type. The full list of sup-
ported types is ASN_COUNTER, ASN_COUNTER64, ASN_UINTEGER, ASN_UNSIGNED64, ASN_INTEGER, ASN_INTEGER64, ASN_FLOAT,
ASN_DOUBLE, ASN_TIMETICKS, ASN_GAUGE, ASN_IPADDRESS, ASN_OCTET_STR and ASN_OBJECT_ID (since 2.2.8). These types
roughly correspond to ”Counter32”, ”Counter64”, ”UInteger32”, ”INTEGER”, ”Float”, ”Double”, ”Timeticks”, ”Gauge32”, ”IpAd-
dress”, ”OCTET STRING”, ”OBJECT IDENTIFIER” in snmpget output, but might also be shown as ”STRING”, ”Hex-STRING”, ”OID”
and other, depending on the presence of a display hint.

Step 3

Create an item for monitoring.

So, now go back to Zabbix and click on Items, selecting the SNMP host you created earlier. Depending on whether you used a
template or not when creating your host, you will have either a list of SNMP items associated with your host or just a new item box.
We will work on the assumption that you are going to create the item yourself using the information you have just gathered using
snmpwalk and snmpget, so enter a plain English description in the ’Description’ field of the new item box. Make sure the ’Host’
field has your switch/router in it and change the ’Type’ field to ”SNMPv* agent”. Enter the community (usually public) and enter
the textual or numeric OID that you retrieved earlier into the ’SNMP OID’ field, for example: .1.3.6.1.2.1.2.2.1.10.3

Enter the ’SNMP port’ as 161 and the ’Key’ as something meaningful, e.g. SNMP-InOctets-Bps. Choose a Multiplier if you want
one and enter an ’update interval’ and ’keep history’ if you want it to be different from the default. Set the ’Status’ to Monitored,
the ’Type of information’ to Numeric (float) and the ’Store value’ to Delta (speed per second) (important otherwise you will get
cumulative values from the SNMP device instead of the latest change).

160

Now save the item and go back to the hosts area of Zabbix. From here change the SNMP device status to ’Monitored’ and check
in Latest data for your SNMP data!

Take note of specific options available for SNMPv3 items:

Parameter Description

Context name Enter context name to identify item on SNMP subnet.
Context name is supported for SNMPv3 items since Zabbix 2.2.
User macros are resolved in this field.

Security name Enter security name.
User macros are resolved in this field.

Security level Select security level:
noAuthNoPriv - no authentication nor privacy protocols are used
AuthNoPriv - authentication protocol is used, privacy protocol is
not
AuthPriv - both authentication and privacy protocols are used

Authentication protocol Select authentication protocol - MD5 or SHA.
Authentication passphrase Enter authentication passphrase.

User macros are resolved in this field.

161

Parameter Description

Privacy protocol Select privacy protocol - DES or AES.
Privacy passphrase Enter privacy passphrase.

User macros are resolved in this field.

Warning:
Server/proxy restart is required for changes in Authentication protocol, Authentication passphrase, Privacy protocol or
Privacy passphrase to take effect.

Note:
Since Zabbix 2.2, SHA and AES protocols are supported for SNMPv3 authentication and privacy, in addition to MD5 and
DES supported before that.

Example 1

General example:

Parameter Description

Community public
OID 1.2.3.45.6.7.8.0 (or .1.2.3.45.6.7.8.0)
Key <Unique string to be used as reference to triggers>

For example, ”my_param”.

Note that OID can be given in either numeric or string form. However, in some cases, string OID must be converted to numeric
representation. Utility snmpget may be used for this purpose:

shell> snmpget -On localhost public enterprises.ucdavis.memory.memTotalSwap.0

Monitoring of SNMP parameters is possible if --with-net-snmp flag was specified while configuring Zabbix sources.

Example 2

Monitoring of uptime:

Parameter Description

Community public
Oid MIB::sysUpTime.0
Key router.uptime
Value type Float
Units uptime
Multiplier 0.01

Internal workings of bulk processing

Starting from 2.2.3 Zabbix server and proxy query SNMP devices for multiple values in a single request. This affects several types
of SNMP items:

• regular SNMP items;
• SNMP items with dynamic indexes;
• SNMP low-level discovery rules.

All SNMP items on a single interface with identical parameters are scheduled to be queried at the same time. The first two types of
items are taken by pollers in batches of at most 128 items, whereas low-level discovery rules are processed individually, as before.

On the lower level, there are two kinds of operations performed for querying values: getting multiple specified objects and walking
an OID tree.

For ”getting”, a GetRequest-PDU is used with at most 128 variable bindings. For ”walking”, a GetNextRequest-PDU is used for
SNMPv1 and GetBulkRequest with ”max-repetitions” field of at most 128 is used for SNMPv2 and SNMPv3.

Thus, the benefits of bulk processing for each SNMP item type are outlined below:

• regular SNMP items benefit from ”getting” improvements;

162

• SNMP items with dynamic indexes benefit from both ”getting” and ”walking” improvements: ”getting” is used for index
verification and ”walking” for building the cache;

• SNMP low-level discovery rules benefit from ”walking” improvements.

However, there is a technical issue that not all devices are capable of returning 128 values per request. Some always return a
proper response, but others either respond with a ”tooBig(1)” error or do not respond at all once the potential response is over a
certain limit.

In order to find an optimal number of objects to query for a given device, Zabbix uses the following strategy. It starts cautiously
with querying 1 value in a request. If that is successful, it queries 2 values in a request. If that is successful again, it queries 3
values in a request and continues similarly by multiplying the number of queried objects by 1.5, resulting in the following sequence
of request sizes: 1, 2, 3, 4, 6, 9, 13, 19, 28, 42, 63, 94, 128.

However, once a device refuses to give a proper response (for example, for 42 variables), Zabbix does two things.

First, for the current item batch it halves the number of objects in a single request and queries 21 variables. If the device is alive,
then the query should work in the vast majority of cases, because 28 variables were known to work and 21 is significantly less than
that. However, if that still fails, then Zabbix falls back to querying values one by one. If it still fails at this point, then the device is
definitely not responding and request size is not an issue.

The second thing Zabbix does for subsequent item batches is it starts with the last successful number of variables (28 in our
example) and continues incrementing request sizes by 1 until the limit is hit. For example, assuming the largest response size is
32 variables, the subsequent requests will be of sizes 29, 30, 31, 32, and 33. The last request will fail and Zabbix will never issue
a request of size 33 again. From that point on, Zabbix will query at most 32 variables for this device.

If large queries fail with this number of variables, it can mean one of two things. The exact criteria that a device uses for limiting
response size cannot be known, but we try to approximate that using the number of variables. So the first possibility is that this
number of variables is around the device’s actual response size limit in the general case: sometimes response is less than the limit,
sometimes it is greater than that. The second possibility is that a UDP packet in either direction simply got lost. For these reasons,
if Zabbix gets a failed query, it reduces the maximum number of variables to try to get deeper into the device’s comfortable range,
but (starting from 2.2.8) only up to two times.

In the example above, if a query with 32 variables happens to fail, Zabbix will reduce the count to 31. If that happens to fail, too,
Zabbix will reduce the count to 30. However, Zabbix will not reduce the count below 30, because it will assume that further failures
are due to UDP packets getting lost, rather than the device’s limit.

1 Dynamic indexes

Overview

While you may find the required index number (for example, of a network interface) among the SNMP OIDs, sometimes you may
not completely rely on the index number always staying the same.

Index numbers may be dynamic - they may change over time and your item may stop working as a consequence.

To avoid this scenario, it is possible to define an OID which takes into account the possibility of an index number changing.

For example, if you need to retrieve the index value to append to ifInOctets that corresponds to theGigabitEthernet0/1 interface
on a Cisco device, use the following OID:

ifInOctets["index","ifDescr","GigabitEthernet0/1"]

The syntax

A special syntax for OID is used:

<OID of data>[”index”,”<base OID of index>”,”<string to search for>”]

Parameter Description

OID of data Main OID to use for data retrieval on the item.
index Method of processing. Currently one method is supported:

index – search for index and append it to the data OID
base OID of index This OID will be looked up to get the index value corresponding to

the string.
string to search for The string to use for an exact match with a value when doing

lookup. Case sensitive.

Example

163

Getting memory usage of apache process.

If using this OID syntax:

HOST-RESOURCES-MIB::hrSWRunPerfMem["index","HOST-RESOURCES-MIB::hrSWRunPath", "/usr/sbin/apache2"]

the index number will be looked up here:

...
HOST-RESOURCES-MIB::hrSWRunPath.5376 = STRING: "/sbin/getty"
HOST-RESOURCES-MIB::hrSWRunPath.5377 = STRING: "/sbin/getty"
HOST-RESOURCES-MIB::hrSWRunPath.5388 = STRING: "/usr/sbin/apache2"
HOST-RESOURCES-MIB::hrSWRunPath.5389 = STRING: "/sbin/sshd"
...

Now we have the index, 5388. The index will be appended to the data OID in order to receive the value we are interested in:

HOST-RESOURCES-MIB::hrSWRunPerfMem.5388 = INTEGER: 31468 KBytes

Index lookup caching

When a dynamic index item is requested, Zabbix retrieves and caches whole SNMP table under base OID for index, even if a match
would be found sooner. This is done in case another item would refer to the same base OID later - Zabbix would look up index in
the cache, instead of querying the monitored host again. Note that each poller process uses separate cache.

In all subsequent value retrieval operations only the found index is verified. If it has not changed, value is requested. If it has
changed, cache is rebuilt - each poller that encounters a changed index walks the index SNMP table again.

2 Special OIDs

Some of the most used SNMP OIDs are translated automatically to a numeric representation by Zabbix. For example, ifIndex is
translated to 1.3.6.1.2.1.2.2.1.1, ifIndex.0 is translated to 1.3.6.1.2.1.2.2.1.1.0.

The table contains list of the special OIDs.

Special OID Identifier Description

ifIndex 1.3.6.1.2.1.2.2.1.1 A unique value for each interface.
ifDescr 1.3.6.1.2.1.2.2.1.2 A textual string containing information

about the interface.This string should
include the name of the manufacturer,
the product name and the version of
the hardware interface.

ifType 1.3.6.1.2.1.2.2.1.3 The type of interface, distinguished
according to the physical/link
protocol(s) immediately ’below’ the
network layer in the protocol stack.

ifMtu 1.3.6.1.2.1.2.2.1.4 The size of the largest datagram which
can be sent / received on the interface,
specified in octets.

ifSpeed 1.3.6.1.2.1.2.2.1.5 An estimate of the interface’s current
bandwidth in bits per second.

ifPhysAddress 1.3.6.1.2.1.2.2.1.6 The interface’s address at the protocol
layer immediately ‘below’ the network
layer in the protocol stack.

ifAdminStatus 1.3.6.1.2.1.2.2.1.7 The current administrative state of the
interface.

ifOperStatus 1.3.6.1.2.1.2.2.1.8 The current operational state of the
interface.

ifInOctets 1.3.6.1.2.1.2.2.1.10 The total number of octets received on
the interface, including framing
characters.

ifInUcastPkts 1.3.6.1.2.1.2.2.1.11 The number of subnetwork-unicast
packets delivered to a higher-layer
protocol.

164

Special OID Identifier Description

ifInNUcastPkts 1.3.6.1.2.1.2.2.1.12 The number of non-unicast (i.e.,
subnetwork- broadcast or
subnetwork-multicast) packets
delivered to a higher-layer protocol.

ifInDiscards 1.3.6.1.2.1.2.2.1.13 The number of inbound packets which
were chosen to be discarded even
though no errors had been detected to
prevent their being deliverable to a
higher-layer protocol. One possible
reason for discarding such a packet
could be to free up buffer space.

ifInErrors 1.3.6.1.2.1.2.2.1.14 The number of inbound packets that
contained errors preventing them from
being deliverable to a higher-layer
protocol.

ifInUnknownProtos 1.3.6.1.2.1.2.2.1.15 The number of packets received via the
interface which were discarded because
of an unknown or unsupported protocol.

ifOutOctets 1.3.6.1.2.1.2.2.1.16 The total number of octets transmitted
out of the interface, including framing
characters.

ifOutUcastPkts 1.3.6.1.2.1.2.2.1.17 The total number of packets that
higher-level protocols requested be
transmitted, and which were not
addressed to a multicast or broadcast
address at this sub-layer, including
those that were discarded or not sent.

ifOutNUcastPkts 1.3.6.1.2.1.2.2.1.18 The total number of packets that
higher-level protocols requested be
transmitted, and which were addressed
to a multicast or broadcast address at
this sub-layer, including those that were
discarded or not sent.

ifOutDiscards 1.3.6.1.2.1.2.2.1.19 The number of outbound packets which
were chosen to be discarded even
though no errors had been detected to
prevent their being transmitted. One
possible reason for discarding such a
packet could be to free up buffer space.

ifOutErrors 1.3.6.1.2.1.2.2.1.20 The number of outbound packets that
could not be transmitted because of
errors.

ifOutQLen 1.3.6.1.2.1.2.2.1.21 The length of the output packet queue
(in packets).

3 SNMP traps

Overview

Receiving SNMP traps is the opposite to querying SNMP-enabled devices.

In this case the information is sent from a SNMP-enabled device and is collected or ”trapped” by Zabbix.

Usually traps are sent upon some condition change and the agent connects to the server on port 162 (as opposed to port 161 on
the agent side that is used for queries). Using traps may detect some short problems that occur amidst the query interval and
may be missed by the query data.

Receiving SNMP traps in Zabbix is designed to work with snmptrapd and one of the built-in mechanisms for passing the traps to
Zabbix - either a perl script or SNMPTT.

The workflow of receiving a trap:

1. snmptrapd receives a trap

165

2. snmptrapd passes the trap to SNMPTT or calls Perl trap receiver
3. SNMPTT or Perl trap receiver parses, formats and writes the trap to a file
4. Zabbix SNMP trapper reads and parses the trap file
5. For each trap Zabbix finds all ”SNMP trapper” items with host interfaces matching the received trap address. Note that only
the selected ”IP” or ”DNS” in host interface is used during the matching.

6. For each found item, the trap is compared to regexp in ”snmptrap[regexp]”. The trap is set as the value of all matched
items. If no matching item is found and there is an ”snmptrap.fallback” item, the trap is set as the value of that.

7. If the trap was not set as the value of any item, Zabbix by default logs the unmatched trap. (This is configured by ”Log
unmatched SNMP traps” in Administration → General → Other.)

3.1 Configuring SNMP traps

Configuring the following fields in the frontend is specific for this item type:

• Your host must have an SNMP interface

In Configuration → Hosts, in the Host interface field set an SNMP interface with the correct IP or DNS address. The address from
each received trap is compared to the IP and DNS addresses of all SNMP interfaces to find the corresponding hosts.

• Configure the item

In the Key field use one of the SNMP trap keys:

Key

Description Return value Comments
snmptrap[regexp]
Catches all SNMP traps from a corresponding address that match the
regular expression specified in regexp

SNMP trap This item can be set
only for SNMP
interfaces.
This item is supported
since Zabbix 2.0.0.
Note: Starting with
Zabbix 2.0.5, user
macros and global
regular expressions
are supported in the
parameter of this item
key.

snmptrap.fallback
Catches all SNMP traps from a corresponding address that were not
caught by any of the snmptrap[] items for that interface

SNMP trap This item can be set
only for SNMP
interfaces.
This item is supported
since Zabbix 2.0.0.

Note:
Multi-line regexp matching is not supported at this time.

Set the Type of information to be ’Log’ for the timestamps to be parsed. Note that other formats such as ’Numeric’ are also
acceptable but might require a custom trap handler.

Note:
For SNMP trap monitoring to work, it must first be correctly set up.

3.2 Setting up SNMP trap monitoring

Configuring Zabbix server/proxy

To read the traps, Zabbix server or proxy must be configured to start the SNMP trapper process and point to the trap file that is
being written by SNMPTT or a perl trap receiver. To do that, edit the configuration file (zabbix_server.conf or zabbix_proxy.conf):

1. StartSNMPTrapper=1
2. SNMPTrapperFile=[TRAP FILE]

166

Warning:
If systemd parameter PrivateTmp is used, this file is unlikely to work in /tmp.

Configuring SNMPTT

At first, snmptrapd should be configured to use SNMPTT.

Note:
For the best performance, SNMPTT should be configured as a daemon using snmptthandler-embedded to pass the traps
to it. See instructions for configuring SNMPTT in its homepage:
http://snmptt.sourceforge.net/docs/snmptt.shtml

When SNMPTT is configured to receive the traps, configure SNMPTT to log the traps:

1. log traps to the trap file which will be read by Zabbix:
log_enable = 1
log_file = [TRAP FILE]

2. set the date-time format:
date_time_format = %H:%M:%S %Y/%m/%d = [DATE TIME FORMAT]

Now format the traps for Zabbix to recognise them (edit snmptt.conf):

1. Each FORMAT statement should start with ”ZBXTRAP [address]”, where [address] will be compared to IP and DNS addresses
of SNMP interfaces on Zabbix. E.g.:
EVENT coldStart .1.3.6.1.6.3.1.1.5.1 ”Status Events” Normal
FORMAT ZBXTRAP $aA Device reinitialized (coldStart)

2. See more about SNMP trap format below.

Attention:
Do not use unknown traps - Zabbix will not be able to recognise them. Unknown traps can be handled by defining a general
event in snmptt.conf:
EVENT general .* ”General event” Normal

Configuring Perl trap receiver

Requirements: Perl, Net-SNMP compiled with --enable-embedded-perl (done by default since Net-SNMP 5.4)

Perl trap receiver (look for misc/snmptrap/zabbix_trap_receiver.pl) can be used to pass traps to Zabbix server directly from
snmptrapd. To configure it:

• add the perl script to snmptrapd configuration file (snmptrapd.conf), e.g.:
perl do ”[FULL PATH TO PERL RECEIVER SCRIPT]”;

• configure the receiver, e.g:
$SNMPTrapperFile = ’[TRAP FILE]’;
$DateTimeFormat = ’[DATE TIME FORMAT]’;

Note:
If script name is not quoted, snmptrapd will refuse to start up with messages, similar to these:
Regexp modifiers "/l" and "/a" are mutually exclusive at (eval 2) line 1, at end of line
Regexp modifier "/l" may not appear twice at (eval 2) line 1, at end of line

SNMP trap format

All customised perl trap receivers and SNMPTT trap configuration must format the trap in the following way: [timestamp] [the
trap, part 1] ZBXTRAP [address] [the trap, part 2], where

• [timestamp] - timestamp used for log items
• ZBXTRAP - header that indicates that a new trap starts in this line
• [address] - IP address used to find the host for this trap

Note that ”ZBXTRAP” and ”[address]” will be cut out from the message during processing. If the trap is formatted otherwise,
Zabbix might parse the traps unexpectedly.

Example trap:
11:30:15 2011/07/27 .1.3.6.1.6.3.1.1.5.3 Normal ”Status Events” localhost - ZBXTRAP 192.168.1.1 Link down on interface 2.
Admin state: 1. Operational state: 2

167

http://www.freedesktop.org/software/systemd/man/systemd.exec.html#PrivateTmp=
http://snmptt.sourceforge.net/docs/snmptt.shtml

This will result in the following trap for SNMP interface with IP=192.168.1.1:
11:30:15 2011/07/27 .1.3.6.1.6.3.1.1.5.3 Normal ”Status Events” localhost - Link down on interface 2. Admin state: 1.

3.3 System requirements

Log rotation

Zabbix does not provide any log rotation system - that should be handled by the user. The log rotation should first rename the old
file and only later delete it so that no traps are lost:

1. Zabbix opens the trap file at the last known location and goes to step 3
2. Zabbix checks if the currently opened file has been rotated by comparing the inode number to the define trap file’s inode
number. If there is no opened file, Zabbix resets the last location and goes to step 1.

3. Zabbix reads the data from the currently opened file and sets the new location.
4. The new data are parsed. If this was the rotated file, the file is closed and goes back to step 2.
5. If there was no new data, Zabbix sleeps for 1 second and goes back to step 2.

Attention:
The maximum log file size supported by Zabbix is 2 gigabytes. The log file must be rotated before reaching this limit.

File system

Because of the trap file implementation, Zabbix needs the file system to support inodes to differentiate files (the information is
acquired by a stat() call).

3.4 Setup example

This example uses snmptrapd + SNMPTT to pass traps to Zabbix server. Setup:

1. zabbix_server.conf - configure Zabbix to start SNMP trapper and set the trap file:
StartSNMPTrapper=1
SNMPTrapperFile=/tmp/my_zabbix_traps.tmp

2. snmptrapd.conf - add SNMPTT as the trap handler:
traphandle default snmptt

3. snmptt.ini - configure output file and time format:
log_file = /tmp/my_zabbix_traps.tmp
date_time_format = %H:%M:%S %Y/%m/%d

4. snmptt.conf - define a default trap format:
EVENT general .* ”General event” Normal
FORMAT ZBXTRAP $aA $ar

5. Create an SNMP item TEST:
Host’s SNMP interface IP: 127.0.0.1
Key: snmptrap[”General”]
Log time format: hh:mm:ss yyyy/MM/dd

This results in:

1. Command used to send a trap:
snmptrap -v 1 -c public 127.0.0.1 ’.1.3.6.1.6.3.1.1.5.3’ ’0.0.0.0’ 6 33 ’55’ .1.3.6.1.6.3.1.1.5.3 s ”teststring000”

2. The received trap:
15:48:18 2011/07/26 .1.3.6.1.6.3.1.1.5.3.0.33 Normal ”General event” localhost - ZBXTRAP 127.0.0.1 127.0.0.1

3. Value for item TEST:
15:48:18 2011/07/26 .1.3.6.1.6.3.1.1.5.3.0.33 Normal ”General event” localhost - 127.0.0.1

Note:
This simple example uses SNMPTT as traphandle. For better performance on production systems, use embedded Perl to
pass traps from snmptrapd to SNMPTT or directly to Zabbix.

3.5 See also

• CentOS based SNMP trap tutorial on zabbix.org

4 IPMI checks

Overview

168

https://www.zabbix.org/wiki/Start_with_SNMP_traps_in_Zabbix

You can monitor the health and availability of Intelligent Platform Management Interface (IPMI) devices in Zabbix.
To perform IPMI checks Zabbix server must be initially configured with IPMI support.

IPMI is a standardized interface for remote ”lights-out” or ”out-of-band” management of computer systems. It allows to monitor
hardware status directly from the so-called ”out-of-band” management cards, independently from the operating system or whether
the machine is powered on at all.

Zabbix IPMI monitoring works only for devices having IPMI support (HP iLO, DELL DRAC, IBM RSA, Sun SSP, etc).

See also known issues for IPMI checks.

Configuration

Host configuration

A host must be configured to process IPMI checks. An IPMI interface must be added, with the respective IP and port numbers, and
IPMI authentication parameters must be defined.

See the configuration of hosts for more details.

Server configuration

By default, the Zabbix server is not configured to start any IPMI pollers, thus any added IPMI items won’t work. To change this,
open the Zabbix server configuration file (zabbix_server.conf) as root and look for the following line:

StartIPMIPollers=0

Uncomment it and set poller count to, say, 3, so that it reads:

StartIPMIPollers=3

Save the file and restart zabbix_server afterwards.

Item configuration

When configuring an item on a host level:

• For Host interface select the IPMI IP and port
• Select ’IPMI agent’ as the Type
• Specify the IPMI sensor (for example ’FAN MOD 1A RPM’ on Dell Poweredge)
• Enter an item key that is unique within the host (say, ipmi.fan.rpm)
• Select the respective type of information (’Numeric (float)’ in this case, for discrete sensors - ’Numeric (unsigned)’), units
(most likely ’rpm’) and any other required item attributes

Timeout and session termination

IPMI message timeouts and retry counts are defined in OpenIPMI library. Due to the current design of OpenIPMI, it is not possible
to make these values configurable in Zabbix, neither on interface nor item level.

IPMI session inactivity timeout for LAN is 60 +/-3 seconds. Currently it is not possible to implement periodic sending of Activate
Session command with OpenIPMI. If there are no IPMI item checks from Zabbix to a particular BMC for more than the session
timeout configured in BMC then the next IPMI check after the timeout expires will time out due to individual message timeouts,
retries or receive error. After that a new session is opened and a full rescan of the BMC is initiated. If you want to avoid unnecessary
rescans of the BMC it is advised to set the IPMI item polling interval below the IPMI session inactivity timeout configured in BMC.

Notes on IPMI discrete sensors

To find sensors on a host start Zabbix server with DebugLevel=4 enabled. Wait a few minutes and find sensor discovery records
in Zabbix server logfile:

$ grep 'Added sensor' zabbix_server.log
8358:20130318:111122.170 Added sensor: host:'192.168.1.12:623' id_type:0 id_sz:7 id:'CATERR' reading_type:0x3 ('discrete_state') type:0x7 ('processor') full_name:'(r0.32.3.0).CATERR'
8358:20130318:111122.170 Added sensor: host:'192.168.1.12:623' id_type:0 id_sz:15 id:'CPU Therm Trip' reading_type:0x3 ('discrete_state') type:0x1 ('temperature') full_name:'(7.1).CPU Therm Trip'
8358:20130318:111122.171 Added sensor: host:'192.168.1.12:623' id_type:0 id_sz:17 id:'System Event Log' reading_type:0x6f ('sensor specific') type:0x10 ('event_logging_disabled') full_name:'(7.1).System Event Log'
8358:20130318:111122.171 Added sensor: host:'192.168.1.12:623' id_type:0 id_sz:17 id:'PhysicalSecurity' reading_type:0x6f ('sensor specific') type:0x5 ('physical_security') full_name:'(23.1).PhysicalSecurity'
8358:20130318:111122.171 Added sensor: host:'192.168.1.12:623' id_type:0 id_sz:14 id:'IPMI Watchdog' reading_type:0x6f ('sensor specific') type:0x23 ('watchdog_2') full_name:'(7.7).IPMI Watchdog'
8358:20130318:111122.171 Added sensor: host:'192.168.1.12:623' id_type:0 id_sz:16 id:'Power Unit Stat' reading_type:0x6f ('sensor specific') type:0x9 ('power_unit') full_name:'(21.1).Power Unit Stat'
8358:20130318:111122.171 Added sensor: host:'192.168.1.12:623' id_type:0 id_sz:16 id:'P1 Therm Ctrl %' reading_type:0x1 ('threshold') type:0x1 ('temperature') full_name:'(3.1).P1 Therm Ctrl %'
8358:20130318:111122.172 Added sensor: host:'192.168.1.12:623' id_type:0 id_sz:16 id:'P1 Therm Margin' reading_type:0x1 ('threshold') type:0x1 ('temperature') full_name:'(3.2).P1 Therm Margin'
8358:20130318:111122.172 Added sensor: host:'192.168.1.12:623' id_type:0 id_sz:13 id:'System Fan 2' reading_type:0x1 ('threshold') type:0x4 ('fan') full_name:'(29.1).System Fan 2'
8358:20130318:111122.172 Added sensor: host:'192.168.1.12:623' id_type:0 id_sz:13 id:'System Fan 3' reading_type:0x1 ('threshold') type:0x4 ('fan') full_name:'(29.1).System Fan 3'
8358:20130318:111122.172 Added sensor: host:'192.168.1.12:623' id_type:0 id_sz:14 id:'P1 Mem Margin' reading_type:0x1 ('threshold') type:0x1 ('temperature') full_name:'(7.6).P1 Mem Margin'
8358:20130318:111122.172 Added sensor: host:'192.168.1.12:623' id_type:0 id_sz:17 id:'Front Panel Temp' reading_type:0x1 ('threshold') type:0x1 ('temperature') full_name:'(7.6).Front Panel Temp'
8358:20130318:111122.173 Added sensor: host:'192.168.1.12:623' id_type:0 id_sz:15 id:'Baseboard Temp' reading_type:0x1 ('threshold') type:0x1 ('temperature') full_name:'(7.6).Baseboard Temp'

169

8358:20130318:111122.173 Added sensor: host:'192.168.1.12:623' id_type:0 id_sz:9 id:'BB +5.0V' reading_type:0x1 ('threshold') type:0x2 ('voltage') full_name:'(7.1).BB +5.0V'
8358:20130318:111122.173 Added sensor: host:'192.168.1.12:623' id_type:0 id_sz:14 id:'BB +3.3V STBY' reading_type:0x1 ('threshold') type:0x2 ('voltage') full_name:'(7.1).BB +3.3V STBY'
8358:20130318:111122.173 Added sensor: host:'192.168.1.12:623' id_type:0 id_sz:9 id:'BB +3.3V' reading_type:0x1 ('threshold') type:0x2 ('voltage') full_name:'(7.1).BB +3.3V'
8358:20130318:111122.173 Added sensor: host:'192.168.1.12:623' id_type:0 id_sz:17 id:'BB +1.5V P1 DDR3' reading_type:0x1 ('threshold') type:0x2 ('voltage') full_name:'(7.1).BB +1.5V P1 DDR3'
8358:20130318:111122.173 Added sensor: host:'192.168.1.12:623' id_type:0 id_sz:17 id:'BB +1.1V P1 Vccp' reading_type:0x1 ('threshold') type:0x2 ('voltage') full_name:'(7.1).BB +1.1V P1 Vccp'
8358:20130318:111122.174 Added sensor: host:'192.168.1.12:623' id_type:0 id_sz:14 id:'BB +1.05V PCH' reading_type:0x1 ('threshold') type:0x2 ('voltage') full_name:'(7.1).BB +1.05V PCH'

To decode IPMI sensor types and states, get a copy of IPMI 2.0 specifications at http://www.intel.com/content/www/us/en/servers/
ipmi/ipmi-specifications.html (At the time of writing the newest document was http://www.intel.com/content/dam/www/public/us/
en/documents/product-briefs/second-gen-interface-spec-v2.pdf)

The first parameter to start with is ”reading_type”. Use ”Table 42-1, Event/Reading Type Code Ranges” from the specifications
to decode ”reading_type” code. Most of the sensors in our example have ”reading_type:0x1” which means ”threshold” sensor.
”Table 42-3, Sensor Type Codes” shows that ”type:0x1” means temperature sensor, ”type:0x2” - voltage sensor, ”type:0x4” - Fan
etc. Threshold sensors sometimes are called ”analog” sensors as they measure continuous parameters like temperature, voltage,
revolutions per minute.

Another example - a sensor with ”reading_type:0x3”. ”Table 42-1, Event/Reading Type Code Ranges” says that reading type codes
02h-0Chmean ”Generic Discrete” sensor. Discrete sensors have up to 15 possible states (in other words - up to 15 meaningful bits).
For example, for sensor ’CATERR’ with ”type:0x7” the ”Table 42-3, Sensor Type Codes” shows that this type means ”Processor”
and the meaning of individual bits is: 00h (the least significant bit) - IERR, 01h - Thermal Trip etc.

There are few sensors with ”reading_type:0x6f” in our example. For these sensors the ”Table 42-1, Event/Reading Type Code
Ranges” advises to use ”Table 42-3, Sensor Type Codes” for decoding meanings of bits. For example, sensor ’Power Unit Stat’ has
type ”type:0x9” which means ”Power Unit”. Offset 00h means ”PowerOff/Power Down”. In other words if the least significant bit is
1, then server is powered off. To test this bit a function band with mask 1 can be used. The trigger expression could be like

{www.zabbix.com:Power Unit Stat.band(#1,1)}=1

to warn about a server power off.

Notes on discrete sensor names in OpenIPMI-2.0.16, 2.0.17, 2.0.18 and 2.0.19

Names of discrete sensors in OpenIPMI-2.0.16, 2.0.17 and 2.0.18 often have an additional ”0” (or some other digit or letter)
appended at the end. For example, while ipmitool and OpenIPMI-2.0.19 display sensor names as ”PhysicalSecurity” or
”CATERR”, in OpenIPMI-2.0.16, 2.0.17 and 2.0.18 the names are ”PhysicalSecurity0” or ”CATERR0”, respectively.

When configuring an IPMI item with Zabbix server using OpenIPMI-2.0.16, 2.0.17 and 2.0.18, use these names ending with ”0” in
the IPMI sensor field of IPMI agent items. When your Zabbix server is upgraded to a new Linux distribution, which uses OpenIPMI-
2.0.19 (or later), items with these IPMI discrete sensors will become ”NOT SUPPORTED”. You have to change their IPMI sensor
names (remove the ’0’ in the end) and wait for some time before they turn ”Enabled” again.

Notes on threshold and discrete sensor simultaneous availability

Some IPMI agents provide both a threshold sensor and a discrete sensor under the same name. In Zabbix versions prior to 2.2.8,
the first provided sensor was chosen. Since version 2.2.8, preference is always given to the threshold sensor.

Notes on connection termination

If IPMI checks are not performed (by any reason: all host IPMI items disabled/notsupported, host disabled/deleted, host in mainte-
nance etc.) Zabbix server/proxy will continue polling IPMI host until server/proxy restart.

5 Simple checks

5.1 Overview

Simple checks are normally used for remote agent-less checks of services.

Note that Zabbix agent is not needed for simple checks. Zabbix server/proxy is responsible for the processing of simple checks
(making external connections, etc).

Examples of using simple checks:

net.tcp.service[ftp,,155]
net.tcp.service[http]
net.tcp.service.perf[http,,8080]

Note:
User name and Password fields in simple check item configuration are used for VMware monitoring items; ignored other-
wise.

170

http://www.intel.com/content/www/us/en/servers/ipmi/ipmi-specifications.html
http://www.intel.com/content/www/us/en/servers/ipmi/ipmi-specifications.html
http://www.intel.com/content/dam/www/public/us/en/documents/product-briefs/second-gen-interface-spec-v2.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/product-briefs/second-gen-interface-spec-v2.pdf

5.2 Supported simple checks

List of supported simple checks:

See also:

• VMware monitoring item keys

Key

Description Return value Parameters Comments
icmpping[<target>,<packets>,<interval>,<size>,<timeout>]

Host
accessibility by
ICMP ping.

0 - ICMP ping
fails
1 - ICMP ping
successful

target - host
IP or DNS name
packets -
number of
packets
interval - time
between
successive
packets in
milliseconds
size - packet
size in bytes
timeout -
timeout in
milliseconds

Example:
icmpping[,4]
- if at least one
packet of the
four is
returned, the
item will return
1.

See also: table
of default
values.

icmppingloss[<target>,<packets>,<interval>,<size>,<timeout>]
Percentage of
lost packets.

Float. target - host
IP or DNS name
packets -
number of
packets
interval - time
between
successive
packets in
milliseconds
size - packet
size in bytes
timeout -
timeout in
milliseconds

See also: table
of default
values.

icmppingsec[<target>,<packets>,<interval>,<size>,<timeout>,<mode>]
ICMP ping
response time
(in seconds).

Float. target - host
IP or DNS name
packets -
number of
packets
interval - time
between
successive
packets in
milliseconds
size - packet
size in bytes
timeout -
timeout in
milliseconds
mode - one of
min, max, avg
(default)

If host is not
available
(timeout
reached), the
item will return
0.
If the return
value is less
than 0.0001
seconds, the
value will be
set to 0.0001
seconds.

See also: table
of default
values.

net.tcp.service[service,<ip>,<port>]

171

Key

Check if
service is
running and
accepting TCP
connections.

0 - service is
down
1 - service is
running

service - one
of ssh, ntp,
ldap, smtp, ftp,
http, pop, nntp,
imap, tcp,
https, telnet
(see details)
ip - IP address
or DNS name
(by default,
host IP/DNS is
used)
port - port
number (by
default
standard
service port
number is
used).

Example:
net.tcp.service[ftp„45]
can be used to
test the
availability of
FTP server on
TCP port 45.
Note that with
tcp service
indicating the
port is
mandatory.
Note that these
checks may
result in
additional
messages in
system
daemon
logfiles (SMTP
and SSH
sessions being
logged
usually).
Checking of
encrypted
protocols (like
IMAP on port
993 or POP on
port 995) is
currently not
supported. As
a workaround,
please use
net.tcp.service[tcp,<ip>,port]
for checks like
these.
Services https
and telnet
supported
since Zabbix
2.0.
Service ntp
only works
since Zabbix
2.0.15 and
Zabbix 2.2.10,
despite being
available in
earlier
versions.

net.tcp.service.perf[service,<ip>,<port>]

172

Key

Service
performance
check.

0 - service is
down
sec - number
of seconds
spent while
connecting to
the service

service - one
of ssh, ntp,
ldap, smtp, ftp,
http, pop, nntp,
imap, tcp,
https, telnet
(see details)
ip - IP address
or DNS name
(by default,
host IP/DNS is
used)
port - port
number (by
default
standard
service port
number is
used).

Example:
net.tcp.service.perf[ssh]
can be used to
test the speed
of initial
response from
SSH server.
Note that with
tcp service
indicating the
port is
mandatory.
Checking of
encrypted
protocols (like
IMAP on port
993 or POP on
port 995) is
currently not
supported. As
a workaround,
please use
net.tcp.service.perf[tcp,<ip>,port]
for checks like
these.
Services https
and telnet
supported
since Zabbix
2.0.
Service ntp
only works
since Zabbix
2.0.15 and
Zabbix 2.2.10,
despite being
available in
earlier
versions.
Called tcp_perf
before Zabbix
2.0.

Timeout processing

Zabbix will not process a simple check longer than the Timeout seconds defined in the Zabbix server/proxy configuration file.

5.3 ICMP pings

Zabbix uses external utility fping for processing of ICMP pings.

The utility is not part of Zabbix distribution and has to be additionally installed. If the utility is missing, has wrong permissions or
its location does not match the location set in the Zabbix server/proxy configuration file (’FpingLocation’ parameter), ICMP pings
(icmpping, icmppingloss, icmppingsec) will not be processed.

See also: known issues

fping must be executable by the user Zabbix daemons run as and setuid root. Run these commands as user root in order to set
up correct permissions:

shell> chown root:zabbix /usr/sbin/fping
shell> chmod 4710 /usr/sbin/fping

After performing the two commands above check ownership of the fping executable. In some cases the ownership can be reset
by executing the chmod command.

173

Defaults, limits and description of values for ICMP check parameters:

Parameter Unit Description Fping’s flag Defaults set by
Allowed limits
by Zabbix

Warning:
Warning: fping defaults can differ depending on platform and version - if in doubt, check fping documentation.

Zabbix writes IP addresses to be checked by any of three icmpping* keys to a temporary file, which is then passed to fping. If
items have different key parameters, only ones with identical key parameters are written to a single file.
All IP addresses written to the single file will be checked by fping in parallel, so Zabbix icmp pinger process will spend fixed amount
of time disregarding the number of IP addresses in the file.

1 VMware monitoring item keys

Item keys

The table provides details on the simple checks that can be used to monitor VMware environments.

Key

Description Return value Parameters Comments
vmware.cluster.discovery[<url>]

Discovery of
VMware
clusters.

JSON object url - VMware
service URL

vmware.cluster.status[<url>, <name>]
VMware cluster
status.

Integer:
0 - gray;
1 - green;
2 - yellow;
3 - red

url - VMware
service URL
name -
VMware cluster
name

vmware.eventlog[<url>]
VMware event
log.

Log url - VMware
service URL

vmware.fullname[<url>]
VMware
service full
name.

String url - VMware
service URL

vmware.hv.cluster.name[<url>,<uuid>]
VMware
hypervisor
cluster name.

String url - VMware
service URL
uuid - VMware
hypervisor host
name

vmware.hv.cpu.usage[<url>,<uuid>]
VMware
hypervisor
processor
usage (Hz).

Integer url - VMware
service URL
uuid - VMware
hypervisor host
name

vmware.hv.datastore.discovery[<url>,<uuid>]
Discovery of
VMware
hypervisor
datastores.

JSON object url - VMware
service URL
uuid - VMware
hypervisor host
name

vmware.hv.datastore.read[<url>,<uuid>,<datastore>,<mode>]

174

Key

Average
amount of time
for a read
operation from
the datastore
(milliseconds).

Integer 2 url - VMware
service URL
uuid - VMware
hypervisor host
name
datastore -
datastore
name
mode - latency
(default)

vmware.hv.datastore.write[<url>,<uuid>,<datastore>,<mode>]
Average
amount of time
for a write
operation to
the datastore
(milliseconds).

Integer 2 url - VMware
service URL
uuid - VMware
hypervisor host
name
datastore -
datastore
name
mode - latency
(default)

vmware.hv.discovery[<url>]
Discovery of
VMware
hypervisors.

JSON object url - VMware
service URL

vmware.hv.fullname[<url>,<uuid>]
VMware
hypervisor
name.

String url - VMware
service URL
uuid - VMware
hypervisor host
name

vmware.hv.hw.cpu.freq[<url>,<uuid>]
VMware
hypervisor
processor
frequency (Hz).

Integer url - VMware
service URL
uuid - VMware
hypervisor host
name

vmware.hv.hw.cpu.model[<url>,<uuid>]
VMware
hypervisor
processor
model.

String url - VMware
service URL
uuid - VMware
hypervisor host
name

vmware.hv.hw.cpu.num[<url>,<uuid>]
Number of
processor
cores on
VMware
hypervisor.

Integer url - VMware
service URL
uuid - VMware
hypervisor host
name

vmware.hv.hw.cpu.threads[<url>,<uuid>]
Number of
processor
threads on
VMware
hypervisor.

Integer url - VMware
service URL
uuid - VMware
hypervisor host
name

vmware.hv.hw.memory[<url>,<uuid>]
VMware
hypervisor
total memory
size (bytes).

Integer url - VMware
service URL
uuid - VMware
hypervisor host
name

175

Key

vmware.hv.hw.model[<url>,<uuid>]
VMware
hypervisor
model.

String url - VMware
service URL
uuid - VMware
hypervisor host
name

vmware.hv.hw.uuid[<url>,<uuid>]
VMware
hypervisor
BIOS UUID.

String url - VMware
service URL
uuid - VMware
hypervisor host
name

vmware.hv.hw.vendor[<url>,<uuid>]
VMware
hypervisor
vendor name.

String url - VMware
service URL
uuid - VMware
hypervisor host
name

vmware.hv.memory.size.ballooned[<url>,<uuid>]
VMware
hypervisor
ballooned
memory size
(bytes).

Integer url - VMware
service URL
uuid - VMware
hypervisor host
name

vmware.hv.memory.used[<url>,<uuid>]
VMware
hypervisor
used memory
size (bytes).

Integer url - VMware
service URL
uuid - VMware
hypervisor host
name

vmware.hv.network.in[<url>,<uuid>,<mode>]
VMware
hypervisor
network input
statistics
(bytes per
second).

Integer 2 url - VMware
service URL
uuid - VMware
hypervisor host
name
mode - bps
(default)

Starting with
Zabbix 2.2.9
bps mode
value is
correctly
reported in
bytes per
second instead
of kilobytes per
second as it
was before.

vmware.hv.network.out[<url>,<uuid>,<mode>]
VMware
hypervisor
network output
statistics
(bytes per
second).

Integer 2 url - VMware
service URL
uuid - VMware
hypervisor host
name
mode - bps
(default)

Starting with
Zabbix 2.2.9
bps mode
value is
correctly
reported in
bytes per
second instead
of kilobytes per
second as it
was before.

vmware.hv.perfcounter[<url>,<uuid>,<path>,<instance>]

176

Key

VMware
hypervisor
performance
counter value.

Integer 2 url - VMware
service URL
uuid - VMware
hypervisor host
name
path -
performance
counter path 1

instance -
performance
counter
instance. Use
empty instance
for aggregate
values
(default)

Available since
Zabbix 2.2.9

vmware.hv.sensor.health.state[<url>,<uuid>]
VMware
hypervisor
health state
rollup sensor.

Integer:
0 - gray;
1 - green;
2 - yellow;
3 - red

url - VMware
service URL
uuid - VMware
hypervisor host
name

Available since
Zabbix 2.2.16

vmware.hv.status[<url>,<uuid>]
VMware
hypervisor
status.

Integer:
0 - gray;
1 - green;
2 - yellow;
3 - red

url - VMware
service URL
uuid - VMware
hypervisor host
name

Uses health
state rollup
sensor from
Zabbix 2.2.10
to 2.2.15
(including).
Other versions
use host
system overal
status
property.

vmware.hv.uptime[<url>,<uuid>]
VMware
hypervisor
uptime
(seconds).

Integer url - VMware
service URL
uuid - VMware
hypervisor host
name

vmware.hv.version[<url>,<uuid>]
VMware
hypervisor
version.

String url - VMware
service URL
uuid - VMware
hypervisor host
name

vmware.hv.vm.num[<url>,<uuid>]
Number of
virtual
machines on
VMware
hypervisor.

Integer url - VMware
service URL
uuid - VMware
hypervisor host
name

vmware.version[<url>]
VMware
service
version.

String url - VMware
service URL

vmware.vm.cluster.name[<url>,<uuid>]
VMware virtual
machine name.

String url - VMware
service URL
uuid - VMware
virtual machine
host name

177

Key

vmware.vm.cpu.num[<url>,<uuid>]
Number of
processors on
VMware virtual
machine.

Integer url - VMware
service URL
uuid - VMware
virtual machine
host name

vmware.vm.cpu.usage[<url>,<uuid>]
VMware virtual
machine
processor
usage (Hz).

Integer url - VMware
service URL
uuid - VMware
virtual machine
host name

vmware.vm.discovery[<url>]
Discovery of
VMware virtual
machines.

JSON object url - VMware
service URL

vmware.vm.hv.name[<url>,<uuid>]
VMware virtual
machine
hypervisor
name.

String url - VMware
service URL
uuid - VMware
virtual machine
host name

vmware.vm.memory.size[<url>,<uuid>]
VMware virtual
machine total
memory size
(bytes).

Integer url - VMware
service URL
uuid - VMware
virtual machine
host name

vmware.vm.memory.size.ballooned[<url>,<uuid>]
VMware virtual
machine
ballooned
memory size
(bytes).

Integer url - VMware
service URL
uuid - VMware
virtual machine
host name

vmware.vm.memory.size.compressed[<url>,<uuid>]
VMware virtual
machine
compressed
memory size
(bytes).

Integer url - VMware
service URL
uuid - VMware
virtual machine
host name

vmware.vm.memory.size.private[<url>,<uuid>]
VMware virtual
machine
private
memory size
(bytes).

Integer url - VMware
service URL
uuid - VMware
virtual machine
host name

vmware.vm.memory.size.shared[<url>,<uuid>]
VMware virtual
machine
shared
memory size
(bytes).

Integer url - VMware
service URL
uuid - VMware
virtual machine
host name

vmware.vm.memory.size.swapped[<url>,<uuid>]
VMware virtual
machine
swapped
memory size
(bytes).

Integer url - VMware
service URL
uuid - VMware
virtual machine
host name

vmware.vm.memory.size.usage.guest[<url>,<uuid>]

178

Key

VMware virtual
machine guest
memory usage
(bytes).

Integer url - VMware
service URL
uuid - VMware
virtual machine
host name

vmware.vm.memory.size.usage.host[<url>,<uuid>]
VMware virtual
machine host
memory usage
(bytes).

Integer url - VMware
service URL
uuid - VMware
virtual machine
host name

vmware.vm.net.if.discovery[<url>,<uuid>]
Discovery of
VMware virtual
machine
network
interfaces.

JSON object url - VMware
service URL
uuid - VMware
virtual machine
host name

vmware.vm.net.if.in[<url>,<uuid>,<instance>,<mode>]
VMware virtual
machine
network
interface input
statistics
(bytes/packets
per second).

Integer 2 url - VMware
service URL
uuid - VMware
virtual machine
host name
instance -
network
interface
instance
mode - bps
(default)/pps -
bytes/packets
per second

Starting with
Zabbix 2.2.9
bps mode
value is
correctly
reported in
bytes per
second instead
of kilobytes per
second as it
was before.

vmware.vm.net.if.out[<url>,<uuid>,<instance>,<mode>]
VMware virtual
machine
network
interface
output
statistics
(bytes/packets
per second).

Integer 2 url - VMware
service URL
uuid - VMware
virtual machine
host name
instance -
network
interface
instance
mode - bps
(default)/pps -
bytes/packets
per second

Starting with
Zabbix 2.2.9
bps mode
value is
correctly
reported in
bytes per
second instead
of kilobytes per
second as it
was before.

vmware.vm.perfcounter[<url>,<uuid>,<path>,<instance>]
VMware virtual
machine
performance
counter value.

Integer 2 url - VMware
service URL
uuid - VMware
virtual machine
host name
path -
performance
counter path 1

instance -
performance
counter
instance. Use
empty instance
for aggregate
values
(default)

Available since
Zabbix 2.2.9

179

Key

vmware.vm.powerstate[<url>,<uuid>]
VMware virtual
machine power
state.

Integer:
0 - poweredOff;
1 - poweredOn;
2 - suspended

url - VMware
service URL
uuid - VMware
virtual machine
host name

vmware.vm.storage.committed[<url>,<uuid>]
VMware virtual
machine
committed
storage space
(bytes).

Integer url - VMware
service URL
uuid - VMware
virtual machine
host name

vmware.vm.storage.uncommitted[<url>,<uuid>]
VMware virtual
machine
uncommitted
storage space
(bytes).

Integer url - VMware
service URL
uuid - VMware
virtual machine
host name

vmware.vm.storage.unshared[<url>,<uuid>]
VMware virtual
machine
unshared
storage space
(bytes).

Integer url - VMware
service URL
uuid - VMware
virtual machine
host name

vmware.vm.uptime[<url>,<uuid>]
VMware virtual
machine
uptime
(seconds).

Integer url - VMware
service URL
uuid - VMware
virtual machine
host name

vmware.vm.vfs.dev.discovery[<url>,<uuid>]
Discovery of
VMware virtual
machine disk
devices.

JSON object url - VMware
service URL
uuid - VMware
virtual machine
host name

vmware.vm.vfs.dev.read[<url>,<uuid>,<instance>,<mode>]
VMware virtual
machine disk
device read
statistics
(bytes/operations
per second).

Integer 2 url - VMware
service URL
uuid - VMware
virtual machine
host name
instance - disk
device
instance
mode - bps
(default)/ops -
bytes/operations
per second

Starting with
Zabbix 2.2.9
bps mode
value is
correctly
reported in
bytes per
second instead
of kilobytes per
second as it
was before.

vmware.vm.vfs.dev.write[<url>,<uuid>,<instance>,<mode>]
VMware virtual
machine disk
device write
statistics
(bytes/operations
per second).

Integer 2 url - VMware
service URL
uuid - VMware
virtual machine
host name
instance - disk
device
instance
mode - bps
(default)/ops -
bytes/operations
per second

Starting with
Zabbix 2.2.9
bps mode
value is
correctly
reported in
bytes per
second instead
of kilobytes per
second as it
was before.

180

Key

vmware.vm.vfs.fs.discovery[<url>,<uuid>]
Discovery of
VMware virtual
machine file
systems.

JSON object url - VMware
service URL
uuid - VMware
virtual machine
host name

VMware Tools
must be
installed on the
guest virtual
machine.

vmware.vm.vfs.fs.size[<url>,<uuid>,<fsname>,<mode>]
VMware virtual
machine file
system
statistics
(bytes/percentages).

Integer url - VMware
service URL
uuid - VMware
virtual machine
host name
fsname - file
system name
mode - to-
tal/free/used/pfree/pused

VMware Tools
must be
installed on the
guest virtual
machine.

Footnotes
1 The VMware performance counter path has the group/counter[rollup] format where:

• group - the performance counter group, for example cpu
• counter - the performance counter name, for example usagemhz
• rollup - the peformance counter rollup type, for example average

So the above example would give the following counter path: cpu/usagemhz[average]

The performance counter group descriptions, counter names and rollup types can be found in VMware documentation.
2 Since Zabbiz 2.2.9, the value of these items is obtained from VMware performance counters and the VMwarePerfFrequency
parameter is used to refresh their data in Zabbix VMware cache:

• vmware.hv.datastore.read
• vmware.hv.datastore.write
• vmware.hv.network.in
• vmware.hv.network.out
• vmware.hv.perfcounter
• vmware.vm.net.if.in
• vmware.vm.net.if.out
• vmware.vm.perfcounter
• vmware.vm.vfs.dev.read
• vmware.vm.vfs.dev.write

More info

See Virtual machine monitoring for detailed information how to configure Zabbix to monitor VMware environments.

6 Log file monitoring

Overview

Zabbix can be used for centralized monitoring and analysis of log files with/without log rotation support.

Notifications can be used to warn users when a log file contains certain strings or string patterns.

To monitor a log file you must have:

• Zabbix agent running on the host
• log monitoring item set up

Attention:
The size limit of a monitored log file depends on large file support.

Configuration

Verify agent parameters

181

https://www.vmware.com/support/developer/converter-sdk/conv60_apireference/vim.PerformanceManager.html

Make sure that in the agent configuration file:

• ’Hostname’ parameter matches the host name in the frontend
• Servers in the ’ServerActive’ parameter are specified for the processing of active checks

Item configuration

Configure a log monitoring item:

Specifically for log monitoring items you enter:

Type Select Zabbix agent (active) here.
Key Use one of the following item keys: log[] or logrt[]

These two item keys allow to monitor logs and filter log
entries by the content regexp, if present.
For example: log[/var/log/syslog,error]. Make sure
that the file has read permissions for the ’zabbix’ user
otherwise the item status will be set to ’unsupported’.
See supported Zabbix agent item key section for details on
using these item keys and their parameters.

Type of information Select Log here.
Update interval (in sec) The parameter defines how often Zabbix agent will check for

any changes in the log file. Setting it to 1 second will make
sure that you get new records as soon as possible.

182

Log time format In this field you may optionally specify the pattern for
parsing the log line timestamp.
If left blank the timestamp will not be parsed.
Supported placeholders:
* y: Year (0001-9999)
* M: Month (01-12)
* d: Day (01-31)
* h: Hour (00-23)
* m: Minute (00-59)
* s: Second (00-59)
For example, consider the following line from the Zabbix
agent log file:
” 23480:20100328:154718.045 Zabbix agent started.
Zabbix 1.8.2 (revision 11211).”
It begins with six character positions for PID, followed by
date, time, and the rest of the line.
Log time format for this line would be
”pppppp:yyyyMMdd:hhmmss”.
Note that ”p” and ”:” chars are just placeholders and can be
anything but ”yMdhms”.

Important notes

• The server and agent keep the trace of a monitored log’s size and last modification time (for logrt) in two counters. Addi-
tionally, since Zabbix 2.2.4:

* The agent also internally uses inode numbers (on UNIX/GNU/Linux), file indexes (on Microsoft Windows) and MD5 sums of the first 512 log file bytes for improving decisions when logfiles get truncated and rotated.
* On UNIX/GNU/Linux systems it is assumed that the file systems where log files are stored report inode numbers, which can be used to track files.
* On Microsoft Windows Zabbix agent determines the file system type the log files reside on and uses:

* On NTFS file systems 64-bit file indexes.
* On ReFS file systems (only from Microsft Windows Server 2012) 128-bit file IDs.
* On file systems where file indexes change (e.g. FAT32, exFAT) a fall-back algorithm is used to take a sensible approach in uncertain conditions when log file rotation results in multiple log files with the same last modification time.

* The inode numbers, file indexes and MD5 sums are internally collected by Zabbix agent. They are not transmitted to Zabbix server and are lost when Zabbix agent is stopped.
* Do not modify the last modification time of log files with 'touch' utility, do not copy a log file with later restoration of the original name (this will change the file inode number). In both cases the file will be counted as different and will be analyzed from the start, which may result in duplicated alerts.
* If there are several matching log files for ''logrt[]'' item and Zabbix agent is following the most recent of them and this most recent log file is deleted, a warning message ''"there are no files matching "<regexp mask>" in "<directory>"'' is logged. Zabbix agent ignores log files with modification time less than the most recent modification time seen by the agent for the ''logrt[]'' item being checked.
* Zabbix **2.2.10** fixes an issue [[https://support.zabbix.com/browse/ZBX-9290|ZBX-9290]] (unexpected re-reading of the whole log file from the beginning).

* The agent starts reading the log file from the point it stopped the previous time.
* The number of bytes already analyzed (the size counter) and last modification time (the time counter) are stored in the Zabbix database and are sent to the agent to make sure the agent starts reading the log file from this point in cases when the agent is just started or has received items which were previously disabled or not supported.
* Whenever the log file becomes smaller than the log size counter known by the agent, the counter is reset to zero and the agent starts reading the log file from the beginning taking the time counter into account.
* For ''logrt'' items, if there are several matching files with the same last modification time in the directory:
* before Zabbix **2.2.4** the agent will read lexicographically the smallest one.
* since Zabbix **2.2.4**:

* The agent tries to correctly analyze all log files with the same modification time and avoid skipping data or analyzing the same data twice, although it cannot be guaranteed in all situations.
* The agent does not assume any particular log file rotation scheme nor determines one. When presented multiple log files with the same last modification time, the agent will process them in a lexicographically descending order. Thus, for some rotation schemes the log files will be analyzed and reported in their original order. For other rotation schemes the original log file order will not be honored, which can lead to reporting matched log file records in altered order (the problem does not happen if log files have different last modification times).

* Zabbix agent processes new records of a log file once per //Update interval// seconds.
* Zabbix agent does not send more than **maxlines** of a log file per second. The limit prevents overloading of network and CPU resources and overrides the default value provided by **MaxLinesPerSecond** parameter in the [[:manual:appendix:config:zabbix_agentd|agent configuration file]].
* To find the required string Zabbix will process 4 times more new lines than set in MaxLinesPerSecond. Thus, for example, if a ''log[]'' or ''logrt[]'' item has //Update interval// of 1 second, by default the agent will analyse no more than 400 log file records and will send no more than 100 matching records to Zabbix server in one check. By increasing **MaxLinesPerSecond** in the agent configuration file or setting **maxlines** parameter in the item key, the limit can be increased up to 4000 analysed log file records and 1000 matching records sent to Zabbix server in one check. If the //Update interval// is set to 2 seconds the limits for one check would be set 2 times higher than with //Update interval// of 1 second.
* Additionally, log values are always limited to 50% of the agent send buffer size, even if there are no non-log values in it. So for the **maxlines** values to be sent in one connection (and not in several connections), the agent [[:manual:appendix:config:zabbix_agentd|BufferSize]] parameter must be at least maxlines x 2.
* In the absence of log items all agent buffer size is used for non-log values. When log values come in they replace the older non-log values as needed, up to the designated 50%.
* For log file records longer than 256kB, only the first 256kB are matched against the regular expression and the rest of the record is ignored. However, if Zabbix agent is stopped while it is dealing with a long record the agent internal state is lost and the long record may be analysed again and differently after the agent is started again. This limit is introduced since Zabbix **2.2.3**.
* Special note for "\" path separators: if file_format is "file\.log", then there should not be a "file" directory, since it is not possible to unambiguously define whether "." is escaped or is the first symbol of the file name.
* Regular expressions for ''logrt'' are supported in filename only, directory regular expression matching is not supported.
* On UNIX platforms a ''logrt[]'' item becomes NOTSUPPORTED if a directory where the log files are expected to be found does not exist.
* On Microsoft Windows if a directory does not exist the item does not become NOTSUPPORTED (for example, if directory is misspelled in item key). Note that before Zabbix 2.2.3 the item would become NOTSUPPORTED.
* An absence of log files for ''logrt[]'' item does not make it NOTSUPPORTED (before Zabbix 2.2.3 it caused NOTSUPPORTED).
* Errors of reading log files for ''logrt[]'' item are logged as warnings into Zabbix agent log file but do not make the item NOTSUPPORTED (before Zabbix 2.2.3 it caused NOTSUPPORTED).
* Zabbix agent log file can be helpful to find out why a ''log[]'' or ''logrt[]'' item became NOTSUPPORTED. Zabbix can monitor its agent log file except when at DebugLevel=4.

Extracting matching part of regular expression

Sometimes we may want to extract only the interesting value from a target file instead of returning the whole line when a regular
expression match is found.

Previously, if a regular expression match was found by Zabbix, the whole line containing the match was returned. Since Zabbix

183

2.2.0, log items have been extended to be able to extract desired values from these lines. This has been accomplished by adding
the additional output parameter to log and logrt items.

output allows to indicate the subgroup of the match that we may be interested in.

So, for example

log[/path/to/the/file,"large result buffer allocation.*Entries: ([0-9]+)",,,,\1]

should allow returning the entry count as found in the content of:

Fr Feb 07 2014 11:07:36.6690 */ Thread Id 1400 (GLEWF) large result
buffer allocation - /Length: 437136/Entries: 5948/Client Ver: >=10/RPC
ID: 41726453/User: AUser/Form: CFG:ServiceLevelAgreement

The reason why Zabbix will return only the number is because output here is defined by \1 referring to the first and only subgroup
of interest: ([0-9]+)

And, with the ability to extract and return a number, the value can be used to define triggers.

7 Calculated items

7.1 Overview

With calculated items you can create calculations on the basis of other items.

Thus, calculated items are a way of creating virtual data sources. The values will be periodically calculated based on an arithmetical
expression. All calculations are done by the Zabbix server - nothing related to calculated items is performed on Zabbix agents or
proxies.

The resulting data will be stored in the Zabbix database as for any other item - this means storing both history and trend values
for fast graph generation. Calculated items may be used in trigger expressions, referenced by macros or other entities same as
any other item type.

To use calculated items, choose the item type Calculated.

7.2 Configurable fields

The key is a unique item identifier (per host). You can create any key name using supported symbols.

Calculation definition should be entered in the Formula field (named ’Expression’ in 1.8.1 and 1.8.2). There is virtually no connec-
tion between the formula and the key. The key parameters are not used in formula in any way.

The correct syntax of a simple formula is:

func(<key>|<hostname:key>,<parameter1>,<parameter2>,...)

Where:

ARGUMENT DEFINITION

func One of the functions supported in trigger expressions: last, min,
max, avg, count, etc

key The key of another item whose data you want to use. It may be
defined as key or hostname:key.
Note: Putting the whole key in double quotes (”...”) is strongly
recommended to avoid incorrect parsing because of spaces or
commas within the key.
If there are also quoted parameters within the key, those double
quotes must be escaped by using the backslash (\). See Example
5 below.

parameter(s) Function parameter(s), if required.

Note:
All items that are referenced from the calculated item formula must exist and be collecting data. Also, if you change the
item key of a referenced item, you have to manually update any formulas using that key.

184

Attention:
User macros in the formula will be expanded if used to reference a function parameter or a constant. User macros will NOT
be expanded if referencing a function, host name, item key, item key parameter or operator.

A more complex formula may use a combination of functions, operators and brackets. You can use all functions and operators
supported in trigger expressions. Note that the syntax is slightly different, however logic and operator precedence are exactly the
same.

Unlike trigger expressions, Zabbix processes calculated items according to the item update interval, not upon receiving a new
value.

Note:
If the calculation result is a float value it will be trimmed to an integer if the calculated item type of information is Numeric
(unsigned).

A calculated item may become unsupported in several cases:

1. referenced item(s) not found
2. no data to calculate a function
3. division by zero
4. incorrect syntax used

Note:
Support for calculated items was introduced in Zabbix 1.8.1

7.3 Usage examples

Example 1

Calculating percentage of free disk space on ’/’.

Use of function last:

100*last("vfs.fs.size[/,free]")/last("vfs.fs.size[/,total]")

Zabbix will take the latest values for free and total disk spaces and calculate percentage according to the given formula.

Example 2

Calculating a 10-minute average of the number of values processed by Zabbix.

Use of function avg:

avg("Zabbix Server:zabbix[wcache,values]",600)

Note that extensive use of calculated items with long time periods may affect performance of Zabbix server.

Example 3

Calculating total bandwidth on eth0.

Sum of two functions:

last("net.if.in[eth0,bytes]")+last("net.if.out[eth0,bytes]")

Example 4

Calculating percentage of incoming traffic.

More complex expression:

100*last("net.if.in[eth0,bytes]")/(last("net.if.in[eth0,bytes]")+last("net.if.out[eth0,bytes]"))

Example 5

Using aggregated items correctly within a calculated item.

Take note of how double quotes are escaped within the quoted key:

last("grpsum[\"video\",\"net.if.out[eth0,bytes]\",\"last\",\"0\"]") / last("grpsum[\"video\",\"nginx_stat.sh[active]\",\"last\",\"0\"]")

185

8 Internal checks

8.1 Overview

Internal checks allow to monitor the internal processes of Zabbix. In other words, you can monitor what goes on with Zabbix server
or Zabbix proxy.

Internal checks are calculated:

• on Zabbix server - if the host is monitored by server
• on Zabbix proxy - if the host is monitored by proxy

To use this item, choose the Zabbix internal item type.

Note:
Internal checks are processed by Zabbix pollers.

8.2 Supported checks

• Parameters without angle brackets are constants - for example, ’host’ and ’available’ in zabbix[host,<type>,available].
Use them in the item key as is.

• Values for items and item parameters that are ”not supported on proxy” can only be gathered if the host is monitored by
server. And vice versa, values ”not supported on server” can only be gathered if the host is monitored by proxy.

Key

▲ Description Return value Comments
zabbix[boottime]

Startup time
of Zabbix
server or
Zabbix
proxy
process in
seconds.

Integer. In seconds
since the
epoch.

zabbix[history]
Number of
values
stored in
table
HISTORY

Integer. Do not use if
MySQL
InnoDB,
Oracle or
PostgreSQL
is used!
(not
supported
on proxy)

zabbix[history_log]
Number of
values
stored in
table HIS-
TORY_LOG

Integer. Do not use if
MySQL
InnoDB,
Oracle or
PostgreSQL
is used!
This item is
supported
starting with
Zabbix
1.8.3.
(not
supported
on proxy)

zabbix[history_str]

186

Key

Number of
values
stored in
table HIS-
TORY_STR

Integer. Do not use if
MySQL
InnoDB,
Oracle or
PostgreSQL
is used!
(not
supported
on proxy)

zabbix[history_text]
Number of
values
stored in
table HIS-
TORY_TEXT

Integer. Do not use if
MySQL
InnoDB,
Oracle or
PostgreSQL
is used!
This item is
supported
starting with
Zabbix
1.8.3.
(not
supported
on proxy)

zabbix[history_uint]
Number of
values
stored in
table HIS-
TORY_UINT

Integer. Do not use if
MySQL
InnoDB,
Oracle or
PostgreSQL
is used!
This item is
supported
starting with
Zabbix
1.8.3.
(not
supported
on proxy)

zabbix[host,<type>,available]

187

Key

Returns
availability
of a
particular
type of
checks on
the host.
The value of
this item
corresponds
to
availability
icons in the
host list.

0 - not
available, 1 -
available, 2 -
unknown.

Valid types
are: agent,
snmp, ipmi,
jmx.

The item
value is
calculated
according to
configura-
tion
parameters
regarding
host
unreachabil-
ity/unavailability.

This item is
supported
starting with
Zabbix
2.0.0.

zabbix[hosts]
Number of
monitored
hosts

Integer. This item is
supported
starting with
Zabbix
2.2.0

zabbix[items]
Number of
enabled
items
(supported
and not
supported)

Integer.

zabbix[items_unsupported]
Number of
not
supported
items

Integer.

zabbix[java„<param>]

188

Key

Returns
information
associated
with Zabbix
Java
gateway.

If <param>
is ping, ”1”
is returned.
Can be used
to check
Java
gateway
availability
using
nodata()
trigger
function.

If <param>
is version,
version of
Java
gateway is
returned.
Example:
”2.0.0”.

Valid values
for
<param>
are: ping,
version

Second
parameter
must be
empty and is
reserved for
future use.

This item is
supported
starting with
Zabbix
2.0.0.

zabbix[process,<type>,<mode>,<state>]

189

Key

Time a
particular
Zabbix
process or a
group of
processes
(identified
by <type>
and
<mode>)
spent in
<state> in
percentage.
It is
calculated
for the last
minute only.

If <mode>
is Zabbix
process
number that
is not
running (for
example,
with 5
pollers
running
<mode> is
specified to
be 6), such
an item will
turn into
unsupported
state.
Minimum
and
maximum
refers to the
usage
percentage
for a single
process. So
if in a group
of 3 pollers
usage
percentages
per process
were 2, 18
and 66, min
would return
2 and max
would return
66.
Processes
report what
they are
doing in
shared
memory and
the self-
monitoring
process
summarizes
that data
each
second.
State
changes
(busy/idle)
are
registered
upon change
- thus a
process that
becomes
busy
registers as
such and
doesn’t
change or
update the
state until it
becomes
idle. This
ensures that
even fully
hung
processes
will be
correctly
registered as
100% busy.
Currently,
”busy”
means ”not
sleeping”,
but in the
future
additional
states might
be
introduced -
waiting for
locks,
performing
database
queries, etc.
On Linux
and most
other
systems,
resolution is
1/100 of a
second.

Percentage
of time.
Float.

The
following
process
types are
currently
supported:
alerter -
process for
sending
notifications
(not
supported
on proxy)
configuration
syncer -
process for
managing
in-memory
cache of
configura-
tion data
data
sender -
proxy data
sender (not
supported
on server)
db
watchdog -
sender of a
warning
message in
case DB is
not available
(not
supported
on proxy)
discoverer
- process for
discovery of
devices
escalator -
process for
escalation of
actions (not
supported
on proxy)
heartbeat
sender -
proxy
heartbeat
sender (not
supported
on server)
history
syncer -
history DB
writer
housekeeper
- process for
removal of
old historical
data
http poller
- web
monitoring
poller
icmp
pinger -
poller for
icmpping
checks
ipmi poller
- poller for
IPMI checks
java poller
- poller for
Java checks
node
watcher -
process for
sending
historical
data and
configura-
tion changes
between
nodes (not
supported
on proxy)
poller -
normal
poller for
passive
checks
proxy
poller -
poller for
passive
proxies (not
supported
on proxy)
self-
monitoring
- process for
collecting
internal
server
statistics
snmp
trapper -
trapper for
SNMP traps
timer -
process for
evaluation
of
time-related
trigger
functions
and mainte-
nances (not
supported
on proxy)
trapper -
trapper for
active
checks,
traps,
inter-node
and -proxy
communica-
tion
unreachable
poller -
poller for
unreachable
devices
vmware
collector -
VMware data
collector
responsible
for data
gathering
from
VMware
services

Note: You
can also see
these
process
types in a
server log
file.

Valid modes
are:
avg -
average
value for all
processes of
a given type
(default)
count -
returns
number of
forks for a
given
process
type,
<state>
should not
be specified
max -
maximum
value
min -
minimum
value
<process
number> -
process
number
(between 1
and the
number of
pre-forked
instances).
For example,
if 4 trappers
are running,
the value is
between 1
and 4.

Valid states
are:
busy -
process is in
busy state,
for example,
processing
request
(default).
idle -
process is in
idle state
doing
nothing.

Examples:
zabbix[process,poller,avg,busy]
- average
time of
poller
processes
spent doing
something
during the
last minute
zabbix[process,”icmp
pinger”,max,busy]
- maximum
time spent
doing
something
by any ICMP
pinger
process
during the
last minute
=> zab-
bix[process,”history
syncer”,2,busy]
→ time spent
doing
something
by history
syncer
number 2
during the
last minute
zabbix[process,trapper,count]
- amount of
currently
running
trapper
processes

This item is
supported
starting with
Zabbix
1.8.5.

190

Key

zabbix[proxy,<name>,<param>]
Access to
Zabbix
proxy
related
information.

Integer. <name> -
proxy name
List of
supported
parameters
(<param>):
lastaccess -
timestamp
of last heart
beat
message
received
from proxy
For example,
zab-
bix[proxy,”Germany”,lastaccess]
fuzzytime()
trigger
function can
be used to
check
availability
of proxies.
(not
supported
on proxy)

zabbix[proxy_history]
Number of
values in
proxy
history table
waiting to be
sent to the
server

Integer. This item is
supported
starting with
Zabbix
2.2.0
(not
supported
on server)

zabbix[queue,<from>,<to>]
Number of
monitored
items in the
queue which
are delayed
at least by
<from>
seconds but
less than by
<to>
seconds.

Integer. <from> -
default: 6
seconds
<to> -
default:
infinity
Time-unit
symbols
(s,m,h,d,w)
are
supported
for these
parameters.
Parameters
from and to
are
supported
starting with
Zabbix
1.8.3.

zabbix[rcache,<cache>,<mode>]

191

Key

Availability
statistics of
Zabbix con-
figuration
cache.

Integer (for
size); float
(for
percentage).

Cache:
buffer
Mode:
total - total
size of buffer
free - size of
free buffer
pfree -
percentage
of free buffer
used - size
of used
buffer

zabbix[requiredperformance]
Required
performance
of the
Zabbix
server or
Zabbix
proxy, in
new values
per second
expected.

Float. Approximately
correlates
with
”Required
server per-
formance,
new values
per second”
in Reports →
Status of
Zabbix.
This item is
supported
starting with
Zabbix
1.6.2.

zabbix[trends]
Number of
values
stored in
table
TRENDS

Integer. Do not use if
MySQL
InnoDB,
Oracle or
PostgreSQL
is used!
(not
supported
on proxy)

zabbix[trends_uint]
Number of
values
stored in
table
TRENDS_UINT

Integer. Do not use if
MySQL
InnoDB,
Oracle or
PostgreSQL
is used!
This item is
supported
starting with
Zabbix
1.8.3.
(not
supported
on proxy)

zabbix[triggers]

192

Key

Number of
enabled
triggers in
Zabbix
database,
with at least
one enabled
item (all
enabled,
since
version
2.2.4) on
enabled
hosts.

Integer. (not
supported
on proxy)

zabbix[uptime]
Uptime of
Zabbix
server or
Zabbix
proxy
process in
seconds.

Integer.

zabbix[vcache,buffer,<mode>]
Availability
statistics of
Zabbix value
cache.

Integer (for
size); float
(for
percentage).

Mode:
total - total
size of buffer
free - size of
free buffer
pfree -
percentage
of free buffer
used - size
of used
buffer
pused -
percentage
of used
buffer

This item is
supported
starting with
Zabbix
2.2.0.
(not
supported
on proxy)

zabbix[vcache,cache,<parameter>]

193

Key

Effectiveness
statistics of
Zabbix value
cache.

Integer. Parameter:
requests -
total number
of requests
hits -
number of
cache hits
(history
values taken
from the
cache)
misses -
number of
cache
misses
(history
values taken
from the
database)

This item is
supported
starting with
Zabbix
2.2.0.
(not
supported
on proxy)

zabbix[vmware,buffer,<mode>]
Availability
statistics of
Zabbix
vmware
cache.

Integer (for
size); float
(for
percentage).

Mode:
total - total
size of buffer
free - size of
free buffer
pfree -
percentage
of free buffer
used - size
of used
buffer
pused -
percentage
of used
buffer

This item is
supported
starting with
Zabbix
2.2.0.

zabbix[wcache,<cache>,<mode>]
Statistics
and
availability
of Zabbix
write cache.
Cache Mode

194

Key

values all Total number
of values
processed
by Zabbix
server or
Zabbix
proxy,
except
unsupported
items.

Integer. Counter.

float Number of
processed
float values.

Integer. Counter.

uint Number of
processed
unsigned
integer
values.

Integer. Counter.

str Number of
processed
charac-
ter/string
values.

Integer. Counter.

log Number of
processed
log items.

Integer. Counter.

text Number of
processed
text items.

Integer. Counter.

not
supported

Number of
processed
unsupported
items.

Integer. Counter.
Not
supported
mode is
supported
starting with
Zabbix
1.8.6.

history pfree Percentage
of free
history
buffer.

Float. History
cache stores
item and
timestamp
information
for all item
types as well
as value for
the numeric
types. A low
number
indicates
performance
problems on
the
database
side.

free Size of free
history
buffer.

Integer.

total Total size of
history
buffer.

Integer.

195

Key

used Size of used
history
buffer.

Integer.

trend pfree Percentage
of free trend
cache.

Float. Trend cache
stores
aggregate
for the
current hour
for all items
that receive
data.
(not
supported
on proxy)

free Size of free
trend buffer.

Integer. (not
supported
on proxy)

total Total size of
trend buffer.

Integer. (not
supported
on proxy)

used Size of used
trend buffer.

Integer. (not
supported
on proxy)

text pfree Percentage
of free text
history
buffer.

Float. Text history
cache is
used for
storing
character,
text or log
history data
- item and
timestamp
information
for these
values is still
stored in the
history
cache.

free Size of free
text history
buffer.

Integer.

total Total size of
text history
buffer.

Integer.

used Size of used
text history
buffer.

Integer.

9 SSH checks

9.1 Overview

SSH checks are performed as agent-less monitoring. Zabbix agent is not needed for SSH checks.

To perform SSH checks Zabbix server must be initially configured with SSH2 support.

Attention:
The minimum supported libssh2 library version is 1.0.0.

9.2 Configuration

196

9.2.1 Passphrase authentication

SSH checks provide two authentication methods, a user/password pair and key-file based.

If you do not intend to use keys, no additional configuration is required, besides linking libssh2 to Zabbix, if you’re building from
source.

9.2.2 Key file authentication

To use key based authentication for SSH items, certain changes to the server configuration are required.

Open the Zabbix server configuration file (zabbix_server.conf) as root and look for the following line:

SSHKeyLocation=

Uncomment it and set full path to a folder where public and private keys will be located:

SSHKeyLocation=/home/zabbix/.ssh

Save the file and restart zabbix_server afterwards.

/home/zabbix here is the home directory for the zabbix user account and .ssh is a directory where by default public and private
keys will be generated by a ssh-keygen command inside the home directory.

Usually installation packages of zabbix-server from different OS distributions create the zabbix user account with a home directory
in not very well-known places (as for system accounts). For example, for CentOS it’s /var/lib/zabbix, for Debian it’s /var/run/zabbix.

Before starting to generate the keys, an approach to reallocate the home directory to a better known place (intuitively expected)
could be considered. This will correspond with the SSHKeyLocation Zabbix server configuration parameter mentioned above.

These steps can be skipped if zabbix account has been added manually according to the installation section because in this case
most likely the home directory is already located at /home/zabbix.

To change the setting for the zabbix user account all working processes which are using it have to be stopped:

service zabbix-agent stop
service zabbix-server stop

To change the home directory location with an attempt to move it (if it exists) a command should be executed:

usermod -m -d /home/zabbix zabbix

It’s absolutely possible that a home directory did not exist in the old place (in the CentOS for example), so it should be created at
the new place. A safe attempt to do that is:

test -d /home/zabbix || mkdir /home/zabbix

To be sure that all is secure, additional commands could be executed to set permissions to the home directory:

chown zabbix:zabbix /home/zabbix
chmod 700 /home/zabbix

Previously stopped processes now can be started again:

service zabbix-agent start
service zabbix-server start

Now steps to generate public and private keys can be performed by a command:

sudo -u zabbix ssh-keygen -t rsa
Generating public/private rsa key pair.
Enter file in which to save the key (/home/zabbix/.ssh/id_rsa):
Created directory '/home/zabbix/.ssh'.
Enter passphrase (empty for no passphrase):
Enter same passphrase again:
Your identification has been saved in /home/zabbix/.ssh/id_rsa.
Your public key has been saved in /home/zabbix/.ssh/id_rsa.pub.
The key fingerprint is:
90:af:e4:c7:e3:f0:2e:5a:8d:ab:48:a2:0c:92:30:b9 zabbix@it0
The key's randomart image is:
+--[RSA 2048]----+
| |
| . |
| o |
| . o |

197

http://en.wikipedia.org/wiki/Ssh-keygen

|+ . S |
|.+ o = |
|E . * = |
|=o . ..* . |
|... oo.o+ |
+-----------------+

Note: public and private keys (id_rsa.pub and id_rsa respectively) have been generated by default in the /home/zabbix/.ssh direc-
tory which corresponds to the Zabbix server SSHKeyLocation configuration parameter.

Attention:
Key types other than ”rsa” may be supported by the ssh-keygen tool and SSH servers but they may not be supported by
libssh2, used by Zabbix.

9.2.3 Shell configuration form

This step should be performed only once for every host that will be monitored by SSH checks.

By using the following command the public key file can be installed on a remote host 10.10.10.10 so that then SSH checks can be
performed with a root account:

sudo -u zabbix ssh-copy-id root@10.10.10.10
The authenticity of host '10.10.10.10 (10.10.10.10)' can't be established.
RSA key fingerprint is 38:ba:f2:a4:b5:d9:8f:52:00:09:f7:1f:75:cc:0b:46.
Are you sure you want to continue connecting (yes/no)? yes
Warning: Permanently added '10.10.10.10' (RSA) to the list of known hosts.
root@10.10.10.10's password:
Now try logging into the machine, with "ssh 'root@10.10.10.10'", and check in:
.ssh/authorized_keys

to make sure we haven't added extra keys that you weren't expecting.

Now it’s possible to check the SSH login using the default private key (/home/zabbix/.ssh/id_rsa) for zabbix user account:

sudo -u zabbix ssh root@10.10.10.10

If the login is successful, then the configuration part in the shell is finished and remote SSH session can be closed.

9.2.4 Item configuration

Actual command(s) to be executed must be placed in the Executed script field in the item configuration.
Multiple commands can be executed one after another by placing them on a new line. In this case returned values also will be
formatted as multi lined.

Item parameter Description Comments

Key Unique (per host) item key in format
ssh.run[<unique short descrip-
tion>,<ip>,<port>,<encoding>]

<unique short description>
is required and should be
unique for all SSH items per
host
Default port is 22, not the
port specified in the
interface to which this item
is assigned

Authentication method One of the ”Password” or ”Public key”
User name User name to authenticate on remote

host.
Required

Public key file File name of public key if
Authentication method is ”Public key”.
Required

Example: id_rsa.pub -
default public key file name
generated by a command
ssh-keygen

Private key file File name of private key if
Authentication method is ”Public key”.
Required

Example: id_rsa - default
private key file name

198

http://en.wikipedia.org/wiki/Ssh-keygen

Item parameter Description Comments

Password or
Key passphrase

Password to authenticate or
Passphrase if it was used for the
private key

Leave the Key passphrase
field empty if passphrase
was not used
See also known issues
regarding passphrase usage

Executed script Executed shell command(s) using SSH
remote session

Examples:
date +%s
service mysql-server status
ps auxww | grep httpd | wc -l

The resulting item configuration should look like this:

Attention:
libssh2 library may truncate executable scripts to ~32kB.

10 Telnet checks

10.1 Overview

Telnet checks are performed as agent-less monitoring. Zabbix agent is not needed for Telnet checks.

10.2 Configurable fields

Actual command(s) to be executed must be placed in the Executed script field in the item configuration.
Multiple commands can be executed one after another by placing them on a new line. In this case returned value also will be
formated as multi lined.

Supported characters that the shell prompt can end with:

199

• $

• #

•

• %

Note:
A telnet prompt line which ended with one of these characters will be removed from the returned value, but only for the
first command in the commands list, i.e. only at a start of the telnet session.

Key Description Comments

telnet.run[<unique
short descrip-
tion>,<ip>,<port>,<encoding>]

Run a command on a remote device using telnet
connection

Attention:
If a telnet check returns a value with non-ASCII characters and in non-UTF8 encoding then the <encoding> parameter of
the key should be properly specified. See encoding of returned values page for more details.

11 External checks

11.1 Overview

External check is a check executed by Zabbix server by running a shell script or a binary. However, when hosts are monitored by
a Zabbix proxy, the external checks are executed by the proxy.

External checks do not require any agent running on a host being monitored.

The syntax of the item key is:

script[<parameter1>,<parameter2>,...]

Where:

ARGUMENT DEFINITION

script Name of a shell script or a binary.
parameter(s) Optional command line parameters.

If you don’t want to pass any parameters to the script you may use:

script[] or
script

Zabbix server will look in the directory defined as the location for external scripts (parameter ’ExternalScripts’ in Zabbix server
configuration file) and execute the command. The command will be executed as the user Zabbix server runs as, so any access
permissions or environment variables should be handled in a wrapper script, if necessary, and permissions on the command should
allow that user to execute it. Only commands in the specified directory are available for execution.

Zabbix uses the standard output of the script as the value (the full output with trimmed trailing whitespace is returned since Zabbix
2.0). Standard error and exit codes are discarded.

In case the requested script is not found or Zabbix server has no permissions to run it, the item will be marked as unsupported and
an according error message will be returned. In case of a timeout, the item will be marked as unsupported as well, an according
error message will be displayed and the forked process for the script will be killed.

Warning:
Do not overuse external checks! As each script requires starting a fork process by Zabbix server, running many scripts
can decrease Zabbix performance a lot.

11.2 Usage example

Executing the script check_oracle.sh with the first parameters ”-h”. The second parameter will be replaced by IP address or DNS
name, depending on the selection in the host properties.

200

check_oracle.sh["-h","{HOST.CONN}"]

Assuming host is configured to use IP address, Zabbix will execute:

check_oracle.sh "-h" "192.168.1.4"

12 Aggregate checks

Overview

In aggregate checks Zabbix server collects aggregate information from items by doing direct database queries.

Aggregate checks do not require any agent running on the host being monitored.

Syntax

The syntax of the aggregate item key is:

groupfunc["host group","item key",itemfunc,timeperiod]

Supported group functions (groupfunc) are:

Group function Description

grpavg Average value
grpmax Maximum value
grpmin Minimum value
grpsum Sum of values

Multiple host groups may be included by inserting a comma-delimited array.

All items that are referenced from the aggregate item key must exist and be collecting data. Only enabled items on enabled hosts
are included in the calculations.

Attention:
The key of the aggregate item must be updated manually, if the item key of a referenced item is changed.

Supported item functions (itemfunc) are:

Item function Description

avg Average value
count Number of values
last Last value
max Maximum value
min Minimum value
sum Sum of values

The timeperiod parameter specifies a time period of latest collected values. Supported unit symbols can be used in this parameter
for convenience, for example ’5m’ (minutes) instead of ’300’ (seconds) or ’1d’ (day) instead of ’86400’ (seconds).

Warning:
An amount of values (prefixed with #) is not supported in the timeperiod.

Timeperiod is ignored by the server if the third parameter (item function) is last.

Note:
If the aggregate results in a float value it will be trimmed to an integer if the aggregated item type of information is Numeric
(unsigned).

An aggregate item may become unsupported in several cases:

• none of the referenced items is found (which may happen if the item key is incorrect, none of the items exists or all included
groups are incorrect)

• no data to calculate a function

201

Usage examples

Examples of keys for aggregate checks:

Example 1

Total disk space of host group ’MySQL Servers’.

grpsum["MySQL Servers","vfs.fs.size[/,total]",last,0]

Example 2

Average processor load of host group ’MySQL Servers’.

grpavg["MySQL Servers","system.cpu.load[,avg1]",last,0]

Example 3

5-minute average of the number of queries per second for host group ’MySQL Servers’.

grpavg["MySQL Servers",mysql.qps,avg,5m]

Example 4

Average CPU load on all hosts in multiple host groups.

grpavg[["Servers A","Servers B","Servers C"],system.cpu.load,last,0]

13 Trapper items

Overview

Trapper items accept incoming data instead of querying for it.

It is useful for any data you might want to ”push” into Zabbix.

To use a trapper item you must:

• have a trapper item set up in Zabbix
• send in the data into Zabbix

Configuration

Item configuration

To configure a trapper item:

• Go to: Configuration → Hosts
• Click on Items in the row of the host
• Click on Create item
• Enter parameters of the item in the form

The fields that require specific information for trapper items are:

202

Type Select Zabbix trapper here.
Key Enter a key that will be used to recognize the item when

sending in data.
Type of information Select the type of information that will correspond the

format of data that will be sent in.
Allowed hosts If specified, the trapper will accept incoming data only from

this comma-delimited list of hosts.
Hosts are identified by IP address/DNS name. For example:
Single IP: 192.168.1.33
List of IP addresses: 192.168.56.5, 192.168.56.6,
192.168.56.7
Single DNS name: testzabbix.zabbix.com
List of DNS names: testzabbix, testzabbix.zabbix.com,
testzabbix1.zabbix.com
Spaces and user macros are allowed in this field since
Zabbix 2.2.0.

Note:
You may have to wait up to 60 seconds after saving the item until the server picks up the changes from a configuration
cache update, before you can send in values.

Sending in data

In the simplest of cases, we may use zabbix_sender utility to send the monitoring data for trapper item. If we have sent the value
”test value” for our trapper item, here is how it will appear in Monitoring → Latest data:

14 JMX monitoring

14.1 Overview

JMX monitoring can be used to monitor JMX counters of a Java application.

In Zabbix 1.8, if you wanted to monitor JMX counters of a Java application, your best choice would have been the Zapcat JMX Zabbix
Bridge. You would either modify the source code of your application to reference the Zapcat JAR file and programmatically start a
Zabbix agent, or you would install a ready-made Zapcat plugin for applications that support it (such as Jetty or Tomcat).

Zabbix 2.0 added native support for JMX monitoring by introducing a new Zabbix daemon called ”Zabbix Java gateway”.

When Zabbix server wants to know the value of a particular JMX counter on a host, it asks the Zabbix Java gateway, which in turn
uses the JMX management API to query the application of interest remotely.

For more details and setup see the Zabbix Java gateway section.

Warning:
Communication between Java gateway and the monitored JMX application should not be firewalled.

14.2 Enabling remote JMX monitoring for Java application

A Java application does not need any additional software installed, but it needs to be started with the command-line options
specified below to have support for remote JMX monitoring.

As a bare minimum, if you just wish to get started by monitoring a simple Java application on a local host with no security enforced,
start it with these options:

java \
-Dcom.sun.management.jmxremote \
-Dcom.sun.management.jmxremote.port=12345 \
-Dcom.sun.management.jmxremote.authenticate=false \
-Dcom.sun.management.jmxremote.ssl=false \
-jar /usr/share/doc/openjdk-6-jre-headless/demo/jfc/Notepad/Notepad.jar

203

http://www.kjkoster.org/zapcat/
http://www.kjkoster.org/zapcat/
http://java.sun.com/javase/technologies/core/mntr-mgmt/javamanagement/

This makes Java listen for incoming JMX connections on port 12345, from local host only, and tells it not to require authentication
or SSL.

If you want to allow connections on another interface, set the -Djava.rmi.server.hostname parameter to the IP of that interface.

If you wish to be more stringent about security, there are many other Java options available to you. For instance, the next example
starts the application with a more versatile set of options and opens it to a wider network, not just local host.

java \
-Djava.rmi.server.hostname=192.168.3.14 \
-Dcom.sun.management.jmxremote \
-Dcom.sun.management.jmxremote.port=12345 \
-Dcom.sun.management.jmxremote.authenticate=true \
-Dcom.sun.management.jmxremote.password.file=/etc/java-6-openjdk/management/jmxremote.password \
-Dcom.sun.management.jmxremote.access.file=/etc/java-6-openjdk/management/jmxremote.access \
-Dcom.sun.management.jmxremote.ssl=true \
-Djavax.net.ssl.keyStore=$YOUR_KEY_STORE \
-Djavax.net.ssl.keyStorePassword=$YOUR_KEY_STORE_PASSWORD \
-Djavax.net.ssl.trustStore=$YOUR_TRUST_STORE \
-Djavax.net.ssl.trustStorePassword=$YOUR_TRUST_STORE_PASSWORD \
-Dcom.sun.management.jmxremote.ssl.need.client.auth=true \
-jar /usr/share/doc/openjdk-6-jre-headless/demo/jfc/Notepad/Notepad.jar

Most (if not all) of these settings can be specified in /etc/java-6-openjdk/management/management.properties (or wherever that
file is on your system).

Note that if you wish to use SSL, you have to modify startup.sh script by adding -Djavax.net.ssl.* options to Java gateway,
so that it knows where to find key and trust stores.

See Monitoring and Management Using JMX for a detailed description.

14.3 Configuring JMX interfaces and items in Zabbix GUI

With Java gateway running, server knowing where to find it and a Java application started with support for remote JMX monitoring,
it is time to configure the interfaces and items in Zabbix GUI.

Configuring JMX interface

You begin by creating a JMX-type interface on the host of interest:

Adding JMX agent item

For each JMX counter you are interested in you add an item of type JMX agent attached to that interface. If you have configured
authentication on your Java application, then you also specify username and password.

The key in the screenshot below says jmx["java.lang:type=Memory","HeapMemoryUsage.used"]. The JMX item key syntax
is similar to Zapcat items, except that a comma is used for separating arguments instead of ”][”. The key consists of 2 parameters:

204

http://download.oracle.com/javase/1.5.0/docs/guide/management/agent.html

• object name - which represents the object name of an MBean
• attribute name - an MBean attribute name with optional composite data field names separated by dots

See below for more detail on JMX item keys.

If you wish tomonitor a Boolean counter that is either ”true” or ”false”, then you specify type of information as ”Numeric (unsigned)”
and data type as ”Boolean”. Server will store Boolean values as 1 or 0, respectively.

JMX item keys in more detail

Simple attributes

An MBean object name is nothing but a string which you define in your Java application. An attribute name, on the other hand,
can be more complex. In case an attribute returns primitive data type (an integer, a string etc.) there is nothing to worry about,
the key will look like this:

jmx[com.example:Type=Hello,weight]

In this example an object name is ”com.example:Type=Hello”, attribute name is ”weight” and probably the returned value type
should be ”Numeric (float)”.

Attributes returning composite data

It becomes more complicated when your attribute returns composite data. For example: your attribute name is ”apple” and it
returns a hash representing its parameters, like ”weight”, ”color” etc. Your key may look like this:

jmx[com.example:Type=Hello,apple.weight]

205

This is how an attribute name and a hash key are separated, by using a dot symbol. Same way, if an attribute returns nested
composite data the parts are separated by a dot:

jmx[com.example:Type=Hello,fruits.apple.weight]

Problem with dots

So far so good. But what if an attribute name or a hash key contains dot symbol? Here is an example:

jmx[com.example:Type=Hello,all.fruits.apple.weight]

That’s a problem. How to tell Zabbix that attribute name is ”all.fruits”, not just ”all”? How to distinguish a dot that is part of the
name from the dot that separates an attribute name and hash keys?

Before 2.0.4 Zabbix Java gateway was unable to handle such situations and users were left with UNSUPPORTED items. Since 2.0.4
this is possible, all you need to do is to escape the dots that are part of the name with a backslash:

jmx[com.example:Type=Hello,all\.fruits.apple.weight]

Same way, if your hash key contains a dot you escape it:

jmx[com.example:Type=Hello,all\.fruits.apple.total\.weight]

Other issues

A backslash character should be escaped as well:

jmx[com.example:type=Hello,c:\\documents]

If the object name or attribute name contains spaces or commas double-quote it:

jmx["com.example:Type=Hello","fruits.apple.total weight"]

This is actually all there is to it. Happy JMX monitoring!

15 ODBC monitoring

15.1 Overview

ODBC monitoring corresponds to the Database monitor item type in the Zabbix frontend.

ODBC is a C programming language middle-ware API for accessing database management systems (DBMS). The ODBC concept
was developed by Microsoft and later ported to other platforms.

Zabbix may query any database, which is supported by ODBC. To do that, Zabbix does not directly connect to the databases, but
uses the ODBC interface and drivers set up in ODBC. This function allows for more efficient monitoring of different databases for
multiple purposes - for example, checking specific database queues, usage statistics and so on. Zabbix supports unixODBC, which
is one of the most commonly used open source ODBC API implementations.

15.2 Installing unixODBC

The suggested way of installing unixODBC is to use the Linux operating system default package repositories. In the most popular
Linux distributions unixODBC is included in the package repository by default. If it’s not available, it can be obtained at the
unixODBC homepage: http://www.unixodbc.org/download.html.

Installing unixODBC on RedHat/Fedora based systems using the yum package manager:

shell> yum -y install unixODBC unixODBC-devel

Installing unixODBC on SUSE based systems using the zypper package manager:

zypper in unixODBC-devel

Note:
The unixODBC-devel package is needed to compile Zabbix with unixODBC support.

15.3 Installing unixODBC drivers

A unixODBC database driver should be installed for the database, which will be monitored. unixODBC has a list of supported
databases and drivers: http://www.unixodbc.org/drivers.html. In some Linux distributions database drivers are included in package
repositories. Installing MySQL database driver on RedHat/Fedora based systems using the yum package manager:

shell> yum install mysql-connector-odbc

206

http://www.unixodbc.org/download.html
http://www.unixodbc.org/drivers.html

Installing MySQL database driver on SUSE based systems using the zypper package manager:

zypper in MyODBC-unixODBC

15.4 Configuring unixODBC

ODBC configuration is done by editing the odbcinst.ini and odbc.ini files. To verify the configuration file location, type:

shell> odbcinst -j

odbcinst.ini is used to list the installed ODBC database drivers:

[mysql]
Description = ODBC for MySQL
Driver = /usr/lib/libmyodbc5.so

Parameter details:

Attribute Description

mysql Database driver name.
Description Database driver description.
Driver Database driver library location.

odbc.ini is used to define data sources:

[test]
Description = MySQL test database
Driver = mysql
Server = 127.0.0.1
User = root
Password =
Port = 3306
Database = zabbix

Parameter details:

Attribute Description

test Data source name (DSN).
Description Data source description.
Driver Database driver name - as specified in odbcinst.ini
Server Database server IP/DNS.
User Database user for connection.
Password Database user password.
Port Database connection port.
Database Database name.

To verify if ODBC connection is working successfully, a connection to database should be tested. That can be done with the isql
utility (included in the unixODBC package):

shell> isql test
+---------------------------------------+
| Connected! |
| |
| sql-statement |
| help [tablename] |
| quit |
| |
+---------------------------------------+
SQL>

15.5 Compiling Zabbix with ODBC support

To enable ODBC support, Zabbix should be compiled with the following flag:

--with-unixodbc[=ARG] use odbc driver against unixODBC package

207

Note:
See more about Zabbix installation from the source code.

15.6 Item configuration in Zabbix frontend

Configure a database monitoring item:

Specifically for database monitoring items you must enter:

Type Select Database monitor here.
Key Enter

db.odbc.select[unique_description,data_source_name]
The unique description will serve to identify the item in
triggers etc.
The data source name (DSN) must be set as specified in
odbc.ini.

User name Enter the database user name (optional if user is specified in
odbc.ini)

Password Enter the database user password (optional if password is
specified in odbc.ini)

SQL query Enter the SQL query
Type of information It is important to know what type of information will be

returned by the query, so that it is selected correctly here.
With an incorrect type of information the item will turn
unsupported.

15.7 Important notes

• Zabbix does not limit the query execution time. It is up to the user to choose queries that can be executed in a reasonable
amount of time.

• The Timeout parameter value from Zabbix server is used as the ODBC login timeout (note that depending on ODBC drivers
the login timeout setting might be ignored).

• The query must return one value only.
• If a query returns more than one column, only the first column is read.
• If a query returns more than one line, only the first line is read.
• The SQL command must return a result set like any query with select The query syntax will depend on the RDBMS
which will process them. The syntax of request to a storage procedure must be started with call keyword.

• See also known issues for ODBC checks

208

15.8 Error messages

Starting from Zabbix 2.0.8 the ODBC error messages are structured into fields to provide more detailed information. Example:

Cannot execute ODBC query:[SQL_ERROR]:[42601][7][ERROR: syntax error at or near ";"; Error while executing the query]|
------------------------- --------- ----- | --- |

| | | `- Native error code `- error message. `- Record separator
| | `-SQLState
`- Zabbix message `- ODBC return code

Note that the error message length is limited to 128 bytes, so the message can be truncated. If there is more than one ODBC
diagnostic record Zabbix tries to concatenate them as far as the length limit allows.

3 History and trends

Overview

History and trends are the two ways of storing collected data in Zabbix.

Whereas history keeps each collected value, trends keep averaged information on hourly basis and therefore are less resource-
hungry.

Keeping history

You can set for how many days history will be kept:

• in the item properties form
• when mass-updating items
• when setting up housekeeper tasks

Any older data will be removed by the housekeeper.

The general strong advice is to keep history for the smallest possible number of days and that way not to overload the database
with lots of historical values.

Instead of keeping a long history, you can keep longer data of trends. For example, you could keep history for 14 days and trends
for 5 years.

You can get a good idea of how much space is required by history versus trends data by referring to the database sizing page.

While keeping shorter history, you will still be able to review older data in graphs, as graphs will use trend values for displaying
older data.

Attention:
If history is set to ’0’, the item will update only inventory. No trigger functions will be evaluated.

Keeping trends

Trends is a built-in historical data reduction mechanism which stores minimum, maximum, average and the total number of values
per every hour for numeric data types.

You can set for how many days trends will be kept:

• in the item properties form
• when mass-updating items
• when setting up Housekeeper tasks

Trends usually can be kept for much longer than history. Any older data will be removed by the housekeeper.

Attention:
If trends are set to ’0’, Zabbix server does not calculate or store trends at all.

Note:
The trends are calculated and stored with the same data type as the original values. As the result the average value
calculations of unsigned data type values are rounded and the less the value interval is the less precise the result will be.
For example if item has values 0 and 1, the average value will be 0, not 0.5.
Also restarting server might result in the precision loss of unsigned data type average value calculations for the current
hour.

209

4 User parameters

Overview

Sometimes you may want to run an agent check that does not come predefined with Zabbix. This is where user parameters come
to help.

You may write a command that retrieves the data you need and include it in the user parameter in the agent configuration file
(’UserParameter’ configuration parameter).

A user parameter has the following syntax:

UserParameter=<key>,<command>

As you can see, a user parameter also contains a key. The key will be necessary when configuring an item. Enter a key of your
choice that will be easy to reference (it must be unique within a host). Restart the agent.

Then, when configuring an item, enter the key to reference the command from the user parameter you want executed.

User parameters are commands executed by Zabbix agent. Up to 512KB of data can be returned. Note, however, that the text
value that can be eventually stored in database is limited to 64KB on MySQL (see info on other databases in the table).

The return value of the command is standard output; standard error is discarded. /bin/sh is used as a command line interpreter
under UNIX operating systems. User parameters obey the agent check timeout; if timeout is reached the forked user parameter
process is terminated.

See also:

• Step-by-step tutorial on making use of user parameters
• Command execution

Examples of simple user parameters

A simple command:

UserParameter=ping,echo 1

The agent will always return ’1’ for an item with ’ping’ key.

A more complex example:

UserParameter=mysql.ping,mysqladmin -uroot ping|grep -c alive

The agent will return ’1’, if MySQL server is alive, ’0’ - otherwise.

Flexible user parameters

Flexible user parameters accept parameters with the key. This way a flexible user parameter can be the basis for creating several
items.

Flexible user parameters have the following syntax:

UserParameter=key[*],command

Parameter Description

Key Unique item key. The [*] defines that this key accepts parameters
within the brackets.
Parameters are given when configuring the item.

Command Command to be executed to evaluate value of the key.
For flexible user parameters only:
You may use positional references $1…$9 in the command to refer
to the respective parameter in the item key.
Zabbix parses the parameters enclosed in [] of the item key and
substitutes $1,...,$9 in the command accordingly.
$0 will be substituted by the original command (prior to expansion
of $0,...,$9) to be run.
Positional references with the $ sign are interpreted regardless of
whether they are enclosed between double (”) or single (’) quotes.
To use positional references unaltered, specify a double dollar sign
- for example, awk ’{print $$2}’. In this case $$2 will actually turn
into $2 when executing the command.

210

Attention:
Positional references with the $ sign are searched for and replaced by Zabbix agent only for flexible user parameters. For
simple user parameters, such reference processing is skipped and, therefore, any $ sign quoting is not necessary.

Attention:
Unless UnsafeUserParameters agent daemon configuration option is enabled, it is not allowed to pass flexible parameters
containing these symbols: \ ’ ” ‘ * ? [] { } ~ $! & ; () < > | # @. Additionally, newline is not allowed either.

Note:
User parameters that return text (character, log, text types of information) now can return whitespace only as well, setting
the return value to an empty string (supported since 2.0). If non-valid value is returned, ZBX_NOTSUPPORTED will be sent
back by the agent.

Example 1

Something very simple:

UserParameter=ping[*],echo $1

We may define unlimited number of items for monitoring all having format ping[something].

• ping[0] - will always return ’0’
• ping[aaa] - will always return ’aaa’

Example 2

Let’s add more sense!

UserParameter=mysql.ping[*],mysqladmin -u$1 -p$2 ping | grep -c alive

This parameter can be used for monitoring availability of MySQL database. We can pass user name and password:

mysql.ping[zabbix,our_password]

Example 3

How many lines matching a regular expression in a file?

UserParameter=wc[*],grep -c "$2" $1

This parameter can be used to calculate number of lines in a file.

wc[/etc/passwd,root]
wc[/etc/services,zabbix]

1 Extending Zabbix agents

This tutorial provides step-by-step instructions on how to extend the functionality of Zabbix agent with the use of a user parameter.

Step 1

Write a script or command line to retrieve required parameter.

For example, we may write the following command in order to get total number of queries executed by a MySQL server:

mysqladmin -uroot status|cut -f4 -d":"|cut -f1 -d"S"

When executed, the command returns total number of SQL queries.

Step 2

Add this command to agent’s configuration file.

Add the command to zabbix_agentd.conf:

UserParameter=mysql.questions,mysqladmin -uroot status|cut -f4 -d":"|cut -f1 -d"S"

mysql.questions is an unique identifier. It can be any string, for example, queries.

Test this parameter by using zabbix_get utility.

Step 3

Restart Zabbix agent.

211

Agent will reload configuration file.

Step 4

Add new item for monitoring.

Add new item with Key=mysql.questions to the monitored host. Type of the item must be either Zabbix Agent or Zabbix Agent
(active).

Be aware that type of returned values must be set correctly on Zabbix server. Otherwise Zabbix won’t accept them.

5 Loadable modules

5.1 Overview

Loadable modules offer a performance-minded option for extending Zabbix functionality.

There already are ways of extending Zabbix functionality by way of:

• user parameters (agent metrics)
• external checks (agent-less monitoring)
• system.run[] Zabbix agent item.

They work very well, but have one major drawback, namely fork(). Zabbix has to fork a new process every time it handles a user
metric, which is not good for performance. It is not a big deal normally, however it could be a serious issue when monitoring
embedded systems, having a large number of monitored parameters or heavy scripts with complex logic or long startup time.

Zabbix 2.2 comes with support of loadable modules for extending Zabbix agent, server and proxy without sacrificing performance.

A loadable module is basically a shared library used by Zabbix daemon and loaded on startup. The library should contain certain
functions, so that a Zabbix process may detect that the file is indeed a module it can load and work with.

Loadable modules have a number of benefits. Great performance and ability to implement any logic are very important, but
perhaps the most important advantage is the ability to develop, use and share Zabbix modules. It contributes to trouble-free
maintenance and helps to deliver new functionality easier and independently of the Zabbix core code base.

Module licensing and distribution in binary form is governed by the GPL license (modules are linking with Zabbix in runtime and
are using Zabbix headers; currently the whole Zabbix code is licensed under GPL license). Binary compatibility is not guaranteed
by Zabbix.

Module API stability is guaranteed during one Zabbix LTS (Long Term Support) release cycle. Stability of Zabbix API is not guaranteed
(technically it is possible to call Zabbix internal functions from a module, but there is no guarantee that such modules will work).

5.2 Module API

In order for a shared library to be treated as a Zabbix module, it should implement and export several functions. There are currently
five functions in the Zabbix module API, two of which are mandatory and the other three are optional.

5.2.1 Mandatory interface

The two mandatory functions are zbx_module_api_version() and zbx_module_init():

int zbx_module_api_version(void);

This function should return the API version implemented by thismodule. Currently, there is only one version, ZBX_MODULE_API_VERSION_ONE
(defined to 1), so this function should return this constant.

int zbx_module_init(void);

This function should perform the necessary initialization for the module (if any). If successful, it should return ZBX_MODULE_OK.
Otherwise, it should return ZBX_MODULE_FAIL.

These two functions are mandatory in a sense that if any of them is absent frommodule API or any of them returns an unacceptable
result when called for any module in the list of modules to load Zabbix will not start.

5.2.2 Optional interface

The three optional functions are zbx_module_item_list(), zbx_module_item_timeout(), zbx_module_uninit():

ZBX_METRIC *zbx_module_item_list(void);

This function should return a list of items supported by the module. Zabbix reads the list of supported items only once on startup.
New items cannot be added during the operation. Each item is defined in a ZBX_METRIC structure, see the section below for
details. The list is terminated by a ZBX_METRIC structure with ”key” field of NULL. If this function is absent from the module API,
Zabbix will unload the module and proceed with loading other modules.

212

http://www.zabbix.com/life_cycle_and_release_policy

void zbx_module_item_timeout(int timeout);

This function is used by Zabbix to specify the timeout settings in Zabbix configuration file that the module should obey. Here, the
”timeout” parameter is in seconds.

int zbx_module_uninit(void);

This function should perform the necessary uninitialization (if any) like freeing allocated resources, closing file descriptors, etc.

All functions are called once on Zabbix startup when the module is loaded, with the exception of zbx_module_uninit(), which is
called once on Zabbix shutdown when the module is unloaded.

5.2.3 Defining items

Each item is defined in a ZBX_METRIC structure:

typedef struct
{

char *key;
unsigned flags;
int (*function)();
char *test_param;

}
ZBX_METRIC;

Here, key is the item key (e.g., ”dummy.random”), flags is either CF_HAVEPARAMS or 0 (depending on whether the item accepts
parameters or not), function is a C function that implements the item (e.g., ”zbx_module_dummy_random”), and test_param is
the parameter list to be used when Zabbix agent is started with the ”-p” flag (e.g., ”1,1000”, can be NULL). An example definition
may look like this:

static ZBX_METRIC keys[] =
{

{ "dummy.random", CF_HAVEPARAMS, zbx_module_dummy_random, "1,1000" },
{ NULL }

}

Each function that implements an item should accept two pointer parameters, the first one of type AGENT_REQUEST and the
second one of type AGENT_RESULT:

int zbx_module_dummy_random(AGENT_REQUEST *request, AGENT_RESULT *result)
{

...

SET_UI64_RESULT(result, from + rand() % (to - from + 1));

return SYSINFO_RET_OK;
}

These functions should return SYSINFO_RET_OK, if the item value was successfully obtained. Otherwise, they should return SYS-
INFO_RET_FAIL. See example ”dummy” module below for details on how to obtain information from AGENT_REQUEST and how to
set information in AGENT_RESULT.

5.2.4 Building modules

Modules are currently meant to be built inside Zabbix source tree, because the module API depends on some data structures that
are defined in Zabbix headers.

Themost important header for loadable modules is include/module.h, which defines these data structures. Another useful header
is include/sysinc.h, which performs the inclusion of the necessary system headers, which itself helps include/module.h to work
properly.

In order for include/module.h and include/sysinc.h to be included, the ./configure command (without arguments) should first be
run in the root of Zabbix source tree. This will create include/config.h file, which include/sysinc.h relies upon. (If you obtained
Zabbix source code as a Subversion repository checkout, the ./configure script does not exist yet and the ./bootstrap.sh command
should first be run to generate it.)

With this information in mind, everything is ready for the module to be built. The module should include sysinc.h andmodule.h,
and the build script should make sure that these two files are in the include path. See example ”dummy” module below for details.

Another useful header is include/log.h, which defines zabbix_log() function, which can be used for logging and debugging
purposes.

213

5.3 Configuration parameters

Zabbix agent, server and proxy support two parameters to deal with modules:

• LoadModulePath – full path to the location of loadable modules
• LoadModule – module(s) to load at startup. The modules must be located in a directory specified by LoadModulePath. It is
allowed to include multiple LoadModule parameters.

For example, to extend Zabbix agent we could add the following parameters:

LoadModulePath=/usr/local/lib/zabbix/agent/
LoadModule=mariadb.so
LoadModule=apache.so
LoadModule=kernel.so
LoadModule=dummy.so

Upon agent startup it will load the mariadb.so, apache.so, kernel.so and dummy.so modules from the /usr/local/lib/zabbix/agent
directory. It will fail if a module is missing, in case of bad permissions or if a shared library is not a Zabbix module.

5.4 Frontend configuration

Loadable modules are supported by Zabbix agent, server and proxy. Therefore, item type in Zabbix frontend depends on where the
module is loaded. If the module is loaded into the agent, then the item type should be ”Zabbix agent” or ”Zabbix agent (active)”.
If the module is loaded into server or proxy, then the item type should be ”Simple check”.

5.5 Dummy module

Zabbix 2.2 includes a sample module written in C language. The module is located under src/modules/dummy:

alex@alex:~trunk/src/modules/dummy$ ls -l
-rw-rw-r-- 1 alex alex 9019 Apr 24 17:54 dummy.c
-rw-rw-r-- 1 alex alex 67 Apr 24 17:54 Makefile
-rw-rw-r-- 1 alex alex 245 Apr 24 17:54 README

The module is well documented, it can be used as a template for your own modules.

After ./configure has been run in the root of Zabbix source tree as described above, just run make in order to build dummy.so.

/*
** Zabbix
** Copyright (C) 2001-2013 Zabbix SIA
**
** This program is free software; you can redistribute it and/or modify
** it under the terms of the GNU General Public License as published by
** the Free Software Foundation; either version 2 of the License, or
** (at your option) any later version.
**
** This program is distributed in the hope that it will be useful,
** but WITHOUT ANY WARRANTY; without even the implied warranty of
** MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
** GNU General Public License for more details.
**
** You should have received a copy of the GNU General Public License
** along with this program; if not, write to the Free Software
** Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston,
** MA 02110-1301, USA.
**/

####include "sysinc.h"
####include "module.h"

/* the variable keeps timeout setting for item processing */
static int item_timeout = 0;

int zbx_module_dummy_ping(AGENT_REQUEST *request, AGENT_RESULT *result);
int zbx_module_dummy_echo(AGENT_REQUEST *request, AGENT_RESULT *result);
int zbx_module_dummy_random(AGENT_REQUEST *request, AGENT_RESULT *result);

static ZBX_METRIC keys[] =

214

/* KEY FLAG FUNCTION TEST PARAMETERS */
{

{"dummy.ping", 0, zbx_module_dummy_ping, NULL},
{"dummy.echo", CF_HAVEPARAMS, zbx_module_dummy_echo, "a message"},
{"dummy.random", CF_HAVEPARAMS, zbx_module_dummy_random,"1,1000"},
{NULL}

};

/**
* *
* Function: zbx_module_api_version *
* *
* Purpose: returns version number of the module interface *
* *
* Return value: ZBX_MODULE_API_VERSION_ONE - the only version supported by *
* Zabbix currently *
* *
**/
int zbx_module_api_version()
{

return ZBX_MODULE_API_VERSION_ONE;
}

/**
* *
* Function: zbx_module_item_timeout *
* *
* Purpose: set timeout value for processing of items *
* *
* Parameters: timeout - timeout in seconds, 0 - no timeout set *
* *
**/
void zbx_module_item_timeout(int timeout)
{

item_timeout = timeout;
}

/**
* *
* Function: zbx_module_item_list *
* *
* Purpose: returns list of item keys supported by the module *
* *
* Return value: list of item keys *
* *
**/
ZBX_METRIC *zbx_module_item_list()
{

return keys;
}

int zbx_module_dummy_ping(AGENT_REQUEST *request, AGENT_RESULT *result)
{

SET_UI64_RESULT(result, 1);

return SYSINFO_RET_OK;
}

int zbx_module_dummy_echo(AGENT_REQUEST *request, AGENT_RESULT *result)
{

char *param;

215

if (1 != request→nparam)
{

/* set optional error message */
SET_MSG_RESULT(result, strdup("Invalid number of parameters"));
return SYSINFO_RET_FAIL;

}

param = get_rparam(request, 0);

SET_STR_RESULT(result, strdup(param));

return SYSINFO_RET_OK;
}

/**
* *
* Function: zbx_module_dummy_random *
* *
* Purpose: a main entry point for processing of an item *
* *
* Parameters: request - structure that contains item key and parameters *
* request→key - item key without parameters *
* request→nparam - number of parameters *
* request→timeout - processing should not take longer than *
* this number of seconds *
* request→params[N-1] - pointers to item key parameters *
* *
* result - structure that will contain result *
* *
* Return value: SYSINFO_RET_FAIL - function failed, item will be marked *
* as not supported by zabbix *
* SYSINFO_RET_OK - success *
* *
* Comment: get_rparam(request, N-1) can be used to get a pointer to the Nth *
* parameter starting from 0 (first parameter). Make sure it exists *
* by checking value of request→nparam. *
* *
**/
int zbx_module_dummy_random(AGENT_REQUEST *request, AGENT_RESULT *result)
{

char *param1, *param2;
int from, to;

if (request→nparam != 2)
{

/* set optional error message */
SET_MSG_RESULT(result, strdup("Invalid number of parameters"));
return SYSINFO_RET_FAIL;

}

param1 = get_rparam(request, 0);
param2 = get_rparam(request, 1);

/* there is no strict validation of parameters for simplicity sake */
from = atoi(param1);
to = atoi(param2);

if (from > to)
{

SET_MSG_RESULT(result, strdup("Incorrect range given"));
return SYSINFO_RET_FAIL;

}

216

SET_UI64_RESULT(result, from + rand() % (to - from + 1));

return SYSINFO_RET_OK;
}

/**
* *
* Function: zbx_module_init *
* *
* Purpose: the function is called on agent startup *
* It should be used to call any initialization routines *
* *
* Return value: ZBX_MODULE_OK - success *
* ZBX_MODULE_FAIL - module initialization failed *
* *
* Comment: the module won't be loaded in case of ZBX_MODULE_FAIL *
* *
**/
int zbx_module_init()
{

/* initialization for dummy.random */
srand(time(NULL));

return ZBX_MODULE_OK;
}

/**
* *
* Function: zbx_module_uninit *
* *
* Purpose: the function is called on agent shutdown *
* It should be used to cleanup used resources if there are any *
* *
* Return value: ZBX_MODULE_OK - success *
* ZBX_MODULE_FAIL - function failed *
* *
**/
int zbx_module_uninit()
{

return ZBX_MODULE_OK;
}

The module exports three new items:

• dummy.ping - always returns ’1’
• dummy.echo[param1] - returns the first parameter as it is, for example, dummy.echo[ABC] will return ABC
• dummy.random[param1, param2] - returns a random number within the range of param1-param2, for example,
dummy.random[1,1000000]

5.6 Limitations

Support of loadable modules is implemented for the Unix platform only. It means that it does not work for Windows agents.

In some cases a module may need to read module-related configuration parameters from zabbix_agentd.conf. It is not supported
currently. If you need your module to use some configuration parameters you should probably implement parsing of a module-
specific configuration file.

6 Windows performance counters

Overview

You can effectively monitor Windows performance counters using the perf_counter[] key.

For example:

217

perf_counter["\Processor(0)\Interrupts/sec"]

or

perf_counter["\Processor(0)\Interrupts/sec", 10]

For more information on using this key, see WIN32-specific item keys.

In order to get a full list of performance counters available for monitoring, you may run:

typeperf -qx

Numeric representation

As the naming of performance counters may differ on different Windows servers, depending on local settings, it introduces a certain
problem when creating a template for monitoring several Windows machines having different locales.

At the same time every performance counter can also be referred to by its numeric form, which is unique and exactly the same
regardless of language settings, so you might use the numeric representation instead of strings.

To find out the numeric equivalents, run regedit, then findHKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows NT\CurrentVersion\Perflib\009.

The registry entry contains information like this:

1
1847
2
System
4
Memory
6
% Processor Time
10
File Read Operations/sec
12
File Write Operations/sec
14
File Control Operations/sec
16
File Read Bytes/sec
18
File Write Bytes/sec
....

Here you can find the corresponding numbers for each string part of the performance counter, like in ’\System\% Processor Time’:

System → 2
% Processor Time → 6

Then you can use these numbers to represent the path in numbers:

\2\6

Performance counter parameters

You can deploy some PerfCounter parameters for the monitoring of Windows performance counters.

For example, you can add these to the Zabbix agent configuration file:

PerfCounter=UserPerfCounter1,"\Memory\Page Reads/sec",30
or
PerfCounter=UserPerfCounter2,"\4\24",30

With such parameters in place, you can then simply use UserPerfCounter1 or UserPerfCounter2 as the keys for creating the respec-
tive items.

Remember to restart Zabbix agent after making changes to the configuration file.

Troubleshooting

Sometimes Zabbix agent cannot retrieve performance counter values in Windows 2000-based systems, because the pdh.dll file is
outdated. It shows up as failure messages in Zabbix agent and server log files. In this case pdh.dll should be updated to a newer
5.0.2195.2668 version.

218

7 Mass update

Overview

Sometimes you may want to change some attribute for a number of items at once. Instead of opening each individual item for
editing, you may use the mass update function for that.

Using mass update

To mass-update some items, do the following:

• Mark the checkboxes of the items to update in the list
• Select Mass update from the dropdown below and click on Go
• Mark the checkboxes of the attributes to update
• Enter new values for the attributes and click on Update

219

220

Replace applications will remove the item from any existing applications and replace those with the one(s) specified in this field.

Add new or existing applications allows to specify additional applications from the existing ones or enter completely new applica-
tions for the items.

Both these fields are auto-complete - starting to type in them offers a dropdown of matching applications. If the application is new,
it also appears in the dropdown and it is indicated by (new) after the string. Just scroll down to select.

8 Value mapping

Overview

For a more ”human” representation of received values, you can use value maps that contain the mapping between numeric values
and string representations.

Value mappings can be used in both the Zabbix frontend and notifications sent by email/SMS/jabber etc.

For example, an item which has value ’0’ or ’1’ can use value mapping to represent the values in a human-readable form:

• ’0’ => ’Not Available’
• ’1’ => ’Available’

Or, a backup related value map could be:

• ’F’ → ’Full’
• ’D’ → ’Differential’
• ’I’ → ’Incremental’

Thus, when configuring items you can use a value map to ”humanize” the way an item value will be displayed. To do that, you
refer to the name of a previously defined value map in the Show value field.

Note:
Before Zabbix 2.2 value mapping could only be used with items having a Numeric (unsigned) type of information. Starting
with Zabbix 2.2, Numeric (float) and Character information types are also supported for value mapping.

Configuration

To define a value map:

• Go to: Administration → General
• Select Value mapping from the dropdown
• Click on Create value map (or on the name of an existing map)

221

Parameters of a value map:

Parameter Description

Name Unique name of a set of value mappings.
Mapping Individual mappings - pairs of numeric values and their string

representations.
New mapping A single mapping for addition.

How this works

For example, one of the predefined agent items ’Ping to the server (TCP)’ uses an existing value map called ’Service state’ to
display its values.

222

In the item configuration form you can see a reference to this value map in the Show value field:

So in Monitoring → Latest data the mapping is put to use to display ’Up’ (with the raw value in parentheses).

In the Latest data section displayed values are shortened to 20 symbols. If value mapping is used, this shortening is not applied
to the mapped value, but only to the raw value separately (displayed in parenthesis).

Note:
A value being displayed in a human-readable form is also easier to understand when receiving notifications.

Without a predefined value map you would only get this:

So in this case you would either have to guess what the ’1’ stands for or do a search of documentation to find out.

9 Applications

Overview

Applications are used to group items in logical groups.

For example, the MySQL Server application can hold all items related to the MySQL server: availability of MySQL, disk space,
processor load, transactions per second, number of slow queries, etc.

Applications are also used for grouping web scenarios.

If you are using applications, then in Monitoring → Latest data you will see items and web scenarios grouped under their respective
applications.

Configuration

To work with applications you must first create them and then link items or web scenarios to them.

To create an application, do the following:

• Go to Configuration → Hosts or Templates
• Click on Applications next to the required host or template
• Click on Create application
• Enter the application name and save it

223

You can also create a new application directly in the item properties form.

Items are linked to applications in the item properties form. Select one or more applications the item will belong to.

Web scenarios are linked to applications in the web scenario definition form. Select the application the scenario will belong to.

10 Queue

Overview

The queue displays items that are waiting for a refresh. The queue is just a logical representation of data. There is no IPC queue
or any other queue mechanism in Zabbix.

Items monitored by proxies are also included in the queue - they will be counted as queued for the proxy history data update
period.

Only items with scheduled refresh times are displayed in the queue. This means that the following item types are excluded from
the queue:

• log, logrt and event log active Zabbix agent items
• SNMP trap items
• trapper items
• web monitoring items

Statistics shown by the queue is a good indicator of the performance of Zabbix server.

The queue is retrieved directly from Zabbix server using JSON protocol. The information is available only if Zabbix server is running.

Reading the queue

To read the queue, go to Administration → Queue. Overview should be selected in the dropdown to the right.

The picture here is generally ”green” so we may assume that the server is doing fine.

The queue shows one item waiting for 10 seconds and one for 5 minutes. Nice, it would be great to know what items these are.

To do just that, select Details in the dropdown in the upper right corner. Now you can see a list of those delayed items.

224

With these details provided it may be possible to find out why these items might be delayed.

With one or two delayed items there perhaps is no cause for alarm. They might get updated in a second. However, if you see a
bunch of items getting delayed for too long, there might be a more serious problem.

Is the agent down?

Delay for remote node items

Queue information from a child node is not up-to-date. The master node receives historical data with a certain delay (normally,
up-to 10 seconds for inter-node data transfer), so the information is delayed.

The information from a child node also depends on:

• performance of the child node
• communications between master and child nodes
• possible local time difference between master and child nodes

Queue item

A special internal item zabbix[queue,<from>,<to>] can be used to monitor the health of the queue in Zabbix. It will return the
number of items delayed by the set amount of time. For more information see Internal items.

11 Value cache

Overview

To make the calculation of trigger expressions, calculated/aggregate items and some macros much faster, starting with Zabbix 2.2
a value cache option is supported by the Zabbix server.

This in-memory cache can be used for accessing historical data, instead of making direct SQL calls to the database. If historical
values are not present in the cache, the missing values are requested from the database and the cache updated accordingly.

To enable the value cache functionality, an optional ValueCacheSize parameter is supported by the Zabbix server configuration
file.

Two internal items are supported formonitoring the value cache: zabbix[vcache,buffer,<mode>] and zabbix[vcache,cache,<parameter>].
See more details with internal items.

3 Triggers

Overview

Triggers are logical expressions that ”evaluate” data gathered by items and represent the current system state.

While items are used to gather system data, it is highly impractical to follow these data all the time waiting for a condition that is
alarming or deserves attention. The job of ”evaluating” data can be left to trigger expressions.

Trigger expressions allow to define a threshold of what state of data is ”acceptable”. Therefore, should the incoming data surpass
the acceptable state, a trigger is ”fired” - or changes status to PROBLEM.

A trigger may have the following status:

VALUE DESCRIPTION

OK This is a normal trigger state. Called FALSE in older Zabbix versions.
PROBLEM Normally means that something happened. For example, the processor load is too

high. Called TRUE in older Zabbix versions.

Trigger status (the expression) is recalculated every time Zabbix server receives a new value that is part of the expression.

Triggers are evaluated based on history data only; trend data are never considered.

225

If time-based functions (nodata(), date(), dayofmonth(), dayofweek(), time(), now()) are used in the expression, the trigger
is recalculated every 30 seconds by a Zabbix timer process. If both time-based and non-time-based functions are used in an
expression, it is recalculated when a new value is received and every 30 seconds.

You can build trigger expressions with different degrees of complexity.

1 Configuring a trigger

Overview

To configure a trigger, do the following:

• Go to: Configuration → Hosts
• Click on Triggers in the row of the host
• Click on Create trigger to the right (or on the trigger name to edit an existing trigger)
• Enter parameters of the trigger in the form

Configuration

The Trigger tab contains all the essential trigger attributes.

226

Parameter Description

Name Trigger name.
The name may contain the supported macros: {HOST.HOST},
{HOST.NAME}, {HOST.CONN}, {HOST.DNS}, {HOST.IP},
{ITEM.VALUE}, {ITEM.LASTVALUE} and {$MACRO}.
$1, $2...$9 macros can be used to refer to the first, second...ninth
constant of the expression.
Note: $1-$9 macros will resolve correctly if referring to constants in
relatively simple, straightforward expressions. For example, the
name ”Processor load above $1 on {HOST.NAME}” will
automatically change to ”Processor load above 5 on New host” if
the expression is {New
host:system.cpu.load[percpu,avg1].last()}>5

Expression Logical expression used for calculating the trigger state.
Multiple PROBLEM events generation By checking this option you can set that an event is generated

upon every ’Problem’ evaluation of the trigger.
Description Text field used to provide more information about this trigger. May

contain instructions for fixing specific problem, contact detail of
responsible staff, etc.
Starting with Zabbix 2.2, the description may contain the same set
of macros as trigger name.

URL If not empty, the URL entered here is available as a link when
clicking on the trigger name in Monitoring → Triggers.
One macro may be used in the trigger URL field - {TRIGGER.ID}.

Severity Set the required trigger severity by clicking the buttons.
Enabled Unchecking this box will disable the trigger if required.

The Dependencies tab contains all the dependencies of the trigger.

Click on Add to add a new dependency.

Note:
You can also configure a trigger by opening an existing one, pressing the Clone button and then saving under a different
name.

Testing expressions

It is possible to test the configured trigger expression as to what the expression result would be depending on the received value.

To test the expression, click on Expression constructor under the expression field.

In the Expression constructor, all individual expressions are listed. To open the testing window, click on Test below the expression
list.

227

In the testing window you can enter sample values (”6” in this example) and then see the expression result, by clicking on the Test
button.

The result of the individual expressions as well as the whole expression can be seen.

”TRUE” result means the specified expression is correct. In that case current value exceeds the warning value and a Problem has
occurred.

”FALSE” result means the specified expression is incorrect. Warning value hasn’t been exceeded, respectively, Problem has not
occurred.

2 Trigger expression

Overview

The expressions used in triggers are very flexible. You can use them to create complex logical tests regarding monitored statistics.

A simple useful expression might look like:

{<server>:<key>.<function>(<parameter>)}<operator><constant>

Functions

Trigger functions allow to reference the collected values, current time and other factors.

A complete list of supported functions is available.

Function parameters

Most of numeric functions accept the number of seconds as a parameter.

You may use the prefix # to specify that a parameter has a different meaning:

FUNCTION CALL MEANING

sum(600) Sum of all values in no more than the latest 600 seconds
sum(#5) Sum of all values in no more than the last 5 values

The function last uses a different meaning for values when prefixed with the hash mark - it makes it choose the n-th previous
value, so given the values 3, 7, 2, 6, 5 (from most recent to least recent), last(#2) would return 7 and last(#5) would return 5.

Several functions support an additional, second time_shift parameter. This parameter allows to reference data from a period
of time in the past. For example, avg(1h,1d) will return the average value for an hour one day ago.

You can use the supported unit symbols in trigger expressions, for example ’5m’ (minutes) instead of ’300’ seconds or ’1d’ (day)
instead of ’86400’ seconds. ’1K’ will stand for ’1024’ bytes.

Numbers with a ’+’ sign are not supported.

Operators

The following operators are supported for triggers (in descending priority of execution):

PRIORITY OPERATOR DEFINITION

1 / Division
2 *** |Multiplication | |3** - Arithmetical

mi-
nus

4 + Arithmetical plus
5 < Less than. The operator is defined as:

A<B ⇔ (A<=B-0.000001)

228

PRIORITY OPERATOR DEFINITION

6 > More than. The operator is defined as:
A>B ⇔ (A>=B+0.000001)

7 # Not equal. The operator is defined as:
A#B ⇔ (A<=B-0.000001) |
(A>=B+0.000001)

8 = Is equal. The operator is defined as:
A=B ⇔ (A>B-0.000001) &
(A<B+0.000001)

9 & Logical AND
10 | Logical OR

Value caching

Values required for trigger evaluation are cached by Zabbix server. Because of this trigger evaluation causes a higher database
load for some time after the server restarts. The value cache is not cleared when item history values are removed (either manually
or by housekeeper), so the server will use the cached values until they are older than the time periods defined in trigger functions
or server is restarted.

Examples of triggers

Example 1

Processor load is too high on www.zabbix.com

{www.zabbix.com:system.cpu.load[all,avg1].last()}>5

’www.zabbix.com:system.cpu.load[all,avg1]’ gives a short name of the monitored parameter. It specifies that the server is
’www.zabbix.com’ and the key being monitored is ’system.cpu.load[all,avg1]’. By using the function ’last()’, we are referring to
the most recent value. Finally, ’>5’ means that the trigger is in the PROBLEM state whenever the most recent processor load
measurement from www.zabbix.com is greater than 5.

Example 2

www.zabbix.com is overloaded

{www.zabbix.com:system.cpu.load[all,avg1].last()}>5|{www.zabbix.com:system.cpu.load[all,avg1].min(10m)}>2

The expression is true when either the current processor load is more than 5 or the processor load was more than 2 during last 10
minutes.

Example 3

/etc/passwd has been changed

Use of function diff:

{www.zabbix.com:vfs.file.cksum[/etc/passwd].diff()}=1

The expression is true when the previous value of checksum of /etc/passwd differs from the most recent one.

Similar expressions could be useful to monitor changes in important files, such as /etc/passwd, /etc/inetd.conf, /kernel, etc.

Example 4

Someone is downloading a large file from the Internet

Use of function min:

{www.zabbix.com:net.if.in[eth0,bytes].min(5m)}>100K

The expression is true when number of received bytes on eth0 is more than 100 KB within last 5 minutes.

Example 5

Both nodes of clustered SMTP server are down

Note use of two different hosts in one expression:

{smtp1.zabbix.com:net.tcp.service[smtp].last()}=0&{smtp2.zabbix.com:net.tcp.service[smtp].last()}=0

The expression is true when both SMTP servers are down on both smtp1.zabbix.com and smtp2.zabbix.com.

Example 6

Zabbix agent needs to be upgraded

229

Use of function str():

{zabbix.zabbix.com:agent.version.str("beta8")}=1

The expression is true if Zabbix agent has version beta8 (presumably 1.0beta8).

Example 7

Server is unreachable

{zabbix.zabbix.com:icmpping.count(30m,0)}>5

The expression is true if host ”zabbix.zabbix.com” is unreachable more than 5 times in the last 30 minutes.

Example 8

No heartbeats within last 3 minutes

Use of function nodata():

{zabbix.zabbix.com:tick.nodata(3m)}=1

To make use of this trigger, ’tick’ must be defined as a Zabbix trapper item. The host should periodically send data for this item
using zabbix_sender. If no data is received within 180 seconds, the trigger value becomes PROBLEM.

Note that ’nodata’ can be used for any item type.

Example 9

CPU activity at night time

Use of function time():

{zabbix:system.cpu.load[all,avg1].min(5m)}>2&{zabbix:system.cpu.load[all,avg1].time()}>000000&{zabbix:system.cpu.load[all,avg1].time()}<060000

The trigger may change its status to true, only at night (00:00-06:00) time.

Example 10

Check if client local time is in sync with Zabbix server time

Use of function fuzzytime():

{MySQL_DB:system.localtime.fuzzytime(10)}=0

The trigger will change to the problem state in case when local time on server MySQL_DB and Zabbix server differs by more than
10 seconds.

Example 11

Comparing average load today with average load of the same time yesterday (using a second time_shift parameter).

{server:system.cpu.load.avg(1h)}/{server:system.cpu.load.avg(1h,1d)}>2

This expression will fire if the average load of the last hour tops the average load of the same hour yesterday more than two times.

1 Hysteresis

Sometimes a trigger must have different conditions for different states. For example, we would like to define a trigger which would
become PROBLEM when server room temperature is higher than 20C while it should stay in the state until temperature will not
become lower than 15C.

In order to do this, we define the following trigger:

Example 1

Temperature in server room is too high

({TRIGGER.VALUE}=0&{server:temp.last()}>20)|
({TRIGGER.VALUE}=1&{server:temp.last()}>15)

Note the use of a macro {TRIGGER.VALUE}. The macro returns current trigger value.

Example 2

Free disk space is too low

Problem: it is less than 10GB for last 5 minutes

Recovery: it is more than 40GB for last 10 minutes

230

({TRIGGER.VALUE}=0&{server:vfs.fs.size[/,free].max(5m)}<10G) |
({TRIGGER.VALUE}=1&{server:vfs.fs.size[/,free].min(10m)}<40G)

Note use of macro {TRIGGER.VALUE}. The macro returns current trigger value.

3 Trigger dependencies

Overview

Sometimes the availability of one host depends on another. A server that is behind some router will become unreachable if the
router goes down. With triggers configured for both, you might get notifications about two hosts down - while only the router was
the guilty party.

This is where some dependency between hosts might be useful. With dependency set notifications of the dependants could be
withheld and only the notification for the root problem sent.

While Zabbix does not support dependencies between hosts directly, they may be defined with another, more flexible method -
trigger dependencies. A trigger may have one or more triggers it depends on.

So in our simple example we open the server trigger configuration form and set that it depends on the respective trigger of the
router. With such dependency the server trigger will not change state as long as the trigger it depends on is in ’Problem’ state -
and thus no dependant actions will be taken and no notifications sent.

If both the server and the router are down and dependency is there, Zabbix will not execute actions for the dependent trigger.

Actions on dependent triggers will not be executed if the trigger they depend on:

• changes its state from ’PROBLEM’ to ’UNKNOWN’
• is closed with the help of time- based functions
• is resolved by a value of an item not involved in dependent trigger
• is disabled, has disabled item or disabled item host

Note that ”secondary” (dependent) trigger in the above-mentioned cases will not be immediately updated.

Also:

• Trigger dependency may be added from any host trigger to any other host trigger, as long as it wouldn’t result in a circular
dependency.

• Trigger dependency may be added from a template to a template. If a trigger from template A depends on a trigger from
template B, template A may only be linked to a host (or another template) together with template B, but template B may be
linked to a host (or another template) alone.

• Trigger dependency may be added from template trigger to a host trigger. In this case, linking such a template to a host
will create a host trigger that depends on the same trigger template trigger was depending on. This allows to, for example,
have a template where some triggers depend on router (host) triggers. All hosts linked to this template will depend on that
specific router.

• Trigger dependency from a host trigger to a template trigger may not be added.

Configuration

To define a dependency, open the trigger configuration form. Click on Add next to ’New dependency’ and select one or more
triggers that our trigger will depend on.

Click Save. Now the trigger has an indication of its dependency in the list.

Example of several dependencies

For example, a Host is behind a Router2 and the Router2 is behind a Router1.

Zabbix - Router1 - Router2 - Host

231

If Router1 is down, then obviously Host and Router2 are also unreachable yet we don’t want to receive three notifications about
Host, Router1 and Router2 all being down.

So in this case we define two dependencies:

'Host is down' trigger depends on 'Router2 is down' trigger
'Router2 is down' trigger depends on 'Router1 is down' trigger

Before changing the status of the ’Host is down’ trigger, Zabbix will check for corresponding trigger dependencies. If found, and
one of those triggers is in ’Problem’ state, then the trigger status will not be changed and thus actions will not be executed and
notifications will not be sent.

Zabbix performs this check recursively. If Router1 or Router2 is unreachable, the Host trigger won’t be updated.

4 Trigger severity

Trigger severity defines how important a trigger is. Zabbix supports the following trigger severities:

SEVERITY DEFINITION COLOUR

Not classified Unknown severity. Grey
Information For information purposes. Light green
Warning Be warned. Yellow
Average Average problem. Orange
High Something important has happened. Red
Disaster Disaster. Financial losses, etc. Bright red

The severities are used for:

• visual representation of triggers. Different colours for different severities.
• audio in global alarms. Different audio for different severities.
• user media. Different media (notification channel) for different severities. For example, SMS - high severity, email - other.
• limiting actions by conditions against trigger severities

It is possible to customise trigger severity names and colours.

5 Customising trigger severities

Trigger severity names and colours for severity related GUI elements can be configured in Administration → General → Trigger
severities. Colours are shared among all GUI themes.

Translating customised severity names

Attention:
If Zabbix frontend translations are used, custom severity names will override translated names by default.

Default trigger severity names are available for translation in all locales. If a severity name is changed, custom name is used in
all locales and additional manual translation is needed.

Custom severity name translation procedure:

• set required custom severity name, for example ’Important’
• edit <frontend_dir>/locale/<required_locale>/LC_MESSAGES/frontend.po
• add 2 lines:

msgid "Important"
msgstr "<translation string>"

and save file.

• create .mo files as described in <frontend_dir>/locale/README

Here msgid should match the new custom severity name and msgstr should be the translation for it in the specific language.

This procedure should be performed after each severity name change.

232

6 Unit symbols

Overview

Having to use some large numbers, for example ’86400’ to represent the number of seconds in one day, is both difficult and
error-prone. This is why you can use some appropriate unit symbols (or suffixes) to simplify Zabbix trigger expressions and item
keys.

Instead of ’86400’ you can simply enter ’1d’. Suffixes function as multipliers.

Trigger expressions

Time and memory size suffixes are supported in trigger expression constants and function parameters.

For time you can use:

• s - seconds (when used, works the same as the raw value)
• m - minutes
• h - hours
• d - days
• w - weeks

Time suffixes are also supported in parameters of the zabbix[queue,<from>,<to>] internal item and the last parameter of
aggregate checks.

For memory size you can use:

• K - kilobyte
• M - megabyte
• G - gigabyte
• T - terabyte

Other uses

Unit symbols are also used for a human-readable representation of data in the frontend.

In both Zabbix server and frontend these symbols are supported:

• K - kilo
• M - mega
• G - giga
• T - tera

When item values in B, Bps are displayed in the frontend, base 2 is applied (1K = 1024). Otherwise a base of 10 is used (1K =
1000).

Additionally the frontend also supports the display of:

• P - peta
• E - exa
• Z - zetta
• Y - yotta

Usage examples

By using some appropriate suffixes you can write trigger expressions that are easier to understand and maintain, for example
these expressions:

{host:zabbix[proxy,zabbix_proxy,lastaccess]}>120
{host:system.uptime[].last()}<86400
{host:system.cpu.load.avg(600)}<10
{host:vm.memory.size[available].last()}<20971520

could be changed to:

{host:zabbix[proxy,zabbix_proxy,lastaccess]}>2m
{host:system.uptime.last()}<1d
{host:system.cpu.load.avg(10m)}<10
{host:vm.memory.size[available].last()}<20M

233

7 Mass update

Overview

With mass update you may change some attribute for a number of triggers at once, saving you the need to open each individual
trigger for editing.

Using mass update

To mass-update some triggers, do the following:

• Mark the checkboxes of the triggers to update in the list
• Select Mass update below the list and click on Go
• Mark the checkboxes of the attributes to update
• Specify new values for the attributes and click on Update

Replace dependencies will replace existing trigger dependencies (if any) with the ones specified in mass update.

4 Events

Overview

There are several types of events generated in Zabbix:

• trigger events - whenever a trigger changes its status (OK→PROBLEM→OK)
• discovery events - when hosts or services are detected
• auto registration events - when active agents are auto-registered by server
• internal events - when an item/low-level discovery rule becomes unsupported or a trigger goes into an unknown state

Note:
Internal events are supported starting with Zabbix 2.2 version.

Events are time-stamped and can be the basis of actions such as sending notification e-mail etc.

To view details of events in the frontend, go to Monitoring | Events. There you can click on the event date and time to view details
of an event.

More information is available on each event source.

1 Event sources

1.1 Trigger events

Change of trigger status is the most frequent and most important source of events.

Each time the trigger changes its state, an event is generated. The event contains details of the trigger state’s change - when did
it happen and what the new state is.

1.2 Discovery events

234

Zabbix periodically scans the IP ranges defined in network discovery rules. Frequency of the check is configurable for each rule
individually. Once a host or a service is discovered, a discovery event (or several events) are generated.

Zabbix generates the following events:

Event When generated

Service Up Every time Zabbix detects active service.
Service Down Every time Zabbix cannot detect service.
Host Up If at least one of the services is UP for the IP.
Host Down If all services are not responding.
Service Discovered If the service is back after downtime or discovered for the first time.
Service Lost If the service is lost after being up.
Host Discovered If host is back after downtime or discovered for the first time.
Host Lost If host is lost after being up.

1.3 Active agent auto-discovery events

Active agent auto-registration creates events in Zabbix.

If configured, active agent auto-registration can happen when a previously unknown active agent asks for checks. The server adds
a new auto-registered host, using the received IP address and port of the agent.

For more information, see the active agent auto-registration page.

1.4 Internal events

Internal events happen when:

• an item changes state from ’normal’ to ’unsupported’
• an item changes state from ’unsupported’ to ’normal’
• a low-level discovery rule changes state from ’normal’ to ’unsupported’
• a low-level discovery rule changes state from ’unsupported’ to ’normal’
• a trigger changes state from ’normal’ to ’unknown’
• a trigger changes state from ’unknown’ to ’normal’

Internal events are supported starting with Zabbix 2.2. The aim of introducing internal events is to allow users to be notified when
any internal event takes place, for example, an item becomes unsupported and stops gathering data.

5 Visualisation

1 Graphs

Overview

With lots of data flowing into Zabbix, it becomes much easier for the users if they can look at a visual representation of what is
going on rather than only numbers.

This is where graphs come in. Graphs allow to grasp the data flow at a glance, correlate problems, discover when something
started or make a presentation of when something might turn into a problem.

Zabbix provides users with built-in simple graphs as well as with the possibility to create more complex customised graphs.

1 Simple graphs

Overview

Simple graphs are provided for the visualization of data gathered by items.

No configuration effort is required on the user part to view simple graphs. They are freely made available by Zabbix.

Just go to Monitoring → Latest data and click on the Graph link for the respective item and a graph will be displayed.

235

Time period selector

Take note of the time period selector above the graph. It allows you to select the desired time period easily.

The slider within the selector can be dragged back and forth, as well as resized, effectively changing the time period displayed.
Links on the left hand side allow to choose some often-used predefined periods (above the slider area) and move them back and
forth in time (below the slider area). The dates on the right hand side actually work as links, popping up a calendar and allowing
to set a specific start/end time.

The fixed/dynamic link in the lower right hand corner has the following effects:

• controls whether the time period is kept constant when you change the start/end time in the calendar popup.
• when fixed, time moving controls (« 6m 1m 7d 1d 12h 1h | 1h 12h 1d 7d 1m 6m ») will move the slider, while not changing
its size, whereas when dynamic, the control used will enlarge the slider in the respective direction.

• when fixed, pressing the larger < and > buttons will move the slider, while not changing its size, whereas when dynamic, <
and > will enlarge the slider in the respective direction. The slider will move by the amount of its size, so, for example, if it
is one month, it will move by a month; whereas the slider will enlarge by 1 day.

Another way of controlling the displayed time is to highlight an area in the graph with the left mouse button. The graph will zoom
into the highlighted area once you release the left mouse button.

Note:
Simple graphs are provided for all numeric items. For textual items, a link to History is available in Monitoring → Latest
data.

Recent data vs longer periods

For very recent data a single line is drawn connecting each received value. The single line is drawn as long as there is at least
one horizontal pixel available for one value.

For data that show a longer period three lines are drawn - a dark green one shows the average, while a light pink and a light
green line shows the maximum and minimum values at that point in time. The space between the highs and the lows is filled with
yellow background.

236

Working time (working days) is displayed in graphs as a white background, while non-working time is displayed in grey (with the
Original blue default frontend theme).

Working time is always displayed in simple graphs, whereas displaying it in custom graphs is a user preference.

Working time is not displayed if the graph shows more than 3 months.

Generating from history/trends

Graphs can be drawn based on either item history or trends. A grey caption at the bottom right of a graph indicates where the
data come from.

Several factors influence whether history of trends is used:

• longevity of item history. For example, item history can be kept for 14 days. In that case, any data older than the fourteen
days will be coming from trends.

• data congestion in the graph. If the amount of seconds to display in a horizontal graph pixel exceeds 3600/16, trend data
are displayed (even if item history is still available for the same period).

• if trends are disabled, item history is used for graph building - if available for that period. This is supported starting with
Zabbix 2.2.1 (before, disabled trends would mean an empty graph for the period even if item history was available).

Absence of data

For items with a regular update interval, nothing is displayed in the graph if item data are not collected.

However, for trapper items, a straight line is drawn leading up to the first collected value and from the last collected value to the
end of graph; the line is on the level of the first/last value respectively.

Switching to raw values

A dropdown on the upper right allows to switch from the simple graph to the Values/500 latest values listings. This can be useful
for viewing the numeric values making up the graph.

The values represented here are raw, i.e. no units or postprocessing of values is used. Value mapping, however, is applied.

2 Custom graphs

Overview

Custom graphs, as the name suggests, offer customisation capabilities.

While simple graphs are good for viewing data of a single item, they do not offer configuration capabilities.

Thus, if you want to change graph style or the way lines are displayed or compare several items, for example incoming and outgoing
traffic in a single graph, you need a custom graph.

Custom graphs are configured manually.

They can be created for a host or several hosts or for a single template.

Configuring custom graphs

To create a custom graph, do the following:

• Go to Configuration → Hosts (or Templates)
• Click on Graphs in the row next to the desired host or template

237

• In the Graphs screen click on Create graph
• Edit graph attributes

Graph attributes:

Parameter Description

Name Unique graph name.
Starting with Zabbix 2.2, item values can be referenced in the
name by using simple macros with the standard
{host:key.func(param)} syntax. Only avg, last, max and
min as functions with seconds as parameter are supported within
this macro. {HOST.HOST<1-9>} macros are supported for the use
within this macro, referencing the first, second, third, etc. host in
the graph, for example {{HOST.HOST1}:key.func(param)}.

Width Graph width in pixels (for preview and pie/exploded graphs only).
Height Graph height in pixels.
Graph type Graph type:

Normal - normal graph, values displayed as lines
Stacked - stacked graph, filled areas displayed
Pie - pie graph
Exploded - ”exploded” pie graph, portions displayed as ”cut out”
of the pie

Show legend Checking this box will set to display the graph legend.
Show working time If selected, non-working hours will be shown with gray background.

Not available for pie and exploded pie graphs.
Show triggers If selected, simple triggers will be displayed as red lines. Not

available for pie and exploded pie graphs.
Percentile line (left) Display percentile for left Y axis. If, for example, 95% percentile is

set, then the percentile line will be at the level where 95 per cent
of the values fall under. Displayed as a bright green line. Only
available for normal graphs.

Percentile line (right) Display percentile for right Y axis. If, for example, 95% percentile is
set, then the percentile line will be at the level where 95 per cent
of the values fall under. Displayed as a bright red line. Only
available for normal graphs.

Y axis MIN value Minimum value of Y axis:
Calculated - Y axis minimum value will be automatically
calculated
Fixed - fixed minimum value for Y axis. Not available for pie and
exploded pie graphs.
Item - last value of the selected item will be the minimum value

238

Parameter Description

Y axis MAX value Maximum value of Y axis:
Calculated - Y axis maximum value will be automatically
calculated
Fixed - fixed maximum value for Y axis. Not available for pie and
exploded pie graphs.
Item - last value of the selected item will be the maximum value

3D view Enable 3D style. For pie and exploded pie graphs only.
Items Items, data of which are to be displayed in this graph.

Configuring graph items

To add items, data of which are to be displayed in the graph, click on Add in the Items block, select items and then set attributes
for the way item data will be displayed.

Item display attributes:

Parameter Description

Sort order (0→100) Draw order. 0 will be processed first. Can be used to draw lines or
regions behind (or in front of) another.
You can drag and drop items by the arrow in the beginning of line
to set the sort order or which item is displayed in front of the other.

Name Name of item, data of which will be displayed.
Type Type (only available for pie and exploded pie graphs):

Simple - value of the item is represented proportionally on the pie
Graph sum - value of the item represents the whole pie.
Note that colouring of the ”graph sum” item will only be visible to
the extent that it is not taken up by ”proportional” items.

Function What values will be displayed when more than one value exists for
an item:
all - all (minimum, average and maximum)
min - minimum only
avg - average only
max - maximum only

Draw style Draw style (only available for normal graphs; for stacked graphs
filled region is always used):
Line - draw lines
Filled region - draw filled region
Bold line - draw bold lines
Dot - draw dots
Dashed line - draw dashed line

Y axis side Which Y axis side the element is assigned to.
Colour RGB colour in HEX notation.

Graph preview

In the Preview tab, a preview of the graph is displayed so you can immediately see what you are creating.

239

Note that the preview will not show any data for template items.

In this example, pay attention to the dashed bold line displaying the trigger level and the trigger information displayed in the
legend.

Note:
3 triggers is the hard-coded limit for the number of triggers displayed in the legend.
If graph height is set as less than 120 pixels, no trigger will be displayed in the legend.

2 Network maps

Overview

If you have a network to look after, you may want to have an overview of your infrastructure somewhere. For that purpose you
can create maps in Zabbix - of networks and of anything you like.

Proceed to configuring a network map.

1 Configuring a network map

Overview

Configuring a map in Zabbix requires that you first create a map by defining its general parameters and then you start filling the
actual map with elements and their links.

240

You can populate the map with elements that are a host, a host group, a trigger, an image or another map.

Icons are used to represent map elements. You can define the information that will be displayed with the icons and set that recent
problems are displayed in a special way. You can link the icons and define information to be displayed on the links.

Maps that are ready can be viewed in Monitoring → Maps. In the monitoring view you can click on the icons and take advantage of
the links to some scripts and URLs.

You can add custom URLs to be accessible by clicking on the icons. Thus you may link a host icon to host properties or a map icon
to another map.

Creating a map

To create a map, do the following:

• Go to Configuration → Maps
• Click on Create map
• Edit general map attributes

General map attributes:

Parameter Description

Name Unique map name.
Width Map width in pixels.
Height Map height in pixels.
Background image Use background image:

No image - no background image (white background)
Image - selected image to be used as a background image. No
scaling is performed. You may use a geographical map or any
other image to enhance your map.

Automatic icon mapping You can set to use an automatic icon mapping, configured in
Administration → General → Icon mapping. Icon mapping allows to
map certain icons against certain host inventory fields.

241

Parameter Description

Icon highlighting If you check this box, icons will receive highlighting.
Elements with an active trigger will receive a round background, in
the same colour as the highest severity trigger. Moreover, a thick
green line will be displayed around the circle, if all problems are
acknowledged.
Elements with ”disabled” or ”in maintenance” status will get a
square background, gray and orange respectively.
See also: Viewing maps

Mark elements on trigger status change A recent change of trigger status (recent problem or resolution) will
be highlighted with markers (inward-pointing red triangles) on the
three sides of the element icon that are free of the label. Markers
are displayed for 30 minutes.

Expand single problem If a map element (host, host group or another map) has one single
problem, this option controls whether the problem (trigger) name
is displayed, or problem count. If marked, problem name is used.

Advanced labels If you check this box you will be able to define separate label types
for separate element types.

Icon label type Label type used for icons:
Label - icon label
IP address - IP address
Element name - element name (for example, host name)
Status only - status only (OK or PROBLEM)
Nothing - no labels are displayed

Icon label location Label location in relation to the icon:
Bottom - beneath the icon
Left - to the left
Right - to the right
Top - above the icon

Problem display Display problem count as:
All - full problem count will be displayed
Separated - unacknowledged problem count will be displayed
separated as a number of the total problem count
Unacknowledged only - only the unacknowledged problem count
will be displayed

Minimum trigger severity Problems below the selected minimum severity level will not be
displayed in the map.
For example, with Warning selected, changes with Information and
Not classified level triggers will not be reflected in the map.
This parameter is supported starting with Zabbix 2.2.

URLs URLs for each element type can be defined (with a label). These
will be displayed as links when a user clicks on the element in the
monitoring section.
Macros that can be used in map URLs: {MAP.ID},
{HOSTGROUP.ID}, {HOST.ID}, {TRIGGER.ID}

When you save this, you have created an empty map with a name, dimensions and certain preferences. Now you need to add
some elements. For that, click on the map name in the list to open the editable area.

Adding elements

To add an element, click on the ”+” next to Icon. The new element will appear at the top left corner of the map. Drag and drop it
wherever you like.

Note that with the Grid option ”On”, elements will always align to the grid (you can pick various grid sizes from the dropdown, also
hide/show the grid). If you want to put elements anywhere without alignment, turn the option to ”Off”. (Random elements can
later again be aligned to the grid with the Align icons button.)

Now that you have some elements in place, you may want to start differentiating them by giving names etc. By clicking on the
element, a form is displayed and you can set the element type, give a name, choose a different icon etc.

242

Map element attributes:

Parameter Description

Type Type of the element:
Host - icon representing status of all triggers of the selected host
Map - icon representing status of all elements of a map
Trigger - icon representing status of a single trigger
Host group - icon representing status of all triggers of all hosts
belonging to the selected group
Image - an icon, not linked to any resource

Label Icon label, any string.
Macros and multi-line strings can be used in labels.

Label location Label location in relation to the icon:
Default - map’s default label location
Bottom - beneath the icon
Left - to the left
Right - to the right
Top - above the icon

Host Enter the host, if the element type is ’Host’. This field is
auto-complete so starting to type the name of a host will offer a
dropdown of matching hosts. Scroll down to select. Click on ’x’ to
remove the selected.

Map Select the map, if the element type is ’Map’.
Trigger Select the trigger, if the element type is ’Trigger’.
Host group Enter the host group, if the element type is ’Host group’. This field

is auto-complete so starting to type the name of a group will offer a
dropdown of matching groups. Scroll down to select. Click on ’x’ to
remove the selected.

243

Parameter Description

Icon (default) Icon to be used.
Automatic icon selection In this case an icon mapping will be used to determine which icon

to display.
Icons You can choose to display different icons for the element in these

cases: default, problem, maintenance, disabled.
Coordinate X X coordinate of the map element.
Coordinate Y Y coordinate of the map element.
URLs Element-specific URLs can be set for the element. These will be

displayed as links when a user clicks on the element in the
monitoring section. If the element has its own URLs and there are
map level URLs for its type defined, they will be combined in the
same menu.
Macros that can be used in map URLs: {MAP.ID},
{HOSTGROUP.ID}, {HOST.ID}, {TRIGGER.ID}

Attention:
Added elements are not automatically saved. If you navigate away from the page, all changes may be lost.
Therefore it is a good idea to click on the Save button in the top right corner. Once clicked, the changes are saved
regardless of what you choose in the following popup.
Selected grid options are also saved with each map.

Selecting elements

To select elements, select one and then hold down Ctrl (or Shift) to select the others.

You can also select multiple elements by dragging a rectangle in the editable area and selecting all elements in it (option available
since Zabbix 2.0).

Once you select more than one element, the element property form shifts to the mass-update mode so you can change attributes
of selected elements in one go. To do so, mark the attribute using the checkbox and enter a new value for it. You may use macros
here (such as, say, {HOSTNAME} for the element label).

244

Linking elements

Once you have put some elements on the map, it is time to start linking them. To link two elements you must first select them.
With the elements selected, click on the ”+” next to Link.

With a link created, the single element form now contains an additional Edit element links section. Click on Edit before the link to
edit its attributes.

Link attributes:

Parameter Description

Label Label that will be rendered on top of the link.
The {host:key.func(param)} macro is supported in this field, but
only with avg, last, min and max trigger functions, with seconds
as parameter.

Connect to The element that the link connects to.
Type (OK) Default link style:

Line - single line
Bold line - bold line
Dot - dots
Dashed line - dashed line

Colour (OK) Default link colour.
Link indicators List of triggers linked to the link. In case a trigger has status

PROBLEM, its style is applied to the link.

2 Host group elements

Overview

This section explains how to add a “Host group” type element when configuring a network map.

Configuration

245

This table consists of parameters typical for Host group element type:

Parameter Description

Type Select Type of the element:
Host group - icon representing status of all triggers of all hosts
belonging to the selected group

Show Show options:
Host group - selecting this option will result as one single icon
displaying corresponding information about the certain host group
Host group elements - selecting this option will result as multiple
icons displaying corresponding information about each single
element (host) of the certain host group

246

Parameter Description

Area type This setting is available if “Host group elements” parameter is
selected:
Fit to map - all host group elements are equally placed within the
map
Custom size - manual setting of the map area for all the host
group elements to be displayed

Area size This setting is available if “Host group elements” parameter and
“Area type” parameter are selected:
Width - numeric value to be entered to specify map area width
Height - numeric value to be entered to specify map area height

Placing algorithm Grid – only available option of displaying all the host group
elements

Label Icon label, any string.
Macros and multi-line strings can be used in labels.
If the type of the map element is “Host group” specifying a certain
Macros has impact on the map view displaying corresponding
information about each single host. For example, if {HOST.IP}
macro is used, edit map view will only display the macro {HOST.IP}
itself while map view will include and display each host’s unique IP
address

Viewing host group elements

This option is available if ”Host group elements” show option is chosen. When selecting ”Host group elements” as the show option,
you will at first see only one icon for the host group. However, when you save the map and then go to the map view, you will see
that the map includes all the elements (hosts) of the certain host group:

Map editing view Map view

Notice how the {HOST.NAME} macro is used. In map editing the macro name in unresolved, while in map view all the unique
names of the hosts are displayed.

247

3 Link indicators

Overview

You can assign some triggers to a link between elements in a network map. When these triggers go into a problem state, the link
can reflect that.

When you configure a link, you set the default link type and color. When you assign triggers to a link, you can assign different link
types and colors with these triggers.

Should any of these triggers go into a problem state, their link style and color will be displayed on the link. So maybe your default
link was a green line. Now, with the trigger in problem state, your link may become bold red (if you have defined it so).

Configuration

To assign triggers as link indicators, do the following:

• select a map element
• click on Edit in the Edit element links section before the appropriate link
• click on Add in the Link indicators block and select one or more triggers

Added triggers can be seen in the Link indicators list.

You can set the link type and color for each trigger directly from the list. When done, click on Apply, close the form and save the
map.

Display

In Monitoring → Maps the respective color will be displayed on the link if the trigger goes into a problem state.

248

Note:
If multiple triggers go into a problem state, the one with the highest severity will determine the link style and color. If
multiple triggers with the same severity are assigned to the same map link, the one with the lowest ID takes precedence.

3 Screens

Overview

On Zabbix screens you can group information from various sources for a quick overview on a single screen. Building the screens
is quite easy and intuitive.

Essentially a screen is a table. You choose how many cells per table and what elements to display in the cells. The following
elements can be displayed:

• simple graphs
• user-defined custom graphs
• maps
• other screens
• plain text information
• server information (overview)
• hosts information (overview)
• trigger information (overview)
• host/hostgroup issues (status of triggers)
• system status
• data overview
• clock
• history of events
• history of actions
• URL (data taken from another location)

Attention:
Browsers might not load an HTTP page included in a screen (using URL element), if Zabbix frontend is accessed over HTTPS.

Screens that are ready can be viewed in Monitoring → Screens. They can also be added to the favourites section of the Dashboard.

To configure a screen you must first create it by defining its general properties and then add individual elements in the cells.

Creating a screen

To create a screen, do the following:

249

• Go to Configuration → Screens
• Click on Create Screen
• Edit general screen attributes

Give your screen a unique name and set the number of columns (vertical cells) and rows (horizontal cells). Click Save.

Now you can click on the screen name in the list to be able to add elements.

Adding elements

On a new screen you probably only see links named Change. Clicking those links opens a form whereby you set what to display in
each cell.

On an existing screen you click on the existing elements to open the form whereby you set what to display.

Screen element attributes:

250

Parameter Description

Resource Information displayed in the cell:
Clock - digital or analog clock displaying current server or local
time. Note: To display host time, use the
system.localtime[local] item. This item must exist on the
host.
Data overview - latest data for a group of hosts
Graph - single custom graph
History of actions - history of recent actions
History of events - latest events
Host group issues - status of triggers filtered by the hostgroup
(includes triggers without events, since Zabbix 2.2)
Host issues - status of triggers filtered by the host (includes
triggers without events, since Zabbix 2.2)
Hosts info - high level host related information
Map - single map
Plain text - plain text data
Screen - screen (one screen may contain other screens inside)
Server info - server high-level information
Simple graph - single simple graph
System status - displays system status (similar to the Dashboard)
Triggers info - high level trigger related information
Triggers overview - status of triggers for a host group
URL - include content from an external resource

Horizontal align Possible values:
Center
Left
Right

Vertical align Possible values:
Middle
Top
Bottom

Column span Extend cell to a number of columns, same way as HTML column
spanning works.

Row span Extend cell to a number of rows, same way as HTML row spanning
works.

Take note of the ’+’ and ’-’ controls on each side of the table.

Clicking on ’+’ above the table will add a column. Clicking on ’-’ beneath the table will remove a column.

Clicking on ’+’ on the left side of the table will add a row. Clicking on ’-’ on the right side of the table will remove a row.

Attention:
If graph height is set as less than 120 pixels, no trigger will be displayed in the legend.

Dynamic elements

For some of the elements there is an extra option called Dynamic item. Checking this box at first does not to seem to change
anything.

However, once you go to Monitoring → Screens, you may realize that now you have extra dropdowns there for selecting the host.
Thus you have a screen where some elements display the same information while others display information depending on the
currently selected host.

The benefit of this is that you do not need to create extra screens just because you want to see the same graphs containing data
from various hosts.

Dynamic item option is available for several screen elements:

• Graphs (custom graphs)
• Simple graphs
• Plain text

251

Note:
Clicking on a dynamic graph opens it in full view; although with custom graphs that is currently supported with the default
host only (i.e. with host ’not selected’ in the dropdown). When selecting another host in the dropdown, the dynamic graph
is created using item data of that host and the resulting graph is not clickable.

4 Slide shows

Overview

In a slide show you can configure that a number of screens are displayed one after another at set intervals.

Sometimes you might want to switch between some configured screens. While that can be done manually, doing that more than
once or twice may become very tedious. This is where the slide show function comes to rescue.

Configuration

To create a slide show, do the following:

• Go to Configuration → Slide shows
• Click on Create slide show
• Edit slide show attributes

PARAMETER Description

Name Name of the slide show.
Default delay (in seconds) How long one screen is displayed by default, before rotating to the

next, in seconds.
Slides List of screens to be rotated. Click on Add to select screens.

The Up/Down arrow before the screen allows to drag a screen up
and down in the sort order of display.
If you want to display only, say, a single graph in the slide show,
create a screen containing just that one graph.

Screen Screen name.
Delay A custom value for how long the screen will be displayed, in

seconds.
If set to 0, the Default delay value will be used.

Action Click on Remove to remove a screen from the slide show.

The slide show in this example consists of two screens which will be displayed in the following order:

Zabbix server ⇒ Displayed for 30 seconds ⇒ New host ⇒ Displayed for 15 seconds ⇒ Zabbix server ⇒ Displayed for 30 seconds ⇒
New host ⇒ …

Display

Slide shows that are ready can be viewed in Monitoring → Screens and then choosing Slide shows from the dropdown.

With the Menu option next to the dropdown, you can accelerate or slow down the display by choosing a slide delay multiplier:

252

Attention:
If a delay ends up as being less than 5 seconds (either by having entered a delay less than 5 seconds or by using the slide
delay multiplier), a 5-second minimum delay will be used.

6 Templates

Overview

A template is a set of entities that can be conveniently applied to multiple hosts.

The entities may be:

• items
• triggers
• graphs
• applications
• screens (since Zabbix 2.0)
• low-level discovery rules (since Zabbix 2.0)
• web scenarios (since Zabbix 2.2)

As many hosts in real life are identical or fairly similar so it naturally follows that the set of entities (items, triggers, graphs,...) you
have created for one host, may be useful for many. Of course, you could copy them to each new host, but that would be a lot
of manual work. Instead, with templates you can copy them to one template and then apply the template to as many hosts as
needed.

When a template is linked to a host, all entities (items, triggers, graphs,...) of the template are added to the host. Templates are
assigned to each individual host directly (and not to a host group).

Templates are often used to group entities for particular services or applications (like Apache, MySQL, PostgreSQL, Postfix...) and
then applied to hosts running those services.

Another benefit of using templates is when something has to be changed for all the hosts. Changing something on the template
level once will propagate the change to all the linked hosts.

Thus, the use of templates is an excellent way of reducing one’s workload and streamlining the Zabbix configuration.

Proceed to creating and configuring a template.

7 Notifications upon events

Overview

Assuming that we have configured some items and triggers and now are getting some events happening as a result of triggers
changing state, it is time to consider some actions.

253

To begin with, we would not want to stare at the triggers or events list all the time. It would be much better to receive notification
if something significant (such as a problem) has happened. Also, when problems occur, we would like to see that all the people
concerned are informed.

That is why sending notifications is one of the primary actions offered by Zabbix. Who and when should be notified upon a certain
event can be defined.

To be able to send and receive notifications from Zabbix you have to:

• define some media
• configure an action that sends a message to one of the defined media

Actions consist of conditions and operations. Basically, when conditions are met, operations are carried out. The two principal
operations are sending a message (notification) and executing a remote command.

For discovery and auto-registration created events, some additional operations are available. Those include adding or removing a
host, linking a template etc.

1 Media types

Overview

Media are the delivery channels used for sending notifications and alerts in Zabbix.

You can configure several media types:

• E-mail
• SMS
• Jabber
• Ez Texting
• Custom alertscripts

1 E-mail

Overview

To configure e-mail as the delivery channel for messages, you need to configure e-mail as the media type and assign specific
addresses to users.

Configuration

To configure e-mail as the media type:

• Go to Administration→Media types
• Click on Create media type (or click on E-mail in the list of pre-defined media types).

Media type attributes:

Parameter Description

Name Name of the media type.
Type Select Email as the type.

254

Parameter Description

SMTP server Set an SMTP server to handle outgoing messages.
SMTP helo Set a correct SMTP helo value, normally a domain name.
SMTP email The address entered here will be used as the From address for the

messages sent.
Adding a sender display name (like ”Zabbix-HQ” in Zabbix-HQ
<zabbix@company.com> in the screenshot above) with the actual
e-mail address is supported since Zabbix 2.2 version.
There are some restrictions on display names in Zabbix emails in
comparison to what is allowed by RFC 5322, as illustrated by
examples:
Valid examples:
zabbix@company.com (only email address, no need to use angle
brackets)
Zabbix HQ <zabbix@company.com> (display name and email
address in angle brackets)
∑Ω-monitoring <zabbix@company.com> (UTF-8 characters in
display name)
Invalid examples:
Zabbix HQ zabbix@company.com (display name present but no
angle brackets around email address)
”Zabbix\@\<H(comment)Q\>” <zabbix@company.com> (although
valid by RFC 5322, quoted pairs and comments are not supported
in Zabbix emails)

User media

To assign a specific address to the user:

• Go to Administration→Users
• Open the user properties form
• In Media tab, click on Add

User media attributes:

Parameter Description

Type Select Email as the type.

255

Parameter Description

Send to Specify the e-mail address to send the messages to. Adding a
recipient display name (like “Some User” in Some User
<user@domain.tld> in the screenshot above) with the actual
e-mail address is supported since Zabbix 2.2 version.
See examples and restrictions on display name and email address
in media type attribute SMTP email description.

When active You can limit the time when messages are sent, for example, the
working days only (1-5,09:00-18:00).
See the Time period specification page for description of the
format.

Use if severity Mark the checkboxes of trigger severities that you want to receive
notifications for.
Note that for non-trigger events the default severity (’Not
classified’) is used, so leave it checked if you want to receive
notifications for non-trigger events.

Status Status of the user media.
Enabled - is in use.
Disabled - is not being used.

2 SMS

Overview

Zabbix supports the sending of SMS messages using a serial GSM modem connected to Zabbix server’s serial port.

Make sure that:

• The speed of the serial device (normally /dev/ttyS0 under Linux) matches that of the GSM modem. Zabbix does not set the
speed of the serial link. It uses default settings.

• The ’zabbix’ user has read/write access to the serial device. Run the command ls –l /dev/ttyS0 to see current permissions of
the serial device.

• The GSM modem has PIN entered and it preserves it after power reset. Alternatively you may disable PIN on the SIM card.
PIN can be entered by issuing command AT+CPIN=”NNNN” (NNNN is your PIN number, the quotes must be present) in a
terminal software, such as Unix minicom or Windows HyperTerminal.

Zabbix has been tested with these GSM modems:

• Siemens MC35
• Teltonika ModemCOM/G10

To configure SMS as the delivery channel for messages, you also need to configure SMS as the media type and enter the respective
phone numbers for the users.

Configuration

To configure SMS as the media type:

• Go to Administration→Media types
• Click on Create media type (or click on SMS in the list of pre-defined media types).

Media type attributes:

Parameter Description

Description Name of the media type.
Type Select SMS as the type.
GSM modem Set the serial device name of the GSM modem.

User media

To assign a phone number to the user:

• Go to Administration→Users
• Open the user properties form
• In Media tab, click on Add

256

User media attributes:

Parameter Description

Type Select SMS as the type.
Send to Specify the phone number to send messages to.
When active You can limit the time when messages are sent, for example, the

working days only (1-5,09:00-18:00).
See the Time period specification page for description of the
format.

Use if severity Mark the checkboxes of trigger severities that you want to receive
notifications for.

Status Status of the user media.
Enabled - is in use.
Disabled - is not being used.

3 Jabber

Overview

Zabbix supports sending Jabber messages.

When sending notifications, Zabbix tries to look up the Jabber SRV record first, and if that fails, it uses an address record for that
domain. Among Jabber SRV records, the one with the highest priority and maximum weight is chosen. If it fails, other records are
not tried.

To configure Jabber as the delivery channel for messages, you need to configure Jabber as the media type and enter the respective
addresses for the users.

Configuration

To configure Jabber as the media type:

• Go to Administration→Media types
• Click on Create media type (or click on Jabber in the list of pre-defined media types).

Media type attributes:

Parameter Description

Description Name of the media type.
Type Select Jabber as the type.
Jabber identifier Enter Jabber identifier.
Password Enter Jabber password.

User media

To assign a Jabber address to the user:

• Go to Administration→Users
• Open the user properties form
• In Media tab, click on Add

User media attributes:

Parameter Description

Type Select Jabber as the type.
Send to Specify the address to send messages to.
When active You can limit the time when messages are sent, for example, the

working days only (1-5,09:00-18:00).
See the Time period specification page for description of the
format.

Use if severity Mark the checkboxes of trigger severities that you want to receive
notifications for.

257

Parameter Description

Status Status of the user media.
Enabled - is in use.
Disabled - is not being used.

4 Ez Texting

Overview

You can use Zabbix technological partner Ez Texting for message sending.

To configure Ez Texting as the delivery channel for messages, you need to configure Ez Texting as the media type and assign
recipient identification to the users.

Configuration

To configure Ez Texting as the media type:

• Go to Administration→Media types
• Click on Create media type

Media type attributes:

Parameter Description

Description Name of the media type.
Type Select Ez Texting as the type.
Username Enter the Ez Texting username.
Password Enter the Ez Texting password.
Message text limit Select the message text limit.

USA (160 characters)
Canada (136 characters)

User media

To assign Ez Texting recipient identification to the user:

• Go to Administration→Users
• Open the user properties form
• In Media tab, click on Add

User media attributes:

Parameter Description

Type Select the Ez Texting media type.
Send to Specify the recipient to send the messages to.
When active You can limit the time when messages are sent, for example, the

working days only (1-5,09:00-18:00).
See the Time period specification page for description of the
format.

Use if severity Mark the checkboxes of trigger severities that you want to receive
notifications for.

258

http://www.zabbix.com/partners.php#Technology_Partners

Parameter Description

Status Status of the user media.
Enabled - is in use.
Disabled - is not being used.

5 Custom alertscripts

Overview

If you are not satisfied with existing media types for sending alerts there is an alternative way to do that. You can create a script
that will handle the notification your way. These scripts are located in the directory defined in the Zabbix server configuration file
AlertScriptsPath variable. When alert script is executed it gets 3 command-line variables (as $1, $2 and $3 respectively):

• To
• Subject
• Message

Note:
Alert scripts are executed on the Zabbix server.

The recipient (”To”) is specified in user media properties. Here is an example alert script:

#####!/bin/bash

to=$1
subject=$2
body=$3

cat <<EOF | mail -s "$subject" "$to"
$body
EOF

Environment variables are not preserved or created for the script, so they should be handled explicitly.

Configuration

To configure custom alertscripts as the media type:

• Go to Administration→Media types
• Click on Create media type

Media type attributes:

Parameter Description

Description Name of the media type.
Type Select Script as the type.
Script name Enter the name of the script.

User media

To assign custom alertscripts to the user:

• Go to Administration→Users
• Open the user properties form
• In Media tab, click on Add

User media attributes:

Parameter Description

Type Select the custom alertscripts media type.
Send to Specify the recipient to receive the alerts.

259

Parameter Description

When active You can limit the time when alertscripts are executed, for example,
the working days only (1-5,09:00-18:00).
See the Time period specification page for description of the
format.

Use if severity Mark the checkboxes of trigger severities that you want to activate
the alertscript for.

Status Status of the user media.
Enabled - is in use.
Disabled - is not being used.

2 Actions

Overview

If you want some operations taking place as a result of events (for example, notifications sent), you need to configure actions.

Actions can be defined in response to events of all supported types:

• Trigger events - when trigger status changes from OK to PROBLEM and back
• Discovery events - when network discovery takes place
• Auto registration events - when new active agents auto-register
• Internal events - when items become unsupported or triggers go into an unknown state

Configuring an action

To configure an action, do the following:

• Go to Configuration → Actions
• From the Event source dropdown select the required source
• Click on Create action
• Set general action attributes
• Choose the operation to carry out, in Operations tab
• Choose the conditions upon which the operation is carried out, in Conditions tab

General action attributes:

260

Parameter Description

Name Unique action name.
Default subject Default message subject. The subject may contain macros. It is

limited to 255 characters.
Default message Default message. The message may contain macros. It is limited

to certain amount of characters depending on the type of database
(see Remote commands for more information).

261

Parameter Description

Recovery message Mark the checkbox to turn on a Recovery message.
Recovery message is a special way of getting notified for a
resolved problem. If turned on, only a single message with a
custom subject/body is sent if trigger value changes to OK.
Note: To receive a recovery message, ”Trigger value=Problem”
must be present in action conditions; ”Trigger value=OK”,
however, must not be present. (If ”Trigger value=OK” is set, the
recovery message will not work; instead you will get a full
escalation of defined messages and/or remote commands in the
same way as for a problem situation).
Recovery message will be sent only to those who received any
messages regarding the problem before.
A recovery message inherits acknowledgement status and history
from the problem event (such as when expanding
{EVENT.ACK.HISTORY} and {EVENT.ACK.STATUS} macros).
If using {EVENT.*} macros in a recovery message, they will refer to
the problem event (not the OK event).
{EVENT.RECOVERY.*} macros will only expanded in a recovery
message and will refer to the recovery/OK event.

Recovery subject Recovery message subject. It may contain macros. It is limited to
255 characters.

Recovery message Recovery message. It may contain macros. It is limited to certain
amount of characters depending on the type of database (see
Remote commands for more information).

Enabled Mark the checkbox to enable the action. Otherwise it will be
disabled.

1 Operations

Overview

You can define the following operations for all events:

• send a message
• execute a remote command (including IPMI)

Attention:
Zabbix server does not create alerts if access to the host is explicitly ”denied” for the user defined as action operation
recipient or if the user has no rights defined to the host at all.

For discovery events, there are additional operations available:

• add host
• remove host
• enable host
• disable host
• add to group
• delete from group
• link to template
• unlink from template

The additional operations available for auto-registration events are:

• add host
• disable host
• add to group
• link to template

Configuring an operation

To configure an operation, go to Operations tab in the action properties form and click on New. Edit the operation step and click
on Add to add to the list of Action operations.

Operation attributes:

262

Parameter Description

Default operation step duration Duration of one operation step by default
(minimum 60 seconds).
For example, an hour-long step duration means
that if an operation is carried out, an hour will
pass before the next step.

Action operations Action operations are displayed, with these
details:
Steps - escalation step(s) to which the operation
is assigned
Details - type of operation and its
recipient/target.
Since Zabbix 2.2, the operation list also displays
the media type (e-mail, SMS, Jabber, etc) used in
sending a message as well as the name and
surname (in parentheses after the alias) of a
notification recipient.
Start in - how long after an event the operation
is performed
Duration (sec) - step duration is displayed.
Default is displayed if the step uses default
duration, and a time is displayed if custom
duration is used.
Action - links for editing and removing an
operation are displayed.
To configure a new operation, click on New.

263

Parameter Description

Operation details This block is used to configure the details of an
operation.

Step Select the step(s) to assign the operation to in
an escalation schedule:
From - execute starting with this step
To - execute until this step (0=infinity, execution
will not be limited)
Step duration - custom duration for these steps
(0=use default step duration).
Several operations can be assigned to the same
step. If these operations have different step
duration defined, the shortest one is taken into
account and applied to the step.

Operation
type

Two operation types are available for all events:
Send message - send message to user
Remote command - execute a remote
command
More operations are available for discovery and
auto-registration based events (see above).

Operation
type:
send
mes-
sage
Send
to
user
groups

Click on Add to select user groups to send the
message to.
The user group must have at least ”read”
permissions to the host in order to be notified.

Send
to
users

Click on Add to select users to send the message
to.
The user must have at least ”read” permissions
to the host in order to be notified.

Send
only
to

Send message to all defined media types or a
selected one only.

Default
mes-
sage

If selected, the default message will be used (see
general action attributes).

Subject Subject of the custom message. The subject
may contain macros.

Message The custom message. The message may contain
macros.

Operation
type:
re-
mote
com-
mand

264

Parameter Description

Target
list

Select targets to execute the command on:
Current host - command is executed on the
host of the trigger that caused the problem
event. This option will not work if there are
multiple hosts in the trigger.
Host - select host(s) to execute the command
on.
Host group - select host group(s) to execute the
command on.
A command on a host is executed only once,
even if the host matches more than once (e.g.
from several host groups; individually and from a
host group).
The target list is meaningless if a custom script is
executed on Zabbix server. Selecting more
targets in this case only results in the script
being executed on the server more times.
Note that for global scripts, the target selection
also depends on the Host group setting in global
script configuration.

Type Select the command type:
IPMI - execute an IPMI command
Custom script - execute a custom set of
commands
SSH - execute an SSH command
Telnet - execute a Telnet command
Global script - execute one of the global scripts
defined in Administration→Scripts.

Execute
on

Execute a custom script on Zabbix server or
Zabbix agent. To execute scripts on the agent, it
must be configured to allow remote commands
from the server.
This field is available if ’Custom script’ is
selected as Type.

Commands Enter the command(s).
Supported macros will be resolved based on the
trigger expression that caused the event. For
example, host macros will resolve to the hosts of
the trigger expression (and not of the target list).

Conditions Condition for performing the operation:
Not ack - only when the event is
unacknowledged
Ack - only when the event is acknowledged.

1 Sending message

Overview

Sending a message is one of the best ways of notifying people about a problem. That is why it is one of the primary actions offered
by Zabbix.

Configuration

To be able to send and receive notifications from Zabbix you have to:

• define the media to send a message to
• configure an action operation that sends a message to one of the defined media

265

Attention:
Zabbix sends notifications only to those users that have at least ’read’ permissions to the host that generated the event.
At least one host of a trigger expression must be accessible.

You can configure custom scenarios for sending messages using escalations.

To successfully receive and read e-mails from Zabbix, e-mail servers/clients must support standard ’SMTP/MIME e-mail’ format
since Zabbix sends UTF-8 data (If the subject contains ASCII characters only, it is not UTF-8 encoded.). The subject and the body
of the message are base64-encoded to follow ’SMTP/MIME e-mail’ format standard.

Message limit after all macros expansion is the same as message limit for Remote commands.

Tracking messages

You can view the status of messages sent in Monitoring → Events.

In the Actions column you can see summarized information about actions taken. In there green numbers represent messages sent,
red ones - failed messages. In progress indicates that an action is initiated. Failed informs that no action has executed successfully.

If you click on the event time to view event details, you will also see the Message actions block containing details of messages
sent (or not sent) due to the event.

In Administration → Audit, if you select Actions from the dropdown, you will see details of all actions taken for those events that
have an action configured.

2 Remote commands

Overview

With remote commands you can define that a certain pre-defined command is automatically executed on the monitored host upon
some condition.

Thus remote commands are a powerful mechanism for smart pro-active monitoring.

In the most obvious uses of the feature you can try to:

• Automatically restart some application (web server, middleware, CRM) if it does not respond
• Use IPMI ’reboot’ command to reboot some remote server if it does not answer requests
• Automatically free disk space (removing older files, cleaning /tmp) if running out of disk space
• Migrate a VM from one physical box to another depending on the CPU load
• Add new nodes to a cloud environment upon insufficient CPU (disk, memory, whatever) resources

Configuring an action for remote commands is similar to that for sending a message, the only difference being that Zabbix will
execute a command instead of sending a message.

Attention:
Remote commands are not supported to be executed on Zabbix agents monitored by Zabbix proxy, so for commands from
Zabbix server to agent a direct connection is required.

Remote command limit after all macros expansion depends on the type of database and character set (non- ASCII characters
require more than one byte to be stored):

Database //Limit in characters // //Limit in bytes //
MySQL 65535 65535
Oracle Database 2048 4000
PostgreSQL 65535 not limited
IBM DB2 2048 2048
SQLite (only Zabbix proxy) 65535 not limited

See also the command execution page.

Remote commands are executed even if the target host is in maintenance.

The following tutorial provides step-by-step instructions on how to set up remote commands.

Configuration

266

Those remote commands that are executed on Zabbix agent (custom scripts) must be first enabled in the respective zab-
bix_agentd.conf.

Make sure that the EnableRemoteCommands parameter is set to 1 and uncommented. Restart agent daemon if changing this
parameter.

Attention:
Remote commands do not work with active Zabbix agents.

Then, when configuring a new action in Configuration→Actions:

• In the Operations tab, select the Remote command operation type
• Select the remote command type (IPMI, Custom script, SSH, Telnet, Global script)
• Enter the remote command

For example:

sudo /etc/init.d/apache restart

In this case, Zabbix will try to restart an Apache process. With this command, make sure that the command is executed on Zabbix
agent (mark the respective radio button against Execute on).

Attention:
Note the use of sudo - Zabbix user does not have permissions to restart system services by default. See below for hints
on how to configure sudo.

Note:
Zabbix agent should run on the remote host and accept incoming connections. Zabbix agent executes commands in
background.

Attention:
Zabbix does not check if a command has been executed successfully.

Remote commands on Zabbix agent are executed without timeout by the system.run[,nowait] key. On Zabbix server remote
commands are executed with timeout as set in the TrapperTimeout parameter of zabbix_server.conf file.

• In the Conditions tab, define the appropriate conditions. In this example, set that the action is activated upon any disaster
problems with one of Apache applications.

Access permissions

Make sure that the ’zabbix’ user has execute permissions for configured commands. One may be interested in using sudo to give
access to privileged commands. To configure access, execute as root:

visudo

Example lines that could be used in sudoers file:

allows 'zabbix' user to run all commands without password.
zabbix ALL=NOPASSWD: ALL

allows 'zabbix' user to restart apache without password.

267

zabbix ALL=NOPASSWD: /etc/init.d/apache restart

Note:
On some systems sudoers file will prevent non-local users from executing commands. To change this, comment out
requiretty option in /etc/sudoers.

Remote commands with multiple interfaces

If the target system has multiple interfaces of the selected type (Zabbix agent or IPMI), remote commands will be executed on the
default interface.

IPMI remote commands

For IPMI remote commands the following syntax should be used:

<command> [<value>]

where

• <command> - one of IPMI commands without spaces
• <value> - ’on’, ’off’ or any unsigned integer. <value> is an optional parameter.

Examples

Example 1

Restart of Windows on certain condition.

In order to automatically restart Windows upon a problem detected by Zabbix, define the following actions:

PARAMETER Description

Operation type ’Remote command’
Type ’Custom script’
Command c:\windows\system32\shutdown.exe -r -f

Example 2

Restart the host by using IPMI control.

PARAMETER Description

Operation type ’Remote command’
Type ’IPMI’
Command reset

Example 3

Power off the host by using IPMI control.

PARAMETER Description

Operation type ’Remote command’
Type ’IPMI’
Command power off

3 Additional operations

Overview

For discovery events, there are additional operations available:

• add host
• remove host
• enable host
• disable host

268

• add to group
• delete from group
• link to template
• unlink from template

The additional operations available for auto-registration events are:

• add host
• disable host
• add to group
• link to template

Adding host

Hosts are added during the discovery process, as soon as a host is discovered, rather than at the end of the discovery process.

Note:
As network discovery can take some time due to many unavailable hosts/services having patience and using reasonable
IP ranges is advisable.

When adding a host, its name is decided by the standard gethostbyname function. If the host can be resolved, resolved name
is used. If not, the IP address is used. Besides, if IPv6 address must be used for a host name, then all ”:” (colons) are replaced by
”_” (underscores), since colons are not allowed in host names.

Attention:
If performing discovery by a proxy, currently hostname lookup still takes place on Zabbix server.

Attention:
If a host already exists in Zabbix configuration with the same name as a newly discovered one, versions of Zabbix prior to
1.8 would add another host with the same name. Zabbix 1.8.1 and later adds _N to the hostname, where N is increasing
number, starting with 2.

4 Using macros in messages

Overview

In message subjects and message text you can use macros for more efficient problem reporting.

A full list of macros supported by Zabbix is available.

Examples

Examples here illustrate how you can use macros in messages.

Example 1

Message subject:

{TRIGGER.NAME}: {TRIGGER.STATUS}

When you receive the message, the message subject will be replaced by something like:

Processor load is too high on server zabbix.zabbix.com: PROBLEM

Example 2

Message:

Processor load is: {zabbix.zabbix.com:system.cpu.load[,avg1].last()}

When you receive the message, the message will be replaced by something like:

Processor load is: 1.45

Example 3

Message:

269

Latest value: {{HOST.HOST}:{ITEM.KEY}.last()}
MAX for 15 minutes: {{HOST.HOST}:{ITEM.KEY}.max(900)}
MIN for 15 minutes: {{HOST.HOST}:{ITEM.KEY}.min(900)}

When you receive the message, the message will be replaced by something like:

Latest value: 1.45
MAX for 15 minutes: 2.33
MIN for 15 minutes: 1.01

Example 4

Informing about values from several hosts in a trigger expression.

Message:

Trigger: {TRIGGER.NAME}
Trigger expression: {TRIGGER.EXPRESSION}

1. Item value on {HOST.NAME1}: {ITEM.VALUE1} ({ITEM.NAME1})
2. Item value on {HOST.NAME2}: {ITEM.VALUE2} ({ITEM.NAME2})

When you receive the message, the message will be replaced by something like:

Trigger: Processor load is too high on a local host
Trigger expression: {Myhost:system.cpu.load[percpu,avg1].last()}>5 | {Myotherhost:system.cpu.load[percpu,avg1].last()}>5

1. Item value on Myhost: 0.83 (Processor load (1 min average per core))
2. Item value on Myotherhost: 5.125 (Processor load (1 min average per core))

Example 5

Receiving details of both the problem event and recovery event in a recovery message:

Message:

Problem:

Event ID: {EVENT.ID}
Event value: {EVENT.VALUE}
Event status: {EVENT.STATUS}
Event time: {EVENT.TIME}
Event date: {EVENT.DATE}
Event age: {EVENT.AGE}
Event acknowledgement: {EVENT.ACK.STATUS}
Event acknowledgement history: {EVENT.ACK.HISTORY}

Recovery:

Event ID: {EVENT.RECOVERY.ID}
Event value: {EVENT.RECOVERY.VALUE}
Event status: {EVENT.RECOVERY.STATUS}
Event time: {EVENT.RECOVERY.TIME}
Event date: {EVENT.RECOVERY.DATE}

When you receive the message, the macros will be replaced by something like:

Problem:

Event ID: 21874
Event value: 1
Event status: PROBLEM
Event time: 13:04:30
Event date: 2014.01.02
Event age: 5m
Event acknowledgement: Yes
Event acknowledgement history: 2014.01.02 13:05:51 "John Smith (Admin)"
-acknowledged-

Recovery:

270

Event ID: 21896
Event value: 0
Event status: OK
Event time: 13:10:07
Event date: 2014.01.02

Attention:
Separate notification macros for the original problem event and recovery event are supported since Zabbix 2.2.0.

2 Conditions

Overview

An action is executed only in case an event matches a defined set of conditions.

Configuration

To set a condition:

• Go to Conditions tab in the action properties form
• Select conditions from the New condition dropdowns and click on Add
• Select the type of calculation (with more than one condition)

The following conditions can be set for trigger-based actions:

Condition type Supported operators Description

Application =
like
not like

Specify an application or an
application to exclude.
= - event belongs to a trigger
of the item that is linked to
the specified application.
like - event belongs to a
trigger of the item that is
linked to an application
containing the string.
not like - event belongs to a
trigger of the item that is
linked to an application not
containing the string.

Host group =
<>

Specify host groups or host
groups to exclude.
= - event belongs to this host
group.
<> - event does not belong
to this host group.

271

Condition type Supported operators Description

Template =
<>

Specify templates or
templates to exclude.
= - event belongs to a trigger
inherited from this template.
<> - event does not belong
to a trigger inherited from
this template.

Host =
<>

Specify hosts or hosts to
exclude.
= - event belongs to this
host.
<> - event does not belong
to this host.

Trigger =
<>

Specify triggers or triggers to
exclude.
= - event is generated by this
trigger.
<> - event is generated by
any other trigger, except this
one.

Trigger name like
not like

Specify a string in the trigger
name or a string to exclude.
like - event is generated by a
trigger, containing this string
in the name. Case sensitive.
not like - this string cannot
be found in the trigger name.
Case sensitive.
Note: Entered value will be
compared to trigger name
with all macros expanded.

Trigger severity =
<>
>=
<=

Specify trigger severity.
= - equal to trigger severity
<> - not equal to trigger
severity
>= - more or equal to trigger
severity
<= - less or equal to trigger
severity

Trigger value = Specify a trigger value.
= - equal to trigger value (OK
or PROBLEM)

Time period in
not in

Specify a time period or a
time period to exclude.
in - event time is within the
time period.
not in - event time is not
within the time period.
See Time period specification
page for description of the
format.

272

Condition type Supported operators Description

Maintenance status in
not in

Specify a host in
maintenance or not in
maintenance.
in - host is in maintenance
mode.
not in - host is not in
maintenance mode.
Note: If several hosts are
involved in the trigger
expression, the condition
matches if at least one of the
hosts is/is not in maintenance
mode.

Trigger value:

• if a trigger changes status from OK to PROBLEM, trigger value is PROBLEM
• if a trigger changes status from PROBLEM to OK, trigger value is OK

Note:
When a new action for triggers is created, it gets two automatic conditions (both can be removed by the user):

• ”Trigger value = PROBLEM” - so that notifications are sent for problems only. This means that if you configure an
action without any more specific conditions, messages will be received for any problem. Having this condition by
default is also important if you want to receive a single recovery message.

• ”Maintenance status = not in maintenance” - so that notifications are not sent for hosts in maintenance.

The following conditions can be set for discovery-based events:

Condition type Supported operators Description

Host IP =
<>

Specify an IP address range
or a range to exclude for a
discovered host.
= - host IP is in the range.
<> - host IP is not in the
range.

Service type =
<>

Specify a service type of a
discovered service or a
service type to exclude.
= - matches the discovered
service.
<> - does not match the
discovered service.
Available service types: SSH,
LDAP, SMTP, FTP, HTTP,
HTTPS (available since
Zabbix 2.2 version), POP,
NNTP, IMAP, TCP, Zabbix
agent, SNMPv1 agent,
SNMPv2 agent, SNMPv3
agent, ICMP ping, telnet
(available since Zabbix 2.2
version).

Service port =
<>

Specify a TCP port range of a
discovered service or a range
to exclude.
= - service port is in the
range.
<> - service port is not in the
range.

273

Condition type Supported operators Description

Discovery rule =
<>

Specify a discovery rule or a
discovery rule to exclude.
= - using this discovery rule.
<> - using any other
discovery rule, except this
one.

Discovery check =
<>

Specify a discovery check or
a discovery check to exclude.
= - using this discovery
check.
<> - using any other
discovery check, except this
one.

Discovery object = Specify the discovered
object.
= - equal to discovered
object (a device or a service).

Discovery status = Up - matches ’Host Up’ or
’Service Up’ events
Down - matches ’Host Down’
or ’Service Down’ events
Discovered - matches ’Host
Discovered’ or ’Service
Discovered’ events
Lost - matches ’Host Lost’ or
’Service Lost’ events
See Network discovery page
for event description.

Uptime/Downtime >=
<=

Uptime for ’Host Up’ and
’Service Up’ events.
Downtime for ’Host Down’
and ’Service Down’ events.
>= - is more or equal to.
Parameter is given in
seconds.
<= - is less or equal to.
Parameter is given in
seconds.

Received value =
<>
>=
<=
like
not like

Specify the value received
from an agent (Zabbix,
SNMP). Case sensitive string
comparison. If multiple
Zabbix agent or SNMP checks
are configured for a rule,
received values for all of
them are checked (each
check generates a new event
which is matched against all
conditions).
= - equal to the value.
<> - not equal to the value.
>= - more or equal to the
value.
<= - less or equal to the
value.
like - contains the substring.
Parameter is given as a
string.
not like - does not contain
the substring. Parameter is
given as a string.

274

Condition type Supported operators Description

Proxy =
<>

Specify a proxy or a proxy to
exclude.
= - using this proxy.
<> - using any other proxy
except this one.

Note:
Service checks in a discovery rule, which result in discovery events, do not take place simultaneously. Therefore, ifmultiple
values are configured for Service type, Service port or Received value conditions in the action, they will be
compared to one discovery event at a time, but not to several events simultaneously. As a result, actions with multiple
values for the same check types may not be executed correctly.

The following conditions can be set for actions based on active agent auto-registration:

Condition type Supported operators Description

Host metadata like
not like

Specify host metadata or
host metadata to exclude.
like - host metadata contains
the string.
not like - host metadata
does not contain the string.
Host metadata can be
specified in an agent
configuration file.

Host name like
not like

Specify a host name or a host
name to exclude.
like - host name contains the
string.
not like - host name does
not contain the string.

Proxy =
<>

Specify a proxy or a proxy to
exclude.
= - using this proxy.
<> - using any other proxy
except this one.

The following conditions can be set for actions based on internal events:

Condition type Supported operators Description

Application =
like
not like

Specify an application or an
application to exclude.
= - event belongs to an item
that is linked to the specified
application.
like - event belongs to an
item that is linked to an
application containing the
string.
not like - event belongs to
an item that is linked to an
application not containing
the string.

275

Condition type Supported operators Description

Event type = Item in ”not supported”
state - matches events
where an item goes from a
’normal’ to ’not supported’
state
Item in ”normal” state -
matches events where an
item goes from a ’not
supported’ to ’normal’ state
Low-level discovery rule
in ”not supported” state -
matches events where a
low-level discovery rule goes
from a ’normal’ to ’not
supported’ state
** Low-level discovery rule in
”normal” state** - matches
events where a low-level
discovery rule goes from a
’not supported’ to ’normal’
state
Trigger in ”unknown”
state - matches events
where a trigger goes from a
’normal’ to ’unknown’ state
** Trigger in ”normal” state**
- matches events where a
trigger goes from an
’unknown’ to ’normal’ state

Host group =
<>

Specify host groups or host
groups to exclude.
= - event belongs to this host
group.
<> - event does not belong
to this host group.

Template =
<>

Specify templates or
templates to exclude.
= - event belongs to an
item/trigger/low-level
discovery rule inherited from
this template.
<> - event does not belong
to an item/trigger/low-level
discovery rule inherited from
this template.

Host =
<>

Specify hosts or hosts to
exclude.
= - event belongs to this
host.
<> - event does not belong
to this host.

Node =
<>

Specify a node or a node to
exclude.
= - event belongs to this
node.
<> - event does not belong
to this node.

Type of calculation

The following options of calculating conditions are available:

276

• AND - all conditions must be met

Note that ”AND” calculation should not be used between several triggers when they are selected as a Trigger= condition. Actions
can only be executed based on the event of one trigger.

• OR - enough if one condition is met
• AND/OR - combination of the two: AND with different condition types and OR with the same condition type, for example:

Host group = Oracle servers
Host group = MySQL servers
Trigger name like ’Database is down’
Trigger name like ’Database is unavailable’

is evaluated as

(Host group = Oracle servers or Host group = MySQL servers) and (Trigger name like ’Database is down’ or Trigger name like
’Database is unavailable’)

Actions disabled due to deleted objects

If a certain object (host, template, trigger, etc) used in an action condition/operation is deleted, the condition/operation is removed
and the action is disabled to avoid incorrect execution of the action. The action can be re-enabled by the user.

This behavior takes place when deleting:

• host groups (”host group” condition, ”remote command” operation on a specific host group);
• hosts (”host” condition, ”remote command” operation on a specific host);
• templates (”template” condition, ”link to template” and ”unlink from template” operations);
• triggers (”trigger” condition);
• discovery rules (when using ”discovery rule” and ”discovery check” conditions);
• proxies (”proxy” condition).

Note: If a remote command has many target hosts, and we delete one of them, only this host will be removed from the target list,
the operation itself will remain. But, if it’s the only host, the operation will be removed, too. The same goes for ”link to template”
and ”unlink from template” operations.

Actions are not disabled when deleting a user or user group used in a ”send message” operation.

3 Escalations

Overview

With escalations you can create custom scenarios for sending notifications or executing remote commands.

In practical terms it means that:

• Users can be informed about new problems immediately
• Notifications can be repeated until the problem is resolved
• Sending a notification can be delayed
• Notifications can be escalated to another ”higher” user group
• Remote commands can be executed immediately or when a problem is not resolved for a lengthy period
• Recovery messages can be sent

Actions are escalated based on the escalation step. Each step has a duration in time.

You can define both the default duration and a custom duration of an individual step. The minimum duration of one escalation step
is 60 seconds.

You can start actions, such as sending notifications or executing commands, from any step. Step one is for immediate actions. If
you want to delay an action, you can assign it to a later step. For each step, several actions can be defined.

The number of escalation steps is not limited.

Escalations are defined when configuring an operation.

Miscellaneous aspects of escalation behaviour

Let’s consider what happens in different circumstances if an action contains several escalation steps.

277

Situation Behaviour

The host in question goes into maintenance after the initial
problem notification is sent

All remaining escalation steps are executed. A maintenance
cannot stop operations; maintenance has effect with regard
to when actions are started/not started, not operations.

The time period defined in the Time period action condition
ends after the initial notification is sent

All remaining escalation steps are executed. The Time period
condition cannot stop operations; it has effect with regard to
when actions are started/not started, not operations.

A problem starts during maintenance and continues (is not
resolved) after maintenance ends

All escalation steps are executed starting from the moment
maintenance ends.

A problem starts during a no-data maintenance and
continues (is not resolved) after maintenance ends

It must wait for the trigger to fire, before all escalation steps
are executed.

Different escalations follow in close succession and overlap The execution of each new escalation supersedes the
previous escalation, but for at least one escalation step that
is always executed on the previous escalation. This behavior
is relevant in actions upon events that are created with
EVERY problem evaluation of the trigger.

An action is disabled during an escalation in progress (like a
message being sent)

The message in progress will be sent and then one more
message on the escalation will be sent. The follow-up
message will have the following text at the beginning of the
message body: NOTE: Escalation cancelled: action ’<Action
name>’ disabled. This way the recipient is informed that the
escalation is cancelled and no more steps will be executed.
This message is sent to the recipients defined in the
following escalation step.

Escalation examples

Example 1

Sending a repeated notification once every 30 minutes (5 times in total) to a ’MySQL Administrators’ group. To configure:

• in Operations tab, set the Default operation step duration to ’1800’ seconds (30 minutes)
• Set the escalation steps to be From ’1’ To ’5’
• Select the ’MySQL Administrators’ group as recipients of the message

Notifications will be sent at 0:00, 0:30, 1:00, 1:30, 2:00 hours after the problem starts (unless, of course, the problem is resolved
sooner).

If the problem is resolved and a recovery message is configured, it will be sent to those who received at least one problemmessage
within this escalation scenario.

Note:
If the trigger that generated an active escalation is disabled, Zabbix sends an informative message about it to all those
that have already received notifications.

Example 2

Sending a delayed notification about a long-standing problem. To configure:

• In Operations tab, set the Default operation step duration to ’36000’ seconds (10 hours)
• Set the escalation steps to be From ’2’ To ’2’

278

A notification will only be sent at Step 2 of the escalation scenario, or 10 hours after the problem starts.

You can customize the message text to something like ’The problem is more than 10 hours old’.

Example 3

Escalating the problem to the Boss.

In the first example above we configured periodical sending of messages to MySQL administrators. In this case, the administrators
will get four messages before the problem will be escalated to the Database manager. Note that the manager will get a message
only in case the problem is not acknowledged yet, supposedly no one is working on it.

Note the use of {ESC.HISTORY} macro in the message. The macro will contain information about all previously executed steps on
this escalation, such as notifications sent and commands executed.

Example 4

A more complex scenario. After multiple messages to MySQL administrators and escalation to the manager, Zabbix will try to
restart the MySQL database. It will happen if the problem exists for 2:30 hours and it hasn’t been acknowledged.

If the problem still exists, after another 30 minutes Zabbix will send a message to all guest users.

If this does not help, after another hour Zabbix will reboot server with the MySQL database (second remote command) using IPMI
commands.

279

Example 5

An escalation with several operations assigned to one step and custom intervals used. The default operation step duration is 30
minutes.

Notifications will be sent as follows:

• to MySQL administrators at 0:00, 0:30, 1:00, 1:30 after the problem starts
• to Database manager at 2:00 and 2:10 (and not at 3:00; seeing that steps 5 and 6 overlap, the shorter custom step duration
of 600 seconds in the next operation overrides the longer custom step duration of 3600 seconds tried to set here)

• to Zabbix administrators at 2:00, 2:10, 2:20 after the problem starts (the custom step duration of 600 seconds working)
• to guest users at 4:00 hours after the problem start (the default step duration of 30 minutes returning between steps 8 and
11)

3 Receiving notification on unsupported items

Overview

Receiving notifications on unsupported items is a new functionality in Zabbix 2.2.

It is part of the new concept of internal events in Zabbix, allowing users to be notified on these occasions. Internal events reflect
a change of state:

• when items go from ’normal’ to ’unsupported’ (and back)
• when triggers go from ’normal’ to ’unknown’ (and back)
• when low-level discovery rules go from ’normal’ to ’unsupported’ (and back)

This section presents a how-to for receiving notification when an item turns unsupported.

Configuration

Overall, the process of setting up the notification should feel familiar to those who have set up alerts in Zabbix before.

Step 1

Configure some media, such as e-mail, SMS or Jabber, to use for the notifications. Refer to the corresponding sections of the
manual to perform this task.

Attention:
For notifying on internal events the default severity (’Not classified’) is used, so leave it checked when configuring user
media if you want to receive notifications for internal events.

Step 2

280

Go to Configuration→Actions and select Internal as the event source. Click on Create action on the upper right to open an action
configuration form.

Step 3

In the Action tab enter a name for the action and the subject/content of problem and recovery messages.

Step 4

In the Conditions tab select Event type in the New condition block and select Item in ”not supported” state as the value.

281

Don’t forget to click on Add to actually list the condition in the Conditions block.

Step 5

In the Operations tab, click on New and select some recipients of the message (user groups/users) and the media types (or ’All’)
to use for delivery.

Click on Add to actually list the operation in the Action operations block.

If you wish to receive more than one notification, set the operation step duration (interval betweenmessages sent) and add another
operation.

When finished, click on the Save button underneath the form.

And that’s it, you’re done! Now you can look forward to receiving your first notification from Zabbix if some item turns unsupported.

8 Macros

Overview

Zabbix supports a number of macros which may be used in various situations. Macros are variables, identified by a {MACRO}
syntax, and resolve to a specific value depending on the context.

Effective use of macros allows to save time and make Zabbix configuration more transparent.

In one of typical uses, a macro may be used in a template. Thus a trigger on a template may be named ”Processor load is too high
on {HOST.NAME}”. When the template is applied to the host, such as Zabbix server, the name will resolve to ”Processor load is
too high on Zabbix server” when the trigger is displayed in the Monitoring section.

Macros may be used in item key parameters. A macro may be used for only a part of the parameter, for example
item.key[server_{HOST.HOST}_local]. Double-quoting the parameter is not necessary as Zabbix will take care of
any ambiguous special symbols, if present in the resolved macro.

See a full list of supported macros by location.

You can also configure your own user macros.

282

1 User macros

Overview

For greater flexibility, Zabbix supports user macros, which can be defined on global, template and host level. These macros have
a special syntax: {$MACRO}.

The macros can be used in:

• item names
• item key parameters
• trigger names and descriptions
• trigger expression parameters and constants (see examples)
• several other locations

The following characters are allowed in the macro names: A-Z , 0-9 , _ , .

Zabbix substitutes macros according to the following precedence:

1. host level macros (checked first)
2. macros defined for first level templates of the host (i.e., templates linked directly to the host), sorted by template ID
3. macros defined for second level templates of the host, sorted by template ID
4. macros defined for third level templates of the host, sorted by template ID
5. ...
6. global macros (checked last)

In other words, if a macro does not exist for a host, Zabbix will try to find it in the host templates of increasing depth. If still not
found, a global macro will be used, if exists.

If Zabbix is unable to find a macro, the macro will not be substituted.

To define user macros, go to the corresponding locations in the frontend:

• for global macros, visit Administration → General → Macros
• for host and template level macros, open host or template properties and look for the Macros tab

Note:
If a user macro is used in items or triggers in a template, it is suggested to add that macro to the template even if it is
defined on a global level. That way, exporting the template to XML and importing it in another system will still allow it to
work as expected.

Most common use cases of global and host macros:

1. taking advantage of templates with host specific attributes: passwords, port numbers, file names, regular expressions, etc
2. global macros for global one-click configuration changes and fine tuning

Examples

Example 1

Use of host-level macro in the ”Status of SSH daemon” item key:

net.tcp.service[ssh„{$SSH_PORT}]

This item can be assigned to multiple hosts, providing that the value of {$SSH_PORT} is defined on those hosts.

Example 2

Use of host-level macro in the ”CPU load is too high” trigger:

{ca_001:system.cpu.load[,avg1].last()}>{$MAX_CPULOAD}

Such a trigger would be created on the template, not edited in individual hosts.

Note:
If you want to use amount of values as the function parameter (for example, max(#3)), include hash mark in the macro
definition like this: SOME_PERIOD => #3

Example 3

Use of two macros in the ”CPU load is too high” trigger:

{ca_001:system.cpu.load[,avg1].min({$CPULOAD_PERIOD})}>{$MAX_CPULOAD}

283

Note that a macro can be used as a parameter of trigger function, in this example function min().

Attention:
In trigger expressions user macros will expand if referencing a parameter or constant. They will NOT expand if referencing
the host, item key, function, operator or another trigger expression.

9 Users and user groups

Overview

All users in Zabbix access the Zabbix application through the web-based frontend. Each user is assigned a unique login name and
a password.

All user passwords are encrypted and stored in the Zabbix database. Users cannot use their user id and password to log directly
into the UNIX server unless they have also been set up accordingly to UNIX. Communication between the web server and the user
browser can be protected using SSL.

With a flexible user permission schema you can restrict and differentiate access to:

• administrative Zabbix frontend functions
• monitored hosts in hostgroups

The initial Zabbix installation has two predefined users - ’Admin’ and ’guest’. The ’guest’ user is used for unauthenticated users.
Before you log in as ’Admin’, you are ’guest’. Proceed to configuring a user in Zabbix.

1 Configuring a user

Overview

To configure a user:

• Go to Administration → Users
• Select Users from the dropdown to the right
• Click on Create user (or on the user name to edit an existing user)
• Edit user attributes in the form

General attributes

The User tab contains general user attributes:

284

Parameter Description

Alias Unique username, used as the login name.
Name User first name (optional).

If not empty, visible in acknowledgement information and
notification recipient information.

Surname User second name (optional).
If not empty, visible in acknowledgement information and
notification recipient information.

Password Two fields for entering the user password.
With an existing password, contains a Password button, clicking on
which opens the password fields.

Groups List of all user groups the user belongs to. Adherence to user
groups determines what host groups and hosts the user will have
access to. Click on Add to add groups.

Language Language of the Zabbix frontend.
The php gettext extension is required for the translations to work.

Theme Defines how the frontend looks like:
System Default - use default system settings
Original Blue - standard blue theme
Black & Blue - alternative theme
Dark orange - alternative theme

285

Parameter Description

Auto-login Mark this checkbox to make Zabbix remember the user and log the
user in automatically for 30 days. Browser cookies are used for
this.

Auto-logout With this checkbox marked the user will be logged out
automatically, after the set amount of seconds (minimum 90
seconds).
Note that this option will not work:
* If the ”Show warning if Zabbix server is down” global
configuration option is enabled and Zabbix frontend is kept open;
* When Monitoring menu pages perform background information
refreshes;
* If logging in with the Remember me for 30 days option checked.

Refresh (in seconds) Set the refresh rate used for graphs, screens, plain text data, etc.
Can be set to 0 to disable.

Rows per page You can determine how many rows per page will be displayed in
lists.

URL (after login) You can make Zabbix to transfer you to a specific URL after
successful login, for example, the status of triggers page.

User media

The Media tab contains a listing of all media defined for the user. Media are used for sending notifications. Click on Add to assign
media to the user.

See the Media types section for details on configuring media types.

Permissions

The Permissions tab contains information on:

• the user type (Zabbix User, Zabbix Admin, Zabbix Super Admin). Users cannot change their own type.
• host groups and hosts the user has access to. ’Zabbix User’ and ’Zabbix Admin’ users do not have access to any host groups
and hosts by default. To get access they need to be included in user groups that have access to respective host groups and
hosts.

See the User permissions page for details.

2 Permissions

Overview

You can differentiate user permissions in Zabbix by defining the respective user type and then by including the unprivileged users
in user groups that have access to host group data.

User type

The user type defines the level of access to administrative menus and the default access to host group data.

User type Description

Zabbix User The user has access to the Monitoring menu. The user has no
access to any resources by default. Any permissions to host groups
must be explicitly assigned.

Zabbix Admin The user has access to the Monitoring and Configuration menus.
The user has no access to any host groups by default. Any
permissions to host groups must be explicitly given.

Zabbix Super Admin The user has access to everything: Monitoring, Configuration and
Administration menus. The user has a read-write access to all host
groups. Permissions cannot be revoked by denying access to
specific host groups.

Permissions to host groups

Access to any host data in Zabbix are granted to user groups on host group level only.

286

That means that an individual user cannot be directly granted access to a host (or host group). It can only be granted access to a
host by being part of a user group that is granted access to the host group that contains the host.

3 User groups

Overview

User groups allow to group users both for organizational purposes and for assigning permissions to data. Permissions to monitoring
data of host groups are assigned to user groups, not individual users.

It may often make sense to separate what information is available for one group of users and what - for another. This can be
accomplished by grouping users and then assigning varied permissions to host groups.

A user can belong to any amount of groups.

Configuration

To configure a user group:

• Go to Administration → Users
• Select User groups from the dropdown to the right
• Click on Create group (or on the group name to edit an existing group)
• Edit group attributes in the form

The User group tab contains general group attributes:

Parameter Description

Group name Unique group name.
Users The In group block contains a listing of the members of this group.

To add users to the group select them in the Other groups block
and click on «.

Frontend access How the users of the group are authenticated.
System default - use default authentication
Internal - use Zabbix authentication. Ignored if HTTP
authentication is set
Disabled - access to Zabbix GUI is forbidden

Users status Status of group members:
Enabled - users are active
Disabled - users are disabled

Debug mode Mark this checkbox to activate debug mode for the users.

The Permissions tab allows you to specify user group access to host group (and thereby host) data:

287

Composing permissions Click on Add beneath the respective list to specify the host
groups that the user group will have access to on the level
of:
Read-write - read-write access to a host group
Read – read-only access to a host group
Deny – access to a host group denied

Calculated permissions Depending on the permissions set above, Calculated
permissions will display all host groups and all hosts that the
user group has access to on the level of:
Read-write - host groups with read-write access
Read - host groups with read-only access
Deny - host groups with access denied

Host access from several user groups

A user may belong to any number of user groups. These groups may have different access permissions to hosts.

Therefore, it is important to know what hosts an unprivileged user will be able to access as a result. For example, let us consider
how access to host X (in Hostgroup 1) will be affected in various situations for a user who is in user groups A and B.

• If Group A has only Read access to Hostgroup 1, but Group B Read-write access to Hostgroup 1, the user will get Read-write
access to ’X’.

Attention:
“Read-write” permissions have precedence over “Read” permissions starting with Zabbix 2.2.

• In the same scenario as above, if ’X’ is simultaneously also in Hostgroup 2 that is denied to Group A or B, access to ’X’ will
be unavailable, despite a Read-write access to Hostgroup 1.

• If Group A has no permissions defined and Group B has a Read-write access to Hostgroup 1, the user will get Read-write
access to ’X’.

• If Group A has Deny access to Hostgroup 1 and Group B has a Read-write access to Hostgroup 1, the user will get access to
’X’ denied.

Other details

• An Admin level user with Read-write access to a host will not be able to link/unlink templates, if he has no access to the
Templates group. With Read access to Templates group he will be able to link/unlink templates to the host, however, will not
see any templates in the template list and will not be able to operate with templates in other places.

• An Admin level user with Read access to a host will not see the host in the configuration section host list; however, the host
triggers will be accessible in IT service configuration.

• Any non-Zabbix Super Admin user (including ’guest’) can see network maps as long as the map is empty or has only images.
When hosts, host groups or triggers are added to the map, permissions are respected. The same applies to screens and
slideshows as well. The users, regardless of permissions, will see any objects that are not directly or indirectly linked to
hosts.

• Zabbix server will not send notifications to users defined as action operation recipients if access to the concerned host is
explicitly ”denied” or if there are no rights defined to the host.

7. IT services

Overview IT services are intended for those who want to get a high-level (business) view of monitored infrastructure. In many
cases, we are not interested in low-level details, like the lack of disk space, high processor load, etc. What we are interested in is
the availability of service provided by our IT department. We can also be interested in identifying weak places of IT infrastructure,
SLA of various IT services, the structure of existing IT infrastructure, and other information of a higher level.

Zabbix IT services provide answers to all mentioned questions.

IT services is a hierarchy representation of monitored data.

A very simple IT service structure may look like:

IT Service
|
|-Workstations

288

| |
| |-Workstation1
| |
| |-Workstation2
|
|-Servers

Each node of the structure has attribute status. The status is calculated and propagated to upper levels according to the selected
algorithm. At the lowest level of IT services are triggers. The status of individual nodes is affected by the status of their triggers.

Note:
Note that triggers with a Not classified or Information severity do not impact SLA calculation.

Configuration To configure IT services, go to: Configuration → IT services.

On this screen you can build a hierarchy of your monitored infrastructure. The highest-level parent service is ’root’. You can build
your hierarchy downward by adding lower-level parent services and then individual nodes to them.

Click on a service to add services to it or edit the service. A form is displayed where you can edit the service attributes.

Configuring an IT service

The Service tab contains general service attributes:

Parameter Description

Name Service name.
Parent service Parent service the service belongs to.
Status calculation algorithm Method of calculating service status:

Do not calculate - do not calculate service status
Problem, if at least one child has a problem - problem status,
if at least one child service has a problem
Problem, if all children have problems - problem status, if all
child services are having problems

Calculate SLA Enable SLA calculation and display.
Acceptable SLA (in %) SLA percentage that is acceptable for this service. Used for

reporting.

289

Parameter Description

Trigger Linkage to trigger:
None - no linkage
trigger name - linked to the trigger, thus depends on the trigger
status
Services of the lowest level must be linked to triggers. (Otherwise
their state will not be represented accurately.)
When triggers are linked, their state prior to linking is not counted.

Sort order Sort order for display, lowest comes first.

The Dependencies tab contains services the service depends on. Click on Add to add a service from those that are configured.

Hard and soft dependency

Availability of a service may depend on several other services, not just one. The first option is to add all those directly as child
services.

However, if some service is already added somewhere else in the services tree, it cannot be simply moved out of there to a child
service here. How to create a dependency on it? The answer is ”soft” linking. Add the service and mark the Soft check box. That
way the service can remain in its original location in the tree, yet be depended upon from several other services. Services that are
”soft-linked” are displayed in grey in the tree. Additionally, if a service has only ”soft” dependencies, it can be deleted directly,
without deleting child services first.

The Time tab contains the service time specification.

Parameter Description

Service times By default, all services are expected to operate 24x7x365. If
exceptions needed, add new service times.

290

Parameter Description

New service time Service times:
Uptime - service uptime
Downtime - service state within this period does not affect SLA.
One-time downtime - a single downtime. Service state within
this period does not affect SLA.
Add the respective hours.
Note: Service times affect only the service they are configured for.
Thus, a parent service will not take into account the service time
configured on a child service (unless a corresponding service time
is configured on the parent service as well).
Service times are taken into account when calculating IT service
status and SLA by the frontend. However, information on service
availability is being inserted into database continuously, regardless
of service times.

Display To monitor IT services, go to Monitoring → IT services.

8. Web monitoring

Overview With Zabbix you can check several availability aspects of web sites.

Attention:
To perform web monitoring Zabbix server must be initially configured with cURL (libcurl) support.

To activate web monitoring you need to define web scenarios. A web scenario consists of one or several HTTP requests or ”steps”.
The steps are periodically executed by Zabbix server in a pre-defined order. If a host is monitored by proxy, the steps are executed
by the proxy.

Since Zabbix 2.2 web scenarios are attached to hosts/templates in the same way as items, triggers, etc. That means that web
scenarios can also be created on a template level and then applied to multiple hosts in one move.

The following information is collected in any web scenario:

• average download speed per second for all steps of whole scenario
• number of the step that failed
• last error message

The following information is collected in any web scenario step:

• download speed per second
• response time
• response code

For more details, see web monitoring items.

Data collected from executing web scenarios is kept in the database. The data is automatically used for graphs, triggers and
notifications.

Zabbix can also check if a retrieved HTML page contains a pre-defined string. It can execute a simulated login and follow a path
of simulated mouse clicks on the page.

Zabbix web monitoring supports both HTTP and HTTPS. When running a web scenario, Zabbix always follows redirects. All cookies
are preserved during the execution of a single scenario.

Configuring a web scenario To configure a web scenario:

• Go to: Configuration → Hosts (or Templates)
• Click on Web in the row of the host/template
• Click on Create scenario to the right (or on the scenario name to edit an existing scenario)
• Enter parameters of the scenario in the form

291

The Scenario tab allows you to configure the general parameters of a web scenario.

General parameters:

Parameter Description

Host Name of the host/template that the scenario belongs to.
Name Unique scenario name.

Starting with Zabbix 2.2, the name may contain supported macros.
Application Select an application the scenario will belong to.

Web scenario items will be grouped under the selected application
in Monitoring → Latest data.

New application Enter the name of a new application for the scenario.
Authentication Authentication options.

None - no authentication used.
Basic authentication - basic authentication is used.
NTLM authentication - NTLM (Windows NT LAN Manager)
authentication is used.
Selecting an authentication method will provide two additional
fields for entering a user name and password.
User macros can be used in user and password fields, starting with
Zabbix 2.2.

Update interval (in sec) How often the scenario will be executed, in seconds.
Retries The number of attempts for executing web scenario steps. In case

of network problems (timeout, no connectivity, etc) Zabbix can
repeat executing a step several times. The figure set will equally
affect each step of the scenario. Up to 10 retries can be specified,
default value is 1.
Note: Zabbix will not repeat a step because of a wrong response
code or the mismatch of a required string.
This parameter is supported starting with Zabbix 2.2.

Agent Select a client agent.
Zabbix will pretend to be the selected browser. This is useful when
a website returns different content for different browsers.
User macros can be used in this field, starting with Zabbix 2.2.

292

http://en.wikipedia.org/wiki/NTLM

Parameter Description

HTTP proxy You can specify an HTTP proxy to use, using the format:
http://[username[:password]@]proxy.mycompany.com[:port]
By default, 1080 port will be used.
If specified, the proxy will overwrite proxy related environment
variables like http_proxy, HTTPS_PROXY. If not specified, the proxy
will not overwrite proxy related environment variables.
The entered value is passed on ”as is”, no sanity checking takes
place. You may also enter a SOCKS proxy address. If you specify
the wrong protocol, the connection will fail and the item will
become unsupported. With no protocol specified, the proxy will be
treated as an HTTP proxy.
Note: Only simple authentication is supported with HTTP proxy.
User macros can be used in this field.
This parameter is supported starting with Zabbix 2.2.

Variables List of scenario-level variables (macros) that may be used in
scenario steps (URL, Post variables).
They have the following format:
{macro1}=value1
{macro2}=value2
{macro3}=regex:<regular expression>
For example:
{username}=Alexei
{password}=kj3h5kJ34bd
{hostid}=regex:hostid is ([0-9]+)
If the value part starts with regex: then the part after it will be
treated as a regular expression that will search the web page and,
if found, store the match in the variable. Note that at least one
subgroup must be present so that the matched value can be
extracted.
The macros can then be referenced in the steps as {username},
{password} and {hostid}. Zabbix will automatically replace them
with actual values.
Having variables that search a webpage for a regular expression
match is supported starting with Zabbix 2.2.
HOST.* macros and user macros can be used in this field, starting
with Zabbix 2.2.
Note: Variables are not URL-encoded.

Enabled The scenario is active if this box is checked, otherwise - disabled.

Note:
If HTTP proxy field is left empty, another way for using an HTTP proxy is to set proxy related environment variables.
For HTTP checks - set the http_proxy environment variable for the Zabbix server user. For example,
//http_proxy=http:%%//%%proxy_ip:proxy_port//.
For HTTPS checks - set the HTTPS_PROXY environment variable. For example,
//HTTPS_PROXY=http:%%//%%proxy_ip:proxy_port//. More details are available by running a shell command: # man
curl.

The Steps tab allows you to configure the web scenario steps. To add a web scenario step, click on Add.

293

Configuring steps

Step parameters:

Parameter Description

Name Unique step name.
Starting with Zabbix 2.2, the name may contain supported macros.

URL URL to connect to and retrieve data. For example:
http://www.zabbix.com
https://www.google.com
GET variables can be passed in the URL parameter.
Starting with Zabbix 2.2, this field may contain supported macros.

Post HTTP POST variables, if any.
For example:
id=2345&userid={user}
If {user} is defined as a macro of the web scenario, it will be
replaced by its value when the step is executed.
The information will be sent as is, variables are not URL-encoded.
Starting with Zabbix 2.2, this field may contain supported macros.

Variables List of step-level variables (macros) that may be used for GET and
POST functions.
Step-level variables override scenario-level variables or variables
from the previous step. However, the value of a step-level variable
only affects the step after (and not the current step).
They have the following format:
{macro}=value
{macro}=regex:<regular expression>
For more information see variable description on the scenario level.
Having step-level variables is supported starting with Zabbix 2.2.
Note: Variables are not URL-encoded.

Timeout Zabbix will not spend more than the set amount of seconds on
processing the URL. Actually this parameter defines maximum time
for making connection to the URL and maximum time for
performing an HTTP request. Therefore, Zabbix will not spend more
than 2 x Timeout seconds on the step.
For example: 15

294

Parameter Description

Required string Required regular expression pattern.
Unless retrieved content (HTML) matches the required pattern the
step will fail. If empty, no check on required string is performed.
For example:
Homepage of Zabbix
Welcome.*admin
Note: Referencing regular expressions created in the Zabbix
frontend is not supported in this field.
Starting with Zabbix 2.2, this field may contain supported macros.

Required status codes List of expected HTTP status codes. If Zabbix gets a code which is
not in the list, the step will fail.
If empty, no check on required status codes is performed.
For example: 200,201,210-299
Starting with Zabbix 2.2, user macros can be used in this field.

Note:
Any changes in web scenario steps will only be saved when the whole scenario is saved.

See also a real-life example of how web monitoring steps can be configured.

Display To view detailed data of defined web scenarios, go to Monitoring → Web or Latest data. Click on the scenario name to
see more detailed statistics.

An overview of web monitoring scenarios can be viewed in Monitoring → Dashboard.

295

1 Web monitoring items

Overview

Some new items are automatically added for monitoring when web scenarios are created.

Scenario items

As soon as a scenario is created, Zabbix automatically adds the following items for monitoring, linking them to the selected
application.

Item Description

Download speed for scenario
<Scenario>

This item will collect information about the download speed (bytes per second) of the
whole scenario, i.e. average for all steps.
Item key: web.test.in[Scenario„bps]
Type: Numeric(float)

Failed step of scenario
<Scenario>

This item will display the number of the step that failed on the scenario. If all steps are
executed successfully, 0 is returned.
Item key: web.test.fail[Scenario]
Type: Numeric(unsigned)

Last error message of scenario
<Scenario>

This item returns the last error message text of the scenario. A new value is stored only if
the scenario has a failed step. If all steps are ok, no new value is collected.
Item key: web.test.error[Scenario]
Type: Character

The actual scenario name will be used instead of ”Scenario”.

Note:
Web monitoring items are added with a 30 day history and a 90 day trend retention period.

Note:
If scenario name starts with a doublequote or contains comma or square bracket, it will be properly quoted in item keys.
In other cases no additional quoting will be performed.

These items can be used to create triggers and define notification conditions.

Example 1

To create a ”Web scenario failed” trigger, you can define a trigger expression:

{host:web.test.fail[Scenario].last()}#0

Make sure to replace ’Scenario’ with the real name of your scenario.

Example 2

To create a ”Web scenario failed” trigger with a useful problem description in the trigger name, you can define a trigger with name:

Web scenario "Scenario" failed: {ITEM.VALUE}

and trigger expression:

{host:web.test.error[Scenario].strlen()}>0 and {host:web.test.fail[Scenario].last()}>0

Make sure to replace ’Scenario’ with the real name of your scenario.

Example 3

To create a ”Web application is slow” trigger, you can define a trigger expression:

{host:web.test.in[Scenario,,bps].last()}<10000

Make sure to replace ’Scenario’ with the real name of your scenario.

Scenario step items

As soon as a step is created, Zabbix automatically adds the following items for monitoring, linking them to the selected application.

296

Item Description

Download speed for step
<Step> of scenario <Scenario>

This item will collect information about the download speed (bytes per second) of the
step.
Item key: web.test.in[Scenario,Step,bps]
Type: Numeric(float)

Response time for step <Step>
of scenario <Scenario>

This item will collect information about the response time of the step in seconds.
Response time is counted from the beginning of the request until all information has
been transferred.
Item key: web.test.time[Scenario,Step,resp]
Type: Numeric(float)

Response code for step <Step>
of scenario <Scenario>

This item will collect response codes of the step.
Item key: web.test.rspcode[Scenario,Step]
Type: Numeric(unsigned)

Actual scenario and step names will be used instead of ”Scenario” and ”Step” respectively.

Note:
Web monitoring items are added with a 30 day history and a 90 day trend retention period.

Note:
If scenario name starts with a doublequote or contains comma or square bracket, it will be properly quoted in item keys.
In other cases no additional quoting will be performed.

These items can be used to create triggers and define notification conditions. For example, to create a ”Zabbix GUI login is too
slow” trigger, you can define a trigger expression:

{zabbix:web.test.time[ZABBIX GUI,Login,resp].last()}>3

2 Real life scenario

Overview

This section presents a step-by-step real-life example of how web monitoring can be used.

Let’s use Zabbix Web monitoring to monitor the web interface of Zabbix. We want to know if it is available, provides the right
content and how quickly it works. To do that we also must log in with our user name and password.

Scenario

Step 1

Add a new web scenario.

We will add a scenario to monitor the web interface of Zabbix. The scenario will execute a number of steps.

Go to Configuration → Hosts, pick a host and click on Web in the row of that host. Then click on Create scenario.

297

In the new scenario form we will name the scenario as Availability of zabbix and create a new Web checks application for it.

Note that we will also create two macros, {user} and {password}.

Step 2

Define steps for the scenario.

Click on Add button in the Steps tab to add individual steps.

Web scenario step 1

We start by checking that the first page responds correctly, returns with HTTP response code 200 and contains text ”Zabbix SIA”.

298

When done configuring the step, click on Add.

Web scenario step 2

We continue by logging in to the Zabbix frontend, and we do so by reusing the macros (variables) we defined on the scenario level,
{user} and {password}.

299

Attention:
Note that Zabbix frontend uses JavaScript redirect when logging in, thus first we must log in, and only in further steps we
may check for logged-in features. Additionally, the login step must use full URL to index.php file.

All the post variables must be on a single line and concatenated with & symbol. Example string for logging into Zabbix frontend:

name=Admin&password=zabbix&enter=Sign in

If using the macros as in this example, login string becomes:

name={user}&password={password}&enter=Sign in

Take note also of how we are getting the content of {sid} variable (session ID), which will be required in step 4.

Web scenario step 3

Being logged in, we should now verify the fact. To do so, we check for a string that is only visible when logged in - for example,
Profile link appears in the upper right corner.

300

Web scenario step 4

Now that we have verified that frontend is accessible and we can log in and retrieve logged-in content, we should also log out -
otherwise Zabbix database will become polluted with lots and lots of open session records.

301

Complete configuration of steps

A complete configuration of web scenario steps should look like this:

Step 3

Save the finished web monitoring scenario.

The scenario will appear in Monitoring → Web:

Click on the scenario name to see more detailed statistics:

302

9. Virtual machine monitoring

Overview Support of monitoring VMware environments is available in Zabbix starting with version 2.2.0.

Zabbix can use low-level discovery rules to automatically discover VMware hypervisors and virtual machines and create hosts to
monitor them, based on pre-defined host prototypes.

The default dataset in Zabbix offers several ready-to-use templates for monitoring VMware vCenter or ESX hypervisor.

The minimum required VMware vCenter or vSphere version is 4.1.

Details The virtual machine monitoring is done in two steps. First, virtual machine data is gathered by vmware collector Zabbix
processes. Those processes obtain necessary information from VMware web services over the SOAP protocol, pre-process it and
store into Zabbix server shared memory. Then, this data is retrieved by pollers using Zabbix simple check VMware keys.

303

Starting with Zabbix version 2.2.9 the collected data is divided into 2 types: VMware configuration data and VMware performance
counter data. Both types are collected independently by vmware collectors. Because of this it is recommended to enable more
collectors than the monitored VMware services. Otherwise retrieval of VMware performance counter statistics might be delayed
by the retrieval of VMware configuration data (which takes a while for large installations).

Currently only datastore, network interface and disk device statistics and custom performance counter items are based on the
VMware performance counter information.

Configuration For virtual machine monitoring to work, Zabbix should be compiled with the --with-libxml2 and --with-libcurl
compilation options.

The following configuration file options can be used to tune the Virtual machine monitoring:

• StartVMwareCollectors - the number of pre-forked vmware collector instances.
This value depends on the number of VMware services you are going to monitor. For the most cases this should be:
servicenum < StartVMwareCollectors < (servicenum * 2)
where servicenum is the number of VMware services. E. g. if you have 1 VMware service tomonitor set StartVMwareCollectors
to 2, if you have 3 VMware services, set it to 5. Note that in most cases this value should not be less than 2 and should not
be 2 times greater than the number of VMware services that you monitor. Also keep in mind that this value also depends on
your VMware environment size and VMwareFrequency and VMwarePerfFrequency configuration parameters (see below).

• VMwareCacheSize
• VMwareFrequency
• VMwarePerfFrequency
• VMwareTimeout

For more details, see the configuration file pages for Zabbix server and proxy.

Discovery Zabbix can use a low-level discovery rule to automatically discover VMware hypervisors and virtual machines.

304

Discovery rule key in the above screenshot is vmware.hv.discovery[{$URL}].

Host prototypes Host prototypes can be created with the low-level discovery rule. When virtual machines are discovered, these
prototypes become real hosts. Prototypes, before becoming discovered, cannot have their own items and triggers, other than those
from the linked templates. Discovered hosts will belong to an existing host and will take the IP of the existing host for the host
configuration.

In a host prototype configuration, LLD macros are used for the host name, visible name and host group prototype fields. Host
status, linkage to existing host groups and template linkage are other options that can be set.

305

Discovered hosts are prefixed with the name of the discovery rule that created them, in the host list. Discovered hosts can be
manually deleted. Discovered hosts will also be automatically deleted, based on the Keep lost resources period (in days) value
of the discovery rule. Most of the configuration options are read-only, except for enabling/disabling the host and host inventory.
Discovered hosts cannot have host prototypes of their own.

Ready-to-use templates The default dataset in Zabbix offers several ready-to-use templates for monitoring VMware vCenter
or directly ESX hypervisor.

These templates contain pre-configured LLD rules as well as a number of built-in checks for monitoring virtual installations.

Note that ”Template Virt VMware” template should be used for VMware vCenter and ESX hypervisor monitoring. The ”Template
Virt VMware Hypervisor” and ”Template Virt VMware Guest” templates are used by discovery and normally should not be manually
linked to a host.

Note:
If your server has been upgraded from a previous version and has no such templates, you can import them manually,
downloading from the community page with official templates. However, these templates have dependencies from the
VMware VirtualMachinePowerState and VMware status value maps, so it is necessary to create these value maps first
(using an SQL script or manually) before importing the templates.

Host configuration To use VMware simple checks the host must have the following user macros defined:

• {$URL} - VMware service (vCenter or ESX hypervisor) SDK URL (https://servername/sdk)
• {$USERNAME} - VMware service user name
• {$PASSWORD} - VMware service {$USERNAME} user password

Example The following example demonstrates how to quickly setup VMware monitoring on Zabbix:

• compile zabbix server with required options (--with-libxml2 and --with-libcurl)

306

http://www.zabbix.org/wiki/Zabbix_Templates/Official_Templates
https://www.zabbix.org/wiki/Zabbix_Templates/SQLs_for_Official_Templates
https://servername/sdk

• set the StartVMwareCollectors option in Zabbix server configuration file to 1 or more
• create a new host
• set the host macros required for VMware authentication:

{{..:..:assets:en:manual:vm_monitoring:vm_host_macros.png|}}
* Link the host to the VMware service template:

{{..:..:assets:en:manual:vm_monitoring:vm_host_templates.png|}}
* Save the host

Troubleshooting

• In case of unavailable metrics, please make sure if they are not made unavailable or turned off by default in recent VMware
vSphere versions or if some limits are not placed on performance-metric database queries. See ZBX-12094 for additional
details.

Virtual machine discovery key fields

The following table lists fields returned by virtual machine related discovery keys.

Item key

Description Field Retrieved
content

vmware.cluster.discovery
Performs cluster discovery. {#CLUSTER.ID}Cluster

identi-
fier.

{#CLUSTER.NAME}Cluster
name.

vmware.hv.discovery
Performs hypervisor discovery. {#HV.UUID}Unique

hypervi-
sor
identi-
fier.

{#HV.ID} Hypervisor
identifier
(Host-
System
man-
aged
object
name).

{#HV.NAME}Hypervisor
name.

{#CLUSTER.NAME}Cluster
name,
might be
empty.

vmware.hv.datastore.discovery
Performs hypervisor datastore discovery. Note that multiple hypervisors can use the same datastore. {#DATASTORE}Datastore

name.
vmware.vm.discovery
Performs virtual machine discovery. {#VM.UUID}Unique

virtual
machine
identi-
fier.

307

https://support.zabbix.com/browse/ZBX-12094

Item key

{#VM.ID} Virtual
machine
identifier
(Virtual-
Machine
man-
aged
object
name).

{#VM.NAME}Virtual
machine
name.

{#HV.NAME}Hypervisor
name.

{#CLUSTER.NAME}Cluster
name,
might be
empty.

vmware.vm.net.if.discovery
Performs virtual machine network interface discovery. {#IFNAME} Network

interface
name.

vmware.vm.vfs.dev.discovery
Performs virtual machine disk device discovery. {#DISKNAME}Disk

device
name.

vmware.vm.vfs.fs.discovery
Performs virtual machine file system discovery. {#FSNAME}File

system
name.

10. Maintenance

Overview You can define maintenance periods for hosts and host groups in Zabbix. There are two maintenance types - with data
collection and with no data collection.

During a maintenance ”with data collection” triggers are processed as usual and events are created when required. To skip receiv-
ing notifications during such maintenance type, actions should be configured by retaining the default action condition ’Maintenance
status = not in ”maintenance”’ - then you should not get notifications during maintenance. It’s dedicated to skip problem notifica-
tions.
If a trigger generated an event during the maintenance period (as set in maintenance configuration), an additional event (the same
as last event created during maintenance) will be created at the end of maintenance for the host. This way, if a problem happens
during maintenance and is not resolved, a notification may be generated after the maintenance period ends.

To receive a notification during the maintenance you have to remove the default action condition about not taking actions during
maintenance.

Note:
If at least one host (used in the trigger expression) is not in maintenance mode, Zabbix will send a problem notification.

Zabbix server must be running during maintenance. Timer processes are responsible for switching host status to/from mainte-
nance at 0 seconds of every minute. A proxy will always collect data regardless of the maintenance type (including ”no data”
maintenance). The data is later ignored by the server if ’no data collection’ is set.

When ”no data” maintenance ends, triggers using nodata() function will not fire before the next check during the period they are
checking.

If a log item is added while a host is in maintenance and the maintenance ends, only new logfile entries since the end of the
maintenance will be gathered.

308

If a timestamped value is sent for a host that is in a “no data” maintenance type (e.g. using Zabbix sender) then this value will be
dropped however it is possible to send a timestamped value in for an expired maintenance period and it will be accepted.

Attention:
To ensure predictable behaviour of recurring maintenance periods (daily, weekly, monthly), it is required to use a common
timezone for all parts of Zabbix.

Configuration To configure a maintenance period:

• Go to: Configuration → Maintenance
• Click on Create maintenance period (or on the name of an existing maintenance period)

The Maintenance tab contains general maintenance period attributes:

Parameter Description

Name Name of the maintenance period.
Maintenance type Two types of maintenance can be set:

With data collection - data will be collected by the server during
maintenance, triggers will be processed
No data collection - data will not be collected by the server
during maintenance

Active since The date and time when executing maintenance periods becomes
active.
Note: Setting this time alone does not activate a maintenance
period; for that go to the Periods tab.

Active till The date and time when executing maintenance periods stops
being active.

Description Description of maintenance period.

The Periods tab allows you to define the exact days and hours when the maintenance takes place. Clicking on New opens a
flexible Maintenance period form where you can define the times - for daily, weekly, monthly or one-time maintenance.

309

Daily and weekly periods have an Every day/Every week parameter, which defaults to 1. Setting it to 2 wouldmake themaintenance
take place every two days or every two weeks and so on. The starting day or week is the day or week that Active since time falls
on.

For example, having Active since set to 2013-09-06 12:00 and an hour long daily recurrent period every two days at 23:00 will result
in the first maintenance period starting on 2013-09-06 at 23:00, while the second maintenance period will start on 2013-09-08 at
23:00. Or, with the same Active since time and an hour long daily recurrent period every two days at 01:00, the first maintenance
period will start on 2013-09-08 at 01:00, and the second maintenance period on 2013-09-10 at 01:00.

The Hosts & Groups tab allows you to select the hosts and host groups for maintenance.

310

Display A round orange icon with a white wrench indicates that a host is in maintenance in the Monitoring → Dashboard, Moni-
toring → Triggers and Inventory → Hosts → Host inventory details sections.

Maintenance details are displayed when the mouse pointer is positioned over the icon.

Note:
The display of hosts in maintenance in the Dashboard can be unset altogether with the dashboard filtering function.

Additionally, hosts in maintenance get an orange background in Monitoring → Maps and in Configuration → Hosts their status is
displayed as ’In maintenance’.

11. Regular expressions

Overview POSIX extended regular expressions are supported in Zabbix.

There are two ways of using regular expressions in Zabbix:

• manually entering a regular expression
• using a global regular expression created in Zabbix

Regular expressions You may manually enter a regular expression in supported places. Note that the expression may not start
with @ because that symbol is used in Zabbix for referencing global regular expressions.

Global regular expressions There is an advanced editor for creating and testing complex regular expressions in Zabbix fron-
tend.

Once a regular expression has been created this way, it can be used in several places in the frontend by referring to its name,
prefixed with @, for example, @mycustomregexp.

To create a global regular expression:

• Go to: Administration → General
• Select Regular expressions from the dropdown
• Click on New regular expression

The Expressions tab allows to set the regular expression name and add subexpressions.

311

https://en.wikipedia.org/wiki/Regular_expression#POSIX_extended

Parameter Description

Name Set the regular expression name. Any Unicode characters are
allowed.

Expressions Click on Add in the Expressions block to add a new
subexpression.

Expression
type

Select expression type:
Character string included - match the substring
Any character string included - match any substring from
a comma-delimited list
Character string not included - match any string except
the substring
Result is TRUE - match the regular expression
Result is FALSE - do not match the regular expression

ExpressionEnter substring/regular expression.

Attention:
A custom regular expression name in Zabbix may contain commas, spaces, etc. In those cases where that may lead to
misinterpretation when referencing (for example, a comma in the parameter of an item key) the whole reference may be
put in quotes like this: ”@My custom regexp for purpose1, purpose2”.
Regular expression names must not be quoted in other locations (for example, in LLD rule properties).

Example Use of the following regular expression in LLD to discover databases not taking into consideration a database with a
specific name:

^TESTDATABASE$

Chosen Expression type: ”Result is FALSE”. Doesn’t match name, containing string ”TESTDATABASE”.

More complex example A custom regular expression may consist of multiple subexpressions, and it can be tested in the Test
tab by providing a test string.

312

Results show the status of each subexpression and total custom expression status.

Total custom expression status is defined as Combined result. If several sub expressions are defined Zabbix uses AND logical
operator to calculate Combined result. It means that if at least one Result is False Combined result has also False status.

Explanation of global regular expressions

Global regexp Expression Description

File systems for discovery ^(btrfs\|ext2\|ext3\|ext4\|jfs\|reiser\|xfs\|ffs\|ufs\|jfs\|jfs2\|vxfs\|hfs\|refs\|ntfs\|fat32\|zfs)$Matches ”btrfs” or ”ext2” or ”ext3” or
”ext4” or ”jfs” or ”reiser” or ” xfs” or
”ffs” or ”ufs” or ”jfs” or ”jfs2” or ”vxfs”
or ”hfs” or ”refs” or ”ntfs” or ”fat32”
or ”zfs”

Network interfaces for discovery ^Software Loopback
Interface

Matches strings starting with
”Software Loopback Interface”

^lo$ Matches ”lo”
^(In)?[Ll]oop[Bb]ack[0-9._]*$Matches strings that optionally start

with ”In”, then have ”L” or ”l”, then
”oop”, then ”B” or ”b”, then ”ack”,
which can be optionally followed by
any number of digits, dots or
underscores

^NULL[0-9.]*$ Matches strings staring with ”NULL”
optionally followed by any number of
digits or dots

^[Ll]o[0-9.]*$ Matches strings starting with ”Lo” or
”lo” and optionally followed by any
number of digits or dots

^[Ss]ystem$ Matches ”System” or ”system”
^Nu[0-9.]*$ Matches strings staring with ”Nu”

optionally followed by any number of
digits or dots

Storage devices for SNMP discovery ^(Physical memory\|Virtual
memory\|Memory
buffers\|Cached
memory\|Swap space)$

Matches ”Physical memory” or ”Virtual
memory” or ”Memory buffers” or
”Cached memory” or ”Swap space”

313

Global regexp Expression Description

Windows service names for discovery ^(MMCSS\|gupdate\|SysmonLog\|clr_optimization_v2.0.50727_32\|clr_optimization_v4.0.30319_32)$Matches ”MMCSS” or ”gupdate” or
”SysmonLog” or strings like
”clr_optimization_v2.0.50727_32” and
”clr_optimization_v4.0.30319_32”
where instead of dots you can put any
character except newline.

Windows service startup states for discovery ^(automatic\|automatic
delayed)$

Matches ”automatic” or ”automatic
delayed”.

12. Event acknowledgement

Overview Problem events in Zabbix can be acknowledged by users.

If a user gets notified about of a problem event, they can go to Zabbix frontend, navigate from events to the acknowledgement
screen and acknowledge the problem. When acknowledging, they can enter their comment for it, saying that they are working on
it or whatever else they may feel like saying about it.

This way, if another system user spots the same problem, they immediately see if it has been acknowledged and the comments
so far.

This way the workflow of resolving problems with more than one system user can take place in a more coordinated way.

Acknowledgement status is also used when defining action operations. You can define, for example, that a notification is sent to a
higher level manager only if an event is not acknowledged for some time.

To acknowledge events, a user must have at least read permission to the corresponding trigger.

Acknowledgement screen The acknowledgement status of problems is displayed in Monitoring → Events.

The Ack column contains either a ’Yes’ or a ’No’, indicating an acknowledged or an unacknowledged problem respectively. A ’Yes’
may also have a number with it in brackets, indicating the number of comments for the problem so far.

Both ’Yes’ and ’No’ are links. Clicking them will take you to the acknowledgement screen.

To acknowledge a problem, enter your comment and click on Acknowledge and return or simply Acknowledge. ’Acknowledge and
return’ will take you back to the event screen.

Any previous comments for the problem are displayed above the comment area.

Display Acknowledgement information is fully displayed in the event details accessible by clicking the time of event inMonitoring
→ Events.

Acknowledgement status is displayed in the Last 20 issues block of Monitoring → Dashboard.

Based on acknowledgement information it is possible to configure how the problem count is displayed in the dashboard or maps.
To do that, you have to make selections in the Problem display option, available in both map configuration and the dashboard filter.
It is possible to display all problem count, unacknowledged problem count as separated from the total or unacknowledged problem
count only.

Acknowledgement status is displayed in Monitoring → Triggers. There, acknowledgement status is also used with the trigger
filtering options. You can filter by unacknowledged triggers or triggers with the last event unacknowledged.

314

13. Configuration export/import

Overview Zabbix export/import functionality makes it possible to exchange various configuration entities between one Zabbix
system and another.

Typical use cases for this functionality:

• sharing of templates or network maps - Zabbix users may share their configuration parameters
• integration with third-party tools - the universal XML format makes integration and data import/export possible with third
party tools and applications.

What can be exported/imported

Objects that can be exported/imported are:

• host groups (through Zabbix API only)
• templates (including all directly attached items, triggers, graphs, screens, discovery rules and template linkage)
• hosts (including all directly attached items, triggers, graphs, discovery rules and template linkage)
• network maps (including all related images; map export/import is supported since Zabbix 1.8.2)
• images
• screens

Export format

Data can be exported using the Zabbix web frontend or Zabbix API. Supported export formats are:

• XML - in the frontend
• XML or JSON - in Zabbix API

Details about export

• All supported elements are exported in one file.
• Host and template entities (items, triggers, graphs, discovery rules) that are inherited from linked templates are not exported.
Any changes made to those entities on a host level (such as changed item interval, modified regular expression or added
prototypes to the low-level discovery rule) will be lost when exporting; when importing, all entities from linked templates are
re-created as on the original linked template.

• Entities created by low-level discovery and any entities depending on them are not exported. For example, a trigger created
for an LLD-rule generated item will not be exported.

• Triggers and graphs that use web items are not exported.

Details about import

• Import stops at the first error.
• When updating existing images during image import, ”imagetype” field is ignored, i.e. it is impossible to change image type
via import.

• Empty tags for items, triggers, graphs, host/template applications, discoveryRules, itemPrototypes, triggerPrototypes, graph-
Prototypes are meaningless i.e. it’s the same as if it was missing. Other tags, for example, item applications, are meaningful
i.e. empty tag means no applications for item, missing tag means don’t update applications.

• Import supports both XML and JSON, the import file must have a correct file extension: .xml for XML and .json for JSON.
• See compatibility information about supported XML versions.

<?xml version="1.0" encoding="UTF-8"?>
<zabbix_export>

<version>2.0</version>
<date>2013-12-18T14:07:36Z</date>

</zabbix_export>

XML base format

<?xml version="1.0" encoding="UTF-8"?>

Default header for XML documents.

<zabbix_export>

Root element for Zabbix XML export.

315

<version>2.0</version>

Export version.

<date>2013-12-18T14:07:36Z</date>

Date when export was created in ISO 8601 long format.

Other tags are dependent on exported objects.

Groups

Frontend can export groups only with hosts or templates. When host or template is exported all groups it belongs to are exported
with it automatically.

API allows to export groups independently from hosts or templates.
<groups>

<group>
<name>Zabbix servers</name>

</group>
</groups>

groups/group

Parameter Type Description Details

name string Group name.

Hosts

Hosts are exported with many related objects and object relations.

Host export contains:

• hosts data
• host inventory data
• groups relations
• templates relations
• interfaces
• macros
• applications
• items
• discovery rules with all prototypes

When host is imported and updated, it can only be linked to additional templates and never be unlinked from any.

<hosts>
<host>

<host>Zabbix server</host>
<name>Zabbix server</name>
<proxy/>
<status>0</status>
<ipmi_authtype>-1</ipmi_authtype>
<ipmi_privilege>2</ipmi_privilege>
<ipmi_username/>
<ipmi_password/>
<templates/>
<groups>

<group>
<name>Zabbix servers</name>

</group>
</groups>
<interfaces>

316

<interface>
<default>1</default>
<type>1</type>
<useip>1</useip>
<ip>127.0.0.1</ip>
<dns/>
<port>20001</port>
<interface_ref>if1</interface_ref>

</interface>
</interfaces>
<applications>

<application>
<name>Memory</name>

</application>
<application>

<name>Zabbix agent</name>
</application>

</applications>
<items>

<item>
<name>Agent ping</name>
<type>0</type>
<snmp_community/>
<multiplier>0</multiplier>
<snmp_oid/>
<key>agent.ping</key>
<delay>60</delay>
<history>7</history>
<trends>365</trends>
<status>0</status>
<value_type>3</value_type>
<allowed_hosts/>
<units/>
<delta>0</delta>
<snmpv3_securityname/>
<snmpv3_securitylevel>0</snmpv3_securitylevel>
<snmpv3_authpassphrase/>
<snmpv3_privpassphrase/>
<formula>1</formula>
<delay_flex/>
<params/>
<ipmi_sensor/>
<data_type>0</data_type>
<authtype>0</authtype>
<username/>
<password/>
<publickey/>
<privatekey/>
<port/>
<description>The agent always returns 1 for this item. It could be used in combination with nodata() for availability check.</description>
<inventory_link>0</inventory_link>
<applications>

<application>
<name>Zabbix agent</name>

</application>
</applications>
<valuemap>

<name>Zabbix agent ping status</name>
</valuemap>
<interface_ref>if1</interface_ref>

</item>
<item>

317

<name>Available memory</name>
<type>0</type>
<snmp_community/>
<multiplier>0</multiplier>
<snmp_oid/>
<key>vm.memory.size[available]</key>
<delay>60</delay>
<history>7</history>
<trends>365</trends>
<status>0</status>
<value_type>3</value_type>
<allowed_hosts/>
<units>B</units>
<delta>0</delta>
<snmpv3_securityname/>
<snmpv3_securitylevel>0</snmpv3_securitylevel>
<snmpv3_authpassphrase/>
<snmpv3_privpassphrase/>
<formula>1</formula>
<delay_flex/>
<params/>
<ipmi_sensor/>
<data_type>0</data_type>
<authtype>0</authtype>
<username/>
<password/>
<publickey/>
<privatekey/>
<port/>
<description>Available memory is defined as free+cached+buffers memory.</description>
<inventory_link>0</inventory_link>
<applications>

<application>
<name>Memory</name>

</application>
</applications>
<valuemap/>
<interface_ref>if1</interface_ref>

</item>
</items>
<discovery_rules>

<discovery_rule>
<name>Mounted filesystem discovery</name>
<type>0</type>
<snmp_community/>
<snmp_oid/>
<key>vfs.fs.discovery</key>
<delay>3600</delay>
<status>0</status>
<allowed_hosts/>
<snmpv3_securityname/>
<snmpv3_securitylevel>0</snmpv3_securitylevel>
<snmpv3_authpassphrase/>
<snmpv3_privpassphrase/>
<delay_flex/>
<params/>
<ipmi_sensor/>
<authtype>0</authtype>
<username/>
<password/>
<publickey/>
<privatekey/>

318

<port/>
<filter>{#FSTYPE}:@File systems for discovery</filter>
<lifetime>30</lifetime>
<description>Discovery of file systems of different types as defined in global regular expression "File systems for discovery".</description>
<item_prototypes>

<item_prototype>
<name>Free disk space on $1</name>
<type>0</type>
<snmp_community/>
<multiplier>0</multiplier>
<snmp_oid/>
<key>vfs.fs.size[{#FSNAME},free]</key>
<delay>60</delay>
<history>7</history>
<trends>365</trends>
<status>0</status>
<value_type>3</value_type>
<allowed_hosts/>
<units>B</units>
<delta>0</delta>
<snmpv3_securityname/>
<snmpv3_securitylevel>0</snmpv3_securitylevel>
<snmpv3_authpassphrase/>
<snmpv3_privpassphrase/>
<formula>1</formula>
<delay_flex/>
<params/>
<ipmi_sensor/>
<data_type>0</data_type>
<authtype>0</authtype>
<username/>
<password/>
<publickey/>
<privatekey/>
<port/>
<description/>
<inventory_link>0</inventory_link>
<applications>

<application>
<name>Filesystems</name>

</application>
</applications>
<valuemap/>
<interface_ref>if1</interface_ref>

</item_prototype>
</item_prototypes>
<trigger_prototypes>

<trigger_prototype>
<expression>{Zabbix server 2:vfs.fs.size[{#FSNAME},pfree].last()}<20</expression>
<name>Free disk space is less than 20% on volume {#FSNAME}</name>
<url/>
<status>0</status>
<priority>2</priority>
<description/>
<type>0</type>

</trigger_prototype>
</trigger_prototypes>
<graph_prototypes>

<graph_prototype>
<name>Disk space usage {#FSNAME}</name>
<width>600</width>
<height>340</height>

319

<yaxismin>0.0000</yaxismin>
<yaxismax>0.0000</yaxismax>
<show_work_period>0</show_work_period>
<show_triggers>0</show_triggers>
<type>2</type>
<show_legend>1</show_legend>
<show_3d>1</show_3d>
<percent_left>0.0000</percent_left>
<percent_right>0.0000</percent_right>
<ymin_type_1>0</ymin_type_1>
<ymax_type_1>0</ymax_type_1>
<ymin_item_1>0</ymin_item_1>
<ymax_item_1>0</ymax_item_1>
<graph_items>

<graph_item>
<sortorder>0</sortorder>
<drawtype>0</drawtype>
<color>C80000</color>
<yaxisside>0</yaxisside>
<calc_fnc>2</calc_fnc>
<type>2</type>
<item>

<host>Zabbix server 2</host>
<key>vfs.fs.size[{#FSNAME},total]</key>

</item>
</graph_item>
<graph_item>

<sortorder>1</sortorder>
<drawtype>0</drawtype>
<color>00C800</color>
<yaxisside>0</yaxisside>
<calc_fnc>2</calc_fnc>
<type>0</type>
<item>

<host>Zabbix server 2</host>
<key>vfs.fs.size[{#FSNAME},free]</key>

</item>
</graph_item>

</graph_items>
</graph_prototype>

</graph_prototypes>
<interface_ref>if1</interface_ref>

</discovery_rule>
</discovery_rules>
<macros>

<macro>
<macro>{$M1}</macro>
<value>m1</value>

</macro>
<macro>

<macro>{$M2}</macro>
<value>m2</value>

</macro>
</macros>
<inventory/>

</host>
</hosts>

hosts/host

Parameter Type Description Details

host string Host name.

320

Parameter Type Description Details

name string Visible host name.
status int Host Status.
proxy int Proxy name.
ipmi_authtype int IPMI authentication type.
ipmi_privilege int IPMI privilege.
ipmi_username string IPMI username.
ipmi_password string IPMI password.

hosts/host/groups/group

Parameter Type Description Details

name string Group name.

hosts/host/templates/template

Parameter Type Description Details

name string Template technical name.

hosts/host/interfaces/interface

Column name Type Description

default integer Interface status:
0 - Not default interface
1 - Default interface

type integer Interface type:
1 - agent
2 - SNMP
3 - IPMI
4 - JMX

useip integer How to connect to the host:
0 – connect to the host using DNS name
1 – connect to the host using IP address

ip varchar IP address, can be either IPv4 or IPv6.
dns varchar DNS name.
port varchar Port number.
interface_ref varchar Interface reference name to be used in items.

hosts/host/applications/application

Parameter Type Description Details

name string Application name.

hosts/host/items/item

Parameter Type Description

type int Item type:
0 - Zabbix agent
1 - SNMPv1
2 - Trapper
3 - Simple check
4 - SNMPv2
5 - Internal
6 - SNMPv3
7 - Active check

321

Parameter Type Description

8 - Aggregate
9 - HTTP test (web monitoring scenario step)
10 - External
11 - Database monitor
12 - IPMI
13 - SSH
14 - telnet
15 - Calculated
16 - JMX
17 - SNMP trap

snmp_community string SNMP Community name
snmp_oid string SNMP OID
port int Item custom port
name string Item name
key string Item key
delay int Check interval
history int How long to keep item history (days)
trends int How long to keep item trends (days)
status int Item status
value_type int Value type
trapper_hosts string
units string Value units
multiplier int Value multiplier
delta int Store values as delta
snmpv3_securityname string SNMPv3 security name
snmpv3_securitylevel int SNMPv3 security level
snmpv3_authpassphrase string SNMPv3 authentication phrase
snmpv3_privpassphrase string SNMPv3 private phrase
formula string
delay_flex string Flexible delay
params string
ipmi_sensor string IPMI sensor
data_type int
authtype int
username string
password string
publickey string
privatekey string
interface_ref varchar Reference to host interface
description string Item description
inventory_link int Host inventory field number, that will be updated with

the value returned by the item
applications Item applications
valuemap Value map assigned to item

hosts/host/items/item/applications/application

Parameter Type Description Details

name string Application name.

14. Discovery

Please use the sidebar to access content in the Discovery section.

1 Network discovery

322

Overview

Zabbix offers automatic network discovery functionality that is effective and very flexible.

With network discovery properly set up you can:

• speed up Zabbix deployment
• simplify administration
• use Zabbix in rapidly changing environments without excessive administration

Zabbix network discovery is based on the following information:

• IP ranges
• Availability of external services (FTP, SSH, WEB, POP3, IMAP, TCP, etc)
• Information received from Zabbix agent
• Information received from SNMP agent

It does NOT provide:

• Discovery of network topology

Network discovery basically consists of two phases: discovery and actions.

Discovery

Zabbix periodically scans the IP ranges defined in network discovery rules. The frequency of the check is configurable for each
rule individually.

Note that one discovery rule will always be processed by a single discoverer process. The IP range will not be split between multiple
discoverer processes.

Each rule has a set of service checks defined to be performed for the IP range.

Note:
Discovery checks are processed independently from the other checks. If any checks do not find a service (or fail), other
checks will still be processed.

Every check of a service and a host (IP) performed by the network discovery module generates a discovery event.

Event Check of service result

Service Discovered The service is ’up’ after it was ’down’ or when discovered for the first time.
Service Up The service is ’up’, consecutively.
Service Lost The service is ’down’ after it was ’up’.
Service Down The service is ’down’, consecutively.
Host Discovered At least one service of a host is ’up’ after all services of that host were ’down’ or a service is

discovered which belongs to a not registered host.
Host Up At least one service of a host is ’up’, consecutively.
Host Lost All services of a host are ’down’ after at least one was ’up’.
Host Down All services of a host are ’down’, consecutively.

Actions

Discovery events can be the basis of relevant actions, such as:

• Sending notifications
• Adding/removing hosts
• Enabling/disabling hosts
• Adding hosts to a group
• Removing hosts from a group
• Linking hosts to/unlinking from a template
• Executing remote scripts

These actions can be configured with respect to the device type, IP, status, uptime/downtime, etc. For full details on configuring
actions for network-discovery based events, see action operation and conditions pages.

Note:
Linking a discovered host to templates will fail collectively if any of the linkable templates has a unique entity (e.g. item
key) that is the same as a unique entity (e.g. item key) already existing on the host or on another of the linkable templates.

323

Host creation

A host is added if the Add host operation is selected. A host is also added, even if the Add host operation is missing, if you select
operations resulting in actions on a host. Such operations are:

• enable host
• disable host
• add host to a host group
• link template to a host

When adding hosts, a host name is the result of reverse DNS lookup or IP address if reverse lookup fails. Lookup is performed from
the Zabbix server or Zabbix proxy, depending on which is doing the discovery. If lookup fails on the proxy, it is not retried on the
server. If the host with such a name already exists, the next host would get _2 appended to the name, then _3 and so on.

Created hosts are added to the Discovered hosts group (by default, configurable in Administration → General → Other). If you wish
hosts to be added to another group, add a Remove from host groups operation (specifying ”Discovered hosts”) and also add an
Add to host groups operation (specifying another host group), because a host must belong to a host group.

If a host already exists with the discovered IP address, a new host is not created. However, if the discovery action contains
operations (link template, add to host group, etc), they are performed on the existing host.

Interface creation when adding hosts

When hosts are added as a result of network discovery, they get interfaces created according to these rules:

• the services detected - for example, if an SNMP check succeeded, an SNMP interface will be created
• if a host responded both to Zabbix agent and SNMP requests, both types of interfaces will be created
• if uniqueness criteria are Zabbix agent or SNMP-returned data, the first interface found for a host will be created as the
default one. Other IP addresses will be added as additional interfaces.

• if a host responded to agent checks only, it will be created with an agent interface only. If it would start responding to SNMP
later, additional SNMP interfaces would be added.

• if 3 separate hosts were initially created, having been discovered by the ”IP” uniqueness criteria, and then the discovery rule
is modified so that hosts A, B and C have identical uniqueness criteria result, B and C are created as additional interfaces
for A, the first host. The individual hosts B and C remain. In Monitoring → Discovery the added interfaces will be displayed
in the ”Discovered device” column, in black font and indented, but the ”Monitored host” column will only display A, the first
created host. ”Uptime/Downtime” is not measured for IPs that are considered to be additional interfaces.

Configuring a network discovery rule

Overview

To configure a network discovery rule used by Zabbix to discover hosts and services:

• Go to Configuration → Discovery
• Click on Create rule (or on the rule name to edit an existing one)
• Edit the discovery rule attributes

Rule attributes

324

Parameter Description

Name Unique name of the rule. For example, ”Local network”.
Discovery by proxy What performs discovery:

no proxy - Zabbix server is doing discovery
<proxy name> - this proxy performs discovery

IP range The range of IP addresses for discovery. It may have the following
formats:
Single IP: 192.168.1.33
Range of IP addresses: 192.168.1.1-255
IP mask: 192.168.4.0/24
supported IP masks:
/16 - /30 for IPv4 addresses
/112 - /128 for IPv6 addresses
List:
192.168.1.1-255,192.168.2.1-100,192.168.2.200,192.168.4.0/24
Note: Each IP address should be included only once; having
multiple rules for a single IP address can have unexpected
behavior such as having deadlocks and/or duplicate hosts in the
database. The same could happen if two hosts having the same
DNS name are included in separate discovery rules.

Delay (in sec) This parameter defines how often Zabbix will execute the rule.
Delay is measured after the execution of previous discovery
instance ends so there is no overlap.

325

Parameter Description

Checks Zabbix will use this list of checks for discovery.
Supported checks: SSH, LDAP, SMTP, FTP, HTTP, HTTPS, POP,
NNTP, IMAP, TCP, Telnet, Zabbix agent, SNMPv1 agent, SNMPv2
agent, SNMPv3 agent, ICMP ping.
A protocol-based discovery uses the net.tcp.service[]
functionality to test each host, except for SNMP which queries an
SNMP OID. Zabbix agent is tested by querying an item. Please see
agent items for more details.
The ’Ports’ parameter may be one of following:
Single port: 22
Range of ports: 22-45
List: 22-45,55,60-70

Device uniqueness criteria Uniqueness criteria may be:
IP address - no processing of multiple single-IP devices. If a
device with the same IP already exists it will be considered already
discovered and a new host will not be added.
Type of discovery check - either SNMP or Zabbix agent check.

Enabled With the check-box marked the rule is active and will be executed
by Zabbix server.
If unmarked, the rule is not active. It won’t be executed.

Changing proxy setting

Since Zabbix 2.2.0 the hosts discovered by different proxies are always treated as different hosts. While this allows to perform
discovery on matching IP ranges used by different subnets, changing proxy for an already monitored subnet is complicated because
the proxy changes must be also applied to all discovered hosts. For example the steps to replace proxy in a discovery rule:

1. disable discovery rule
2. sync proxy configuration
3. replace the proxy in the discovery rule
4. replace the proxy for all hosts discovered by this rule
5. enable discovery rule

A real life scenario

In this example we would like to set up network discovery for the local network having an IP range of 192.168.1.1-192.168.1.255.

In our scenario we want to:

• discover those hosts that have Zabbix agent running
• run discovery every 10 minutes
• add a host to monitoring if the host uptime is more than 1 hour
• remove hosts if the host downtime is more than 24 hours
• add Linux hosts to the ”Linux servers” group
• add Windows hosts to the ”Windows servers” group
• use Template_Linux for Linux hosts
• use Template_Windows for Windows hosts

Step 1

Defining a network discovery rule for our IP range.

326

Zabbix will try to discover hosts in the IP range of 192.168.1.1-192.168.1.255 by connecting to Zabbix agents and getting the
value from system.uname key. The value received from the agent can be used to apply different actions for different operating
systems. For example, link Windows servers to Template_Windows, Linux servers to Template_Linux.

The rule will be executed every 10 minutes (600 seconds).

With this rule is added, Zabbix will automatically start the discovery and generating discovery-based events for further processing.

Step 2

Defining an action for adding the discovered Linux servers to the respective group/template.

The action will be activated if:

• the ”Zabbix agent” service is ”up”
• the value of system.uname (the Zabbix agent key we used in rule definition) contains ”Linux”
• Uptime is 1 hour (3600 seconds) or more

327

The action will execute the following operations:

• add the discovered host to the ”Linux servers” group (and also add host if it wasn’t added previously)
• link host to the ”Template OS Linux” template. Zabbix will automatically start monitoring the host using items and triggers
from ”Template OS Linux”.

Step 3

Defining an action for adding the discovered Windows servers to the respective group/template.

Step 4

Defining an action for removing lost servers.

328

A server will be removed if ”Zabbix agent” service is ’down’ for more than 24 hours (86400 seconds).

2 Active agent auto-registration

Overview

It is possible to allow active Zabbix agent auto-registration, after which the server can start monitoring them. This way new hosts
can be added for monitoring without configuring them manually on the server.

Auto registration can happen when a previously unknown active agent asks for checks.

The feature might be very handy for automatic monitoring of new Cloud nodes. As soon as you have a new node in the Cloud
Zabbix will automatically start the collection of performance and availability data of the host.

Active agent auto-registration also supports the monitoring of added hosts with passive checks. When the active agent asks for
checks, providing it has the ’ListenIP’ or ’ListenPort’ configuration parameters defined in the configuration file, these are sent along
to the server. (If multiple IP addresses are specified, the first one is sent to the server.)

Server, when adding the new auto-registered host, uses the received IP address and port to configure the agent. If no IP address
value is received, the one used for the incoming connection is used. If no port value is received, 10050 is used.

Configuration

Specify server

Make sure you have the Zabbix server identified in the agent configuration file - zabbix_agentd.conf

ServerActive=10.0.0.1

Unless you specifically define a Hostname in zabbix_agentd.conf, the system hostname of agent location will be used by server
for naming the host. The system hostname in Linux can be obtained by running the ’hostname’ command.

Restart the agent after making any changes to the configuration file.

Action for active agent auto-registration

When server receives an auto-registration request from an agent it calls an action. An action of event source ”Auto registration”
must be configured for agent auto-registration.

Note:
Setting up network discovery is not required to have active agents auto-register.

329

In the Zabbix frontend, go to Configuration → Actions, select Auto registration as the event source and click on Create action:

• In the Action tab, give your action a name
• In the Conditions tab, optionally specify conditions. If you are going to use the ”Host metadata” condition, see the next
section.

• In the Operations tab, add relevant operations, such as - ’Add host’, ’Add to host groups’ (for example, Discovered hosts),
’Link to templates’, etc.

Note:
If the hosts that will be auto-registering are likely to be supported for active monitoring only (such as hosts that are
firewalled from your Zabbix server) then you might want to create a specific template like Template_Linux-active to link to.

Created hosts are added to the Discovered hosts group (by default, configurable in Administration → General → Other).

Using host metadata

When agent is sending an auto-registration request to the server it sends its hostname. In some cases (for example, Amazon cloud
nodes) a hostname is not enough for Zabbix server to differentiate discovered hosts. Host metadata can be optionally used to
send other information from an agent to the server.

Host metadata is configured in the agent configuration file - zabbix_agentd.conf. There are 2 ways of specifying host metadata in
the configuration file:

HostMetadata
HostMetadataItem

See the description of the options in the link above.

<note:important>An auto-registration attempt happens every time an active agent sends a request to refresh active checks to
the server. The delay between requests is specified in the RefreshActiveChecks parameter of the agent. The first request is sent
immediately after the agent is restarted. :::

Example 1

Using host metadata to distinguish between Linux and Windows hosts.

Say you would like the hosts to be auto-registered by the Zabbix server. You have active Zabbix agents (see ”Configuration”
section above) on your network. There are Windows hosts and Linux hosts on your network and you have ”Template OS Linux”
and ”Template OS Windows” templates available in your Zabbix frontend. So at host registration you would like the appropriate
Linux/Windows template to be applied to the host being registered. By default only the hostname is sent to the server at auto-
registration, which might not be enough. In order to make sure the proper template is applied to the host you should use host
metadata.

Agent configuration

The first thing to do is configuring the agents. Add the next line to the agent configuration files:

HostMetadataItem=system.uname

This way you make sure host metadata will contain ”Linux” or ”Windows” depending on the host an agent is running on. An
example of host metadata in this case:

Linux: Linux server3 3.2.0-4-686-pae #1 SMP Debian 3.2.41-2 i686 GNU/Linux
Windows: Windows WIN-0PXGGSTYNHO 6.0.6001 Windows Server 2008 Service Pack 1 Intel IA-32

Do not forget to restart the agent after making any changes to the configuration file.

Frontend configuration

Now you need to configure the frontend. Create 2 actions. The first action:

• Name: Linux host autoregistration
• Conditions: Host metadata like Linux
• Operations: Link to templates: Template OS Linux

Note:
You can skip an ”Add host” operation in this case. Linking to a template requires adding a host first so the server will do
that automatically.

The second action:

• Name: Windows host autoregistration

330

• Conditions: Host metadata like Windows
• Operations: Link to templates: Template OS Windows

Example 2

Using host metadata to allow some basic protection against unwanted hosts registering.

Agent configuration

Add the next line to the agent configuration file:

HostMetadata=Linux 21df83bf21bf0be663090bb8d4128558ab9b95fba66a6dbf834f8b91ae5e08ae

where ”Linux” is a platform, and the rest of the string is some hard-to-guess secret text.

Do not forget to restart the agent after making any changes to the configuration file.

Frontend configuration

Create an action in the frontend, using the above mentioned hard-to-guess secret code to disallow unwanted hosts:

• Name: Auto registration action Linux
• Conditions:

* Type of calculation: AND
* Condition (A): Host metadata like //Linux//
* Condition (B): Host metadata like //21df83bf21bf0be663090bb8d4128558ab9b95fba66a6dbf834f8b91ae5e08ae//

* Operations:
* Send message to users: Admin via all media
* Add to host groups: Linux servers
* Link to templates: Template OS Linux

Please note that this method alone does not provide strong protection because data are transmitted in plain text.

3 Low-level discovery

Overview

Low-level discovery provides a way to automatically create items, triggers, and graphs for different entities on a computer. For
instance, Zabbix can automatically start monitoring file systems or network interfaces on your machine, without the need to create
items for each file system or network interface manually. Additionally it is possible to configure Zabbix to remove unneeded entities
automatically based on actual results of periodically performed discovery.

In Zabbix, three types of item discovery are supported out of the box:

• discovery of file systems;
• discovery of network interfaces;
• discovery of SNMP OIDs.

A user can define their own types of discovery, provided they follow a particular JSON protocol.

The general architecture of the discovery process is as follows.

First, a user creates a discovery rule in ”Configuration” → ”Templates” → ”Discovery” column. A discovery rule consists of (1) an
item that discovers the necessary entities (for instance, file systems or network interfaces) and (2) prototypes of items, triggers,
and graphs that should be created based on the value of that item.

An item that discovers the necessary entities is like a regular item seen elsewhere: the server asks a Zabbix agent (or whatever
the type of the item is set to) for a value of that item, the agent responds with a textual value. The difference is that the value the
agent responds with should contain a list of discovered entities in a specific JSON format. While the details of this format are only
important for implementers of custom discovery checks, it is necessary to know that the returned value contains a list of macro →
value pairs. For instance, item ”net.if.discovery” might return two pairs: ”{#IFNAME}” → ”lo” and ”{#IFNAME}” → ”eth0”.

Note:
Low-level discovery items ”vfs.fs.discovery” and ”net.if.discovery” are supported since Zabbix agent version 2.0.
Discovery of SNMP OIDs is supported since Zabbix server and proxy version 2.0.

331

Note:
Return values of a low-level discovery rule are limited to 2048 bytes on a Zabbix proxy run with IBM DB2 database. This
limit does not apply to Zabbix server as return values are processed without being stored in a database.

These macros are used in names, keys and other prototype fields where they are then substituted with the received values for
creating real items, triggers, graphs or even hosts for each discovered entity. See the full list of options for using LLD macros.

When the server receives a value for a discovery item, it looks at the macro → value pairs and for each pair generates real items,
triggers, and graphs, based on their prototypes. In the example with ”net.if.discovery” above, the server would generate one set
of items, triggers, and graphs for the loopback interface ”lo”, and another set for interface ”eth0”.

See also: Discovered entities

The following sections illustrate the process described above in detail and serve as a how-to for performing discovery of file systems,
network interfaces, and SNMP OIDs. See Creating custom LLD rules for a description of the JSON format for discovery items and
an example of how to implement your own file system discoverer as a Perl script.

3.1 Discovery of file systems

To configure the discovery of file systems, do the following:

• Go to: Configuration → Templates
• Click on Discovery in the row of an appropriate template

• Click on Create discovery rule in the upper right corner of the screen
• Fill in the form with the following details

332

Parameter Description

Name Name of discovery rule.
Type The type of check to perform discovery; should be Zabbix agent or

Zabbix agent (active) for file system discovery.
Key An item with ”vfs.fs.discovery” key is built into the Zabbix agent on

many platforms (see supported item key list for details), and will
return a JSON with the list of file systems present on the computer
and their types.

Update interval (in sec) This field specifies how often Zabbix performs discovery. In the
beginning, when you are just setting up file system discovery, you
might wish to set it to a small interval, but once you know it works
you can set it to 30 minutes or more, because file systems usually
do not change very often.
Note: If set to ”0”, the item will not be polled. However, if a flexible
interval also exists with a non-zero value, the item will be polled
during the flexible interval duration.

Flexible intervals You can create exceptions to Update interval. For example:
Interval: 0, Period: 6-7,00:00-24:00 - will disable the polling at
the weekend. Otherwise default update interval will be used.
Up to seven flexible intervals can be defined.
If multiple flexible intervals overlap, the smallest Interval value is
used for the overlapping period.
See Time period specification page for description of the Period
format.
Note: If set to ”0”, the item will not be polled during the flexible
interval duration and will resume polling according to the Update
interval once the flexible interval period is over.

Keep lost resources period (in days) This field allows you to specify for how many days the discovered
entity will be retained (won’t be deleted) once its discovery status
becomes ”Not discovered anymore” (max 3650 days).
Note: If set to ”0”, entities will be deleted immediately. Using ”0”
is not recommended, since just wrongly editing the filter may end
up in the entity being deleted with all the historical data.

Filter The filter can be used to only generate real items, triggers, and
graphs for certain file systems. It expects POSIX Extended Regular
Expression. For instance, if you are only interested in C:, D:, and E:
file systems, you could put {#FSNAME} into ”Macro” and
”^C|^D|^E” regular expression into ”Regexp” text fields. Filtering
is also possible by file system types using {#FSTYPE} macro (e. g.
”^ext|^reiserfs”).
You can enter a regular expression or reference a global regular
expression in ”Regexp” field.
In order to test the regular expression you can use ”grep -E”, for
example:
for f in ext2 nfs reiserfs smbfs; do echo $f \| grep -E '^ext\|^reiserfs' \|\| echo "SKIP: $f"; doneNote
that if some macro from the filter is missing in the response, the
found entity will be ignored.

Description Enter a description.
Status Enabled - the rule will be processed.

Disabled - the rule will not be processed.
Not supported - the item is not supported. This item will not be
processed, however Zabbix may try to periodically set the status of
the item to Enabled according to the interval set for refreshing
unsupported items.

Attention:
Zabbix database in MySQL must be created as case-sensitive if file system names that differ only by case are to be
discovered correctly.

333

Attention:
The mistake or typo in regex used in LLD rule may cause deleting thousands of configuration elements, historical values
and events for many hosts. For example, incorrect “File systems for discovery” regular expression may cause deleting
thousands of items, triggers, historical values and events.

Note:
Discovery rule history is not preserved.

Once a rule is created, go to the items for that rule and press ”Create prototype” to create an item prototype. Note how macro
{#FSNAME} is used where a file system name is required. When the discovery rule is processed, this macro will be substituted
with the discovered file system.

Note:
If an item prototype is created with a Disabled status, it will be added to a discovered entity, but in a disabled state.

We can create several item prototypes for each file system metric we are interested in:

334

Then, we create trigger prototypes in a similar way:

And graph prototypes too:

335

Finally, we have created a discovery rule that looks like shown below. It has five item prototypes, two trigger prototypes, and one
graph prototype.

Note: For configuring host prototypes, see the section about host prototype configuration in virtual machine monitoring.

3.1.1 Discovered entities

The screenshots below illustrate how discovered items, triggers, and graphs look like in the host’s configuration. Discovered entities
are prefixed with a golden link to a discovery rule they come from.

Note that discovered entities will not be created in case there are already existing entities with the same uniqueness criteria, for
example, an item with the same key or graph with the same name. An error message is displayed in this case in the frontend that
the low-level discovery rule could not create certain entities. The discovery rule itself, however, will not turn unsupported because
some entity could not be created and had to be skipped. The discovery rule will go on creating/updating other entities.

Items (similarly, triggers and graphs) created by a low-level discovery rule cannot be manually deleted. However, they will be
deleted automatically if a discovered entity (file system, interface, etc) stops being discovered (or does not pass the filter anymore).
In this case the items, triggers and graphs will be deleted after the days defined in the Keep lost resources period field pass. Note
that triggers (until Zabbix 2.2.2) and graphs (until Zabbix 2.2.3) are deleted immediately.

When discovered entities become ’Not discovered anymore’, an orange lifetime indicator is displayed in the item list. Move your
mouse pointer over it and a message will be displayed indicating how many days are left until the item is deleted.

336

If entities were marked for deletion, but were not deleted at the expected time (disabled discovery rule or item host), they will be
deleted the next time the discovery rule is processed.

3.2 Discovery of network interfaces

Discovery of network interfaces is done in exactly the same way as discovery of file systems, except that you use the dis-
covery rule key ”net.if.discovery” instead of ”vfs.fs.discovery” and use macro {#IFNAME} instead of {#FSNAME} in filter and
item/trigger/graph prototypes.

Examples of item prototypes that you might wish to create based on ”net.if.discovery”: ”net.if.in[{#IFNAME},bytes]”,
”net.if.out[{#IFNAME},bytes]”.

See above for more information about the filter.

3.3 Discovery of SNMP OIDs

In this example, we will perform SNMP discovery on a switch. First, go to ”Configuration” → ”Templates”.

To edit discovery rules for a template, click on the link in the ”Discovery” column.

Then, press ”Create rule” and fill the form with the details in the screenshot below.

337

Unlike file system and network interface discovery, the item does not necessarily have to have ”snmp.discovery” key - item type
of SNMP agent is sufficient.

Also, unlike the previous examples, this discovery item will generate two macros for each discovered entity: {#SNMPINDEX} and
{#SNMPVALUE}. In case you would like to filter out loopback interfaces from returned values you could put ”{#SNMPVALUE}” into
filter “Macro” and ”^([^l]|l$)[^o]?” regular expression into “Regexp” text fields. See above for more information about the filter.

In ”SNMP OID” field, we have to put an OID that is capable of generating meaningful values for these macros.

To understand what we mean, let us perform snmpwalk on our switch:

$ snmpwalk -v 2c -c public 192.168.1.1 IF-MIB::ifDescr
IF-MIB::ifDescr.1 = STRING: WAN
IF-MIB::ifDescr.2 = STRING: LAN1
IF-MIB::ifDescr.3 = STRING: LAN2

Macro {#SNMPINDEX} takes its value from the part of the OID that is after ifDescr (in this example: 1, 2, 3). Macro {#SNMPVALUE}
comes from the value of the corresponding OID (here: WAN, LAN1, LAN2). Thus, our ”snmp.discovery” item would return three
sets of macro → value pairs:

{#SNMPINDEX} → 1 {#SNMPVALUE} → WAN
{#SNMPINDEX} → 2 {#SNMPVALUE} → LAN1
{#SNMPINDEX} → 3 {#SNMPVALUE} → LAN2

The following screenshot illustrates how we can use these macros in item prototypes:

338

Again, creating as many item prototypes as needed:

As well as trigger prototypes:

339

And graph prototypes:

340

A summary of our discovery rule:

When server runs, it will create real items, triggers, and graphs, based on the values ”snmp.discovery” returns. In host’s configu-
ration they will be prefixed with a golden link to a discovery rule they come from.

341

3.4 Creating custom LLD rules

It is also possible to create a completely custom LLD rule, discovering any type of entities - for example, databases on a database
server.

To do so, a custom item should be created that returns JSON, specifying found objects and optionally - some properties of them.
The amount of macros per entity is not limited - while the built-in discovery rules return either one or two macros (for example,
two for filesystem discovery), it is possible to return more.

The required JSON format is best illustrated with an example. Suppose we are running an old Zabbix 1.8 agent (one that does not
support ”vfs.fs.discovery”), but we still need to discover file systems. Here is a simple Perl script for Linux that discovers mounted
file systems and outputs JSON, which includes both file system name and type. One way to use it would be as a UserParameter
with key ”vfs.fs.discovery_perl”:

###!/usr/bin/perl

$first = 1;

print "{\n";
print "\t\"data\":[\n\n";

342

for (`cat /proc/mounts`)
{

($fsname, $fstype) = m/\S+ (\S+) (\S+)/;
$fsname =~ s!/!\\/!g;

print "\t,\n" if not $first;
$first = 0;

print "\t{\n";
print "\t\t\"{#FSNAME}\":\"$fsname\",\n";
print "\t\t\"{#FSTYPE}\":\"$fstype\"\n";
print "\t}\n";

}

print "\n\t]\n";
print "}\n";

Attention:
Allowed symbols for LLD macro names are 0-9 , A-Z , _ , .

Lowercase letters are not supported in the names.

An example of its output (reformatted for clarity) is shown below. JSON for custom discovery checks has to follow the same format.

{
"data":[

{ "{#FSNAME}":"\/", "{#FSTYPE}":"rootfs" },
{ "{#FSNAME}":"\/sys", "{#FSTYPE}":"sysfs" },
{ "{#FSNAME}":"\/proc", "{#FSTYPE}":"proc" },
{ "{#FSNAME}":"\/dev", "{#FSTYPE}":"devtmpfs" },
{ "{#FSNAME}":"\/dev\/pts", "{#FSTYPE}":"devpts" },
{ "{#FSNAME}":"\/", "{#FSTYPE}":"ext3" },
{ "{#FSNAME}":"\/lib\/init\/rw", "{#FSTYPE}":"tmpfs" },
{ "{#FSNAME}":"\/dev\/shm", "{#FSTYPE}":"tmpfs" },
{ "{#FSNAME}":"\/home", "{#FSTYPE}":"ext3" },
{ "{#FSNAME}":"\/tmp", "{#FSTYPE}":"ext3" },
{ "{#FSNAME}":"\/usr", "{#FSTYPE}":"ext3" },
{ "{#FSNAME}":"\/var", "{#FSTYPE}":"ext3" },
{ "{#FSNAME}":"\/sys\/fs\/fuse\/connections", "{#FSTYPE}":"fusectl" }

]
}

Then, in the discovery rule’s ”Filter” field, we could specify ”{#FSTYPE}” as a macro and ”rootfs|ext3” as a regular expression.

Note:
You don’t have to use macro names FSNAME/FSTYPE with custom LLD rules, you are free to use whatever names you like.

15. Distributed monitoring

Overview Zabbix provides effective and reliable ways of monitoring distributed IT infrastructure. The two main solutions for
large environments provided by Zabbix are:

• use of proxies
• use of nodes

Proxies can be used to collect data locally on behalf of a centralized Zabbix server and then report the data to the server. Nodes
are full Zabbix servers that can be set up in a hierarchy of distributed monitoring.

Proxy vs. node

343

When making a choice between using a proxy or a node, several considerations must be taken into account.

Proxy Node

Lightweight Yes No
GUI No Yes
Works independently Yes Yes
Easy maintenance Yes No
Automatic DB creation1 Yes No
Local administration No Yes
Ready for embedded hardware Yes No
One way TCP connections Yes Yes
Centralised configuration Yes No
Generates notifications No Yes

Note:
[1] Automatic DB creation feature only works with SQLite. Other databases require a manual setup.

1 Proxies

Overview

A Zabbix proxy can collect performance and availability data on behalf of the Zabbix server. This way, a proxy can take on itself
some of the load of collecting data and offload the Zabbix server.

Also, using a proxy is the easiest way of implementing centralized and distributed monitoring, when all agents and proxies report
to one Zabbix server and all data is collected centrally.

A Zabbix proxy can be used to:

• Monitor remote locations
• Monitor locations having unreliable communications
• Offload the Zabbix server when monitoring thousands of devices
• Simplify the maintenance of distributed monitoring

The proxy requires only one TCP connection to the Zabbix server. This way it is easier to get around a firewall as you only need to
configure one firewall rule.

Attention:
Zabbix proxy must use a separate database. Pointing it to the Zabbix server database will break the configuration.

All data collected by the proxy is stored locally before transmitting it over to the server. This way no data is lost due to any temporary
communication problems with the server. The ProxyLocalBuffer and ProxyOfflineBuffer parameters in the proxy configuration file
control for how long the data are kept locally.

344

Attention:
It may happen that a proxy, which receives the latest configuration changes directly from Zabbix server database, has
a more up-to-date configuration than Zabbix server whose configuration may not be updated as fast due to the value of
CacheUpdateFrequency. As a result, proxy may start gathering data and send them to Zabbix server that ignores these
data.

Zabbix proxy is a data collector. It does not calculate triggers, process events or send alerts. For an overview of what proxy
functionality is, review the following table:

Function Supported by proxy

Items
Zabbix agent checks Yes
Zabbix agent checks (active) Yes 1

Simple checks Yes
Trapper items Yes
SNMP checks Yes
SNMP traps Yes
IPMI checks Yes
JMX checks Yes
Log file monitoring Yes
Internal checks Yes
SSH checks Yes
Telnet checks Yes
External checks Yes

Built-in web monitoring Yes
Network discovery Yes
Low-level discovery Yes
Calculating triggers No
Processing events No
Sending alerts No
Remote commands No

Note:
[1] To make sure that an agent asks the proxy (and not the server) for active checks, the proxy must be listed in the
ServerActive parameter in the agent configuration file.

Configuration

Once you have installed and configured a proxy, it is time to configure it in the Zabbix frontend.

Adding proxies

To configure a proxy in Zabbix front end:

• Go to: Administration → DM
• Click on Create proxy

345

Parameter Description

Proxy name Enter the proxy name. It must be the same name as in the
Hostname parameter in the proxy configuration file.

Proxy mode Select the proxy mode.
Active - the proxy will connect to the Zabbix server and request
configuration data
Passive - Zabbix server connects to the proxy
Note that (sensitive) proxy configuration data may become
available to parties having access to the Zabbix server trapper port
when using an active proxy. This is possible because anyone may
pretend to be an active proxy and request configuration data;
authentication does not take place.

Hosts Add hosts to be monitored by the proxy.

Host configuration

You can specify that an individual host should be monitored by a proxy in the host configuration form, using the Monitored by proxy
field.

Host mass update is another way of specifying that hosts should be monitored by a proxy.

2 Nodes

Overview

You can use nodes to build a hierarchy of distributed monitoring.

Each node is a full Zabbix server and is responsible for monitoring its own location. Zabbix supports up to a thousand nodes in a
distributed setup.

The benefits of using a node setup:

• building a multi-level hierarchy of monitoring in a large network involving several geographical locations. A node in the
hierarchy reports to its master node only.

• a node can be configured locally or through its master node, which has a copy of configuration data of all child nodes.

• data gathering becomes more immune to possible communication problems. If communication between amaster and a child
node breaks down, nodes can keep operating. Historical information and events are stored locally. When communication is
back, a child node will optionally send the data to the master node.

• the nodes can split the work of a single Zabbix server having to monitor thousands of hosts

• attaching and detaching new nodes does not affect the functionality of the existing setup. No restart of any node required.

Platform independence

A node may use its own platform (OS, hardware) and database engine independently of other nodes. Also child nodes can be
installed without Zabbix frontend.

The nodes of higher levels should use a combination of better hardware with MySQL InnoDB, Oracle or PostgreSQL backend.

Attention:
A distributed monitoring setup will not work with an SQLite backend database.

Configuration

Node configuration

A Zabbix server installed by following the standard installation procedure is not configured as a node for a distributed setup.

346

To configure it as a node:

• Specify a unique NodeID in the server configuration file (zabbix_server.conf). Available values: 1-999 (’0’ being the default
value of a standalone server)

• Stop zabbix_server, make sure that it is NOT running

• Convert database data for a distributed setup, by running:

zabbix_server -n <node id>

Warning:
Run this command only once. Running it twice will corrupt the database, so make sure that you run it with the correct
node id.

Warning:
It is strongly recommended to stop Apache web server before the conversion step.

For example, you may run (if NodeID is ’1’):

cd bin
./zabbix_server -n 1 -c /usr/local/etc/zabbix_server.conf

Note:
Running zabbix_server with the -n option does not start the server process.

Attention:
Running this command will fail if any configuration object ID is larger than 99999999999999 or any historical object (events,
alerts, etc) ID is larger than 99999999999999999.

In a very simple setup, we may envisage this node (with NodeID=1) as the master, and go on to configure another Zabbix server
as a child node, using the same procedure, only using a different node identifier, say, ’2’. With two nodes configured, it is time to
add them in the Zabbix front-end, in a very simple master-child relationship.

Front-end configuration (master node)

To configure the master node, open its Zabbix frontend:

• Go to: Administration → DM
• Make sure that Nodes are selected in the dropdown to the right
• Click on Local node to review its parameters

Node attributes:

Parameter Description

Name Unique node name.
Id Unique node ID. This is the value of NodeID from the configuration

file.
Type Local - the local node
IP IP address of the local node. Zabbix trapper must be listening on

this IP address.

347

Parameter Description

Port Port number of the local node. Zabbix trapper must be listening on
this port number. Default is 10051.

Then add the child node:

• Click on New node in Administration → DM

Node attributes:

Name Unique name of the child node.
Id Unique node ID. This is the NodeID from the child node

configuration file.
Type Select the first of the two available values:

Child - a child node
Master - a master node

Master node Select the master node for this child node.
IP IP address of the child node. Zabbix trapper must be

listening on this IP address.
Port Port number of the child node. Zabbix trapper must be

listening on this port number. Default is 10051.

Front-end configuration (child node)

To configure the child node, open its Zabbix frontend:

• Go to: Administration → DM
• Make sure that Nodes are selected in the dropdown to the right
• Click on Local node to review its parameters (see above for how to configure the local node)

Then add the master node:

• Click on New node in Administration → DM

348

Node attributes:

Name Unique name of the master node.
Id Unique master node ID. This is the NodeID from the master

node configuration file.
Type Select the second of the two available values:

Child - a child node
Master - a master node

IP IP address of the master node. Zabbix trapper must be
listening on this IP address on the master node.

Port Port number of the master node. Zabbix trapper must be
listening on this port number. Default is 10051.

Starting server daemons

To finish configuring a simple distributed setup, start the zabbix_server daemons, beginning with the master node daemon.

Display

As soon as nodes are defined, a dropdown for selecting one or several nodes appears in the Zabbix front-end.

Once selected, all information displayed in the front-end will come from the selected node(s).

More complex configurations

You can use the principles outlined to build more complex, multi-level monitoring hierarchies.

In this example, Riga (Node 4) will collect events and history from all the child nodes.

349

16. Web interface

Overview For an easy access to Zabbix from anywhere and from any platform, the web-based interface is provided.

Note:
Trying to access two Zabbix frontend installations on the same host, on different ports, simultaneously will fail. Logging
into the second one will terminate the session on the first one and so on.

1 Frontend sections

1 Monitoring

Overview

The Monitoring menu is all about displaying data. Whatever information Zabbix is configured to gather, visualize and act upon, it
will be displayed in the various sections of the Monitoring menu.

1 Dashboard

Overview

The Monitoring → Dashboard section, similar to the dashboard on your car, displays a summary of all the important information.

Favourites

There are some widgets for favourites where you can create quick shortcuts to the most needed graphs, custom graphs, screens,
slide shows and maps.

Just click on the Menu button in the widget, select to add, for example, some screen and then select from the configured screens.
The selected screens will be displayed as shortcuts in the favourites widget.

350

Status widgets

A number of status widgets - Status of Zabbix, System status, Host status, Last 20 issues, Web monitoring, Discovery status each
display a summary of the respective data.

As you may have noticed from the screenshot, the widgets can be arranged in up to three columns. Additionally, all widgets can
be freely moved around. Just grab a widget by its title bar, drag and drop wherever you would like it.

Dashboard filter

Clicking on in the Personal dashboard title bar allows you to access the dashboard filter.

By enabling the filter you can limit what hosts and triggers displayed in the dashboard and define how the problem count is
displayed.

Parameter Description

Dashboard filter Click the link to enable/disable the dashboard filter.
Host groups Select to display host data from:

All - all host groups
Selected - selected host groups.

Show selected groups This field is available if Selected is chosen in the Host groups field.
Enter host groups to display. This field is auto-complete so starting
to type the name of a group will offer a dropdown of matching
groups.
Host data from these host groups will be displayed in the
Dashboard.
If no host groups are entered, all host groups will be displayed.

351

Parameter Description

Hide selected groups This field is available if Selected is chosen in the Host groups field.
Enter host groups to hide. This field is auto-complete so starting to
type the name of a group will offer a dropdown of matching groups.
Host data from these host groups will not be displayed in the
Dashboard. For example, hosts 001, 002, 003 may be in Group A
and hosts 002, 003 in Group B as well. If we select to show Group A
and hide Group B at the same time, only data from host 001 will be
displayed in the Dashboard.

Hosts Mark the Show hosts in maintenance option to display data from
hosts in maintenance in the Dashboard.

Triggers with severity Mark the trigger severities to be displayed in the Dashboard.
Problem display Display problem count as:

All - full problem count will be displayed
Separated - unacknowledged problem count will be displayed
separated as a number of the total problem count
Unacknowledged only - only the unacknowledged problem count
will be displayed.

If dashboard filtering is applied, it is indicated by an orange filter icon: .

2 Overview

Overview

The Monitoring → Overview section offers an overview of trigger states or a comparison of data for various hosts at once.

The following display options are available:

• select horizontal or vertical display of information in the Hosts location dropdown
• select all hosts or specific host groups in the Group dropdown
• select all applications or specific ones in the Application dropdown (this dropdown is available since Zabbix 2.2; by selecting
an application, the selection of triggers/items will be narrowed down to those of the selected application)

• choose what type of information to display (triggers or data) in the Type dropdown

Overview of triggers

In the next screenshot Triggers are selected in the Type dropdown. As a result, trigger states of two local hosts are displayed, as
coloured blocks (the colour depending on the state of the trigger):

352

Note that recent trigger changes (within the last 30 minutes) will be displayed as blinking blocks.

Clicking on a trigger block provides links to trigger events, the acknowledgement screen or a simple graph/latest values list.

Overview of data

In the next screenshot Data is selected in the Type dropdown. As a result, performance item data of two local hosts are displayed.

353

Clicking on a piece of data offers links to some predefined graphs or 500 latest values.

Starting with Zabbix 2.2.4, only values that fall within the last 24 hours are displayed by default. This limit has been introduced
with the aim of improving initial loading times of data in large pages. It is also possible to change this limitation by changing the
value of ZBX_HISTORY_PERIOD constant in include/defines.inc.php.

3 Web

Overview

In the Monitoring → Web section current information about web scenarios is displayed.

Note: The name of a disabled host is displayed in red (in both the host dropdown and the list). Data of disabled hosts is accessible
starting with Zabbix 2.2.0.

The scenario name is link to more detailed statistics about it:

354

4 Latest data

Overview

The Monitoring → Latest data section displays the latest values gathered by items.

Just click on ’+’ before a host and the relevant application, and the items of that host and application will be displayed with their
latest values.

355

You can expand all hosts and all applications, thus revealing all items by clicking on ’+’ in the header row.

Note: The name of a disabled host is displayed in red (in both the host dropdown and the list). Data of disabled hosts, including
graphs and item value lists, is accessible in Latest data starting with Zabbix 2.2.0.

Items are displayed with their name, last check time, last value, change amount and a link to a simple graph/history of item values.

Starting with Zabbix 2.2.4, only values that fall within the last 24 hours are displayed by default. This limit has been introduced
with the aim of improving initial loading times for large pages of latest data. It is also possible to change this limitation by changing
the value of ZBX_HISTORY_PERIOD constant in include/defines.inc.php.

Attention:
Starting with Zabbix 2.2.4, for items with update frequency of 1 day or more the change amount will never be displayed
(with the default setting). Also in this case the last value will not be displayed at all if it was received more than 24 hours
ago.

Using filter

You can use the filter to display only the items you are interested in. The filter link is located above the table in the middle. You
can use it to filter items by a string in the name; you can also select to display items that have no data gathered.

Moreover, Show details allows to extend displayable information on the items. Such details as refresh interval, history and trends
settings, item type and item errors (fine/unsupported) are displayed. A link to item configuration is also available.

By default, items without data are not shown and details are not displayed either.

Links to value history/simple graph

356

The last column in the latest value list offers:

• a History link (for all textual items) - leading to listings (Values/500 latest values) displaying the history of previous item
values.

• a Graph link (for all numeric items) - leading to a simple graph. However, once the graph is displayed, a dropdown on the
upper right offers a possibility to switch to Values/500 latest values as well.

The values displayed in this list are ”raw”, that is, no postprocessing is applied.

Note:
The total amount of values displayed is defined by the value of Search/Filter elements limit parameter, set in Administration
→ General.

5 Triggers

Overview

The Monitoring → Triggers section displays the status of triggers.

357

Column Description

Severity The trigger severity is displayed.
The color of the severity is used as cell background for problem triggers. For
OK triggers, green background is used.

Status The trigger status is displayed - OK or PROBLEM.
By default, it will be blinking for 30 minutes for triggers that have recently
changed their state. Additionally, triggers that have recently changed their
state to OK, will be displayed for 30 minutes even if the filter is set to show
only problems.
Text color and blinking options can be configured in Administration → General
→ Trigger displaying options.

Info A grey icon with a question mark indicates that there is some relevant
information to be displayed. If you move your mouse pointer over it, the
message will be displayed.

Last change The date and time of last trigger status change is displayed.
Age The age of last trigger status change is displayed.
Acknowledged The acknowledgement status of the trigger is displayed:

Acknowledged - green text indicating that the trigger is acknowledged. A
trigger is considered to be acknowledged if all problem events for it are
acknowledged (or if there have been only OK events).
Acknowledge - a red link indicating unacknowledged problem events (and
their number in parenthesis).
If you click on the link you will be taken to a bulk acknowledgement screen
where all events for this trigger can be acknowledged at once.
Note: If you wish to acknowledge a single event only, go to Monitoring →
Events.
No events - if there have been no problem events for the trigger. Displaying
this string is supported since Zabbix 2.0.4; prior to that these triggers were
displayed as Acknowledged.

Host The host of the trigger is displayed.
It is also a link to the defined custom scripts, latest host data, host inventory
overview and host screens.

Name The name of the trigger is displayed.
It is also a link to the trigger event list and the trigger configuration page, as
well as to a simple graph of item data. The link list may also contain a custom
trigger URL, if one is defined in trigger configuration.

Comments A link to comments about the trigger.
The link for adding descriptions to triggers created by low-level discovery has
been removed in Zabbix 2.2.16. Such descriptions were later deleted anyway
by low-level discovery, if they were not present in the original trigger
prototype.

Using filter

You can use the filter to display only the triggers you are interested in. The filter link is the blue bar located above the table.

By default the filter is set to display triggers in problem status, also including the triggers that have only very recently changed
from ’Problem’ status to ’OK’. You can switch to display triggers in ’Any’ status, however, the next time you return to this page,
problem triggers will again be selected by default.

6 Events

Overview

The Monitoring → Events section displays latest events.

358

In the last dropdown to the right you can select trigger or discovery based events.

Currently displayed events can be exported to a CSV file. Look for the Export to CSV button to the right on the title bar.

Clicking on the timestamp in the first column of trigger events will take you to event details.

Details about the event, its source, acknowledgments, actions taken (messages, remote commands) and previous similar events
are displayed.

7 Graphs

Overview

In the Monitoring → Graphs section any custom graph that has been configured can be displayed.

359

To display a graph, select the host group, host and then the graph from the dropdowns to the right.

Note: In the host dropdown, a disabled host is highlighted in red. Graphs for disabled hosts are accessible starting with Zabbix
2.2.0.

Time period selector

The filter section above the graph contains a time period selector. It allows you to select the desired time period easily.

The slider within the selector can be dragged back and forth, as well as resized, effectively changing the time period displayed.
Links on the left hand side allow to choose some often-used predefined periods (above the slider area) and move them back and
forth in time (below the slider area). The dates on the right hand side actually work as links, popping up a calendar and allowing
to set a specific start/end time.

The fixed/dynamic link in the lower right hand corner has the following effects:

• controls whether the time period is kept constant when you change the start/end time in the calendar popup.
• when fixed, time moving controls (« 6m 1m 7d 1d 12h 1h | 1h 12h 1d 7d 1m 6m ») will move the slider, while not changing
its size, whereas when dynamic, the control used will enlarge the slider in the respective direction.

• when fixed, pressing the larger < and > buttons will move the slider, while not changing its size, whereas when dynamic, <
and > will enlarge the slider in the respective direction. The slider will move by the amount of its size, so, for example, if it
is one month, it will move by a month; whereas the slider will enlarge by 1 day.

Another way of controlling the displayed time is to highlight an area in the graph with the left mouse button. The graph will zoom
into the highlighted area once you release the left mouse button.

Controls

Three control buttons are available in the title bar:

• - add graph to the favourites widget in the Dashboard

• - reset graph display to the original setting of displaying the last hour data

• - use the full browser window to display the graph

8 Screens

Overview

In the Monitoring → Screens section any configured screen or slide show can be displayed.

360

Use the dropdown in the title bar to switch between screens and slide shows.

Time period selector

The filter section above the screen/slide show contains a time period selector. It allows you to select the desired time period easily,
affecting the data displayed in graphs etc.

Controls

Three control buttons are available in the title bar:

• - add screen/slide show to the favourites widget in the Dashboard

• - use the full browser window to display the screen/slide show

• - slow down or speed up a slide show

Referencing a screen

Screens can be referenced by both elementid and screenname GET parameters. For example,

http://zabbix/zabbix/screens.php?screenname=Zabbix%20server

will open the screen with that name (Zabbix server).

If both elementid (screen ID) and screenname (screen name) are specified, screenname has higher priority.

9 Maps

Overview

In the Monitoring → Maps section any configured network map can be viewed.

361

You can use the dropdowns in the map title bar to:

• switch between different configured maps
• select the lowest severity level of the problem triggers to display. The severity marked as default is the level set in map
configuration. If the map contains a submap, navigating to the submap will retain the higher-level map severity.

Icon highlighting

If a map element is in problem status, it is highlighted with a round circle. The fill colour of the circle corresponds to the severity
colour of the problem trigger. Only problems on or above the selected severity level will be displayed with the element. If all
problems are acknowledged, a thick green border around the circle is displayed.

Additionally, a host in maintenance is highlighted with an orange, filled square and a disabled (not-monitored) host is highlighted
with a grey, filled square. Highlighting is displayed if the Icon highlighting check-box is marked in map configuration.

Recent change markers

Inward pointing red triangles around an element indicate a recent trigger status change - one that’s happened within the last 30
minutes. These triangles are shown if the Mark elements on trigger status change check-box is marked in map configuration.

Links

Clicking on a map element opens a menu with some available links.

Controls

Two control buttons are available in the title bar:

• - add map to the favourites widget in the Dashboard

• - use the full browser window to display the map

Referencing a network map

Network maps can be referenced by both sysmapid and mapname GET parameters. For example,

http://zabbix/zabbix/maps.php?mapname=Local%20network

will open the map with that name (Local network).

If both sysmapid (map ID) and mapname (map name) are specified, mapname has higher priority.

10 Discovery

Overview

In the Monitoring → Discovery section results of network discovery are shown. Discovered devices are sorted by the discovery rule.

362

If a device is already monitored, the host name will be listed in the Monitored host column, and the duration of the device being
discovered or lost after previous discovery is shown in the Uptime/Downtime column.

After that follow the columns showing the state of individual services for each discovered device. A tooltip for each cell will show
individual service uptime or downtime.

Attention:
Only those services that have been found on at least one device will have a column showing their state.

11 IT services

Overview

In the Monitoring → IT services section the status of IT services is displayed.

A list of the existing IT services is displayed along with data of their status and SLA. From the dropdown in the upper right corner
you can select a desired period for display.

Displayed data:

Parameter Description

Service Service name.
Status Status of service:

OK - no problems
(trigger colour and severity) - indicates a problem and its
severity

Reason Indicates the reason of problem (if any).
Problem time Displays SLA bar. Green/red ratio indicates the proportion of

availability/problems. The bar displays the last 20% of SLA (from
80% to 100%).
The bar contains a link to a graph of availability data.

363

Parameter Description

SLA/Acceptable SLA Displays current SLA/expected SLA value. If current value is below
the acceptable level, it is displayed in red.

You can also click on the service name to access the IT Services Availability Report.

Here you can assess IT service availability data over a longer period of time on daily/weekly/monthly/yearly basis.

2 Inventory

Overview

The Inventory menu features sections providing an overview of host inventory data by a chosen parameter as well as the ability
to view host inventory details.

1 Overview

Overview

The Inventory → Overview section provides ways of having an overview of host inventory data.

For an overview to be displayed, choose a host group (or all groups) and the inventory field by which to display data. The number
of hosts corresponding to each entry of the chosen field will be displayed.

The completeness of an overview depends on how much inventory information is maintained with the hosts.

Numbers in the Host count column are links; they lead to these hosts being filtered out in the Host Inventories table.

364

2 Hosts

Overview

In the Inventory → Hosts section inventory data of hosts are displayed.

Select a group from the dropdown in the upper right corner to display the inventory data of hosts in that group. You can also filter
the hosts by any inventory field to display only the hosts you are interested in.

To display all host inventories, select ”all” in the group dropdown, clear the comparison field in the filter and press ”Filter”.

While only some key inventory fields are displayed in the table, you can also view all available inventory information for that host.
To do that, click on the host name in the first column.

Inventory details

The Overview tab contains some general information about the host along with links to predefined scripts, latest monitoring data
and host configuration options:

The Details tab contains all available inventory details for the host:

365

The completeness of inventory data depends on how much inventory information is maintained with the host. If no information is
maintained, the Details tab is disabled.

3 Reports

Overview

The Reports menu features several sections that contain a variety of predefined and user-customizable reports focused on display-
ing an overview of such parameters as the status of Zabbix, triggers and gathered data.

1 Status of Zabbix

Overview

In Reports → Status of Zabbix a summary of key system data is displayed.

This report is also displayed as a widget in the Dashboard.

Displayed data

366

Parameter Value Details

Zabbix server is running Status of Zabbix server:
Yes - server is running
No - server is not running
Note: To make sure the web
frontend knows that the
server is running there must
be at least one trapper
process started on the
server (StartTrappers
parameter in
zabbix_server.conf file>0).

Location and port of Zabbix server.

Number of hosts Total number of hosts
configured is displayed.
Templates are counted as a
type of host too.

Number of monitored hosts/not
monitored hosts/templates.

Number of items Total number of items is
displayed. Only items
assigned to enabled hosts
are counted.

Number of
monitored/disabled/unsupported
items.

Number of triggers Total number of triggers is
displayed. Only triggers
assigned to enabled hosts
and depending on enabled
items are counted.

Number of enabled/disabled triggers.
[Triggers in problem/ok state.]

Number of users Total number of users
configured is displayed.

Number of users online.

Required server performance, new values per
second

The expected number of
new values processed by
Zabbix server per second is
displayed.

Required server performance is an
estimate and can be useful as a
guideline. For precise numbers of
values processed, use the
zabbix[wcache,values,all]
internal item.

Enabled items from monitored hosts
are included in the calculation. Log
items are counted as one value per
item update interval. Regular interval
values are counted; flexible interval
values are not. The calculation is not
adjusted during a ”nodata”
maintenance period. Trapper items
are not counted.

2 Availability report

Overview

In Reports → Availability report you can see what proportion of time each trigger has been in problem/ok state. The percentage of
time for each state is displayed.

Thus it is easy to determine the availability situation of various elements on your system.

367

From the dropdown in the upper right corner you can choose the selection mode - whether to display triggers by hosts or by triggers
belonging to a template. Then in the filter you can narrow down the selection to the desired options and the time period.

The name of the trigger is a link to the latest events of that trigger.

Clicking on Show in the Graph column displays a bar graph where availability information is displayed in bar format each bar
representing a past week of the current year.

368

The green part of a bar stands for OK time and red for problem time.

3 Triggers top 100

Overview

In Reports → Triggers top 100 you can see the triggers that have changed their state most often within the period of evaluation,
sorted by the number of status changes.

From the dropdown in the upper right corner you can choose the time period for evaluation - day, week, month, year.

Both host and trigger column entries are links that offer some useful options:

• for host - links to user-defined scripts, latest data, inventory and screens for the host
• for trigger - links to latest events, the trigger configuration form and a simple graph

4 Bar reports

Overview

369

In the Reports → Bar reports section you can create some customized bar reports on run-time. Reports can be viewed, but are not
saved.

From the dropdown in the upper right corner you can choose one of the three types of available bar reports. Then use the Filter
options to create the report.

Parameter Description

Title Name of the report.
X label Label displayed below the X axis.
Y label Label displayed alongside the Y axis.
Legend With this checkbox marked, a legend will be displayed alongside

the report.
Scale Picking a scale will separate out the value bars for either every

hour/day/week/month/year. So, for example, picking a daily scale
will display one bar for the values of one day.
This parameter is available for the first and third report type.

Period Enter the start and end of the evaluation period.
With the second report type, several custom periods, each
displayed in different colour, can be entered.

Items Click on Add to select the items whose data you wish to display.

Specifically for the third report type:

Groups From the Other groups pane select host groups. Item values
for any host in the group having that item will be displayed.

Hosts From the Other hosts pane select hosts. Item values for any
selected host having that item will be displayed.

Average Select whether to display averaged data for an
hour/day/week/month/year.

Item Select the item whose data you wish to display.
Palette Pick a palette of colours for displaying side-by-side bars and

colour intensity (middle/darken/brighter).

Item data comparison

The first bar report offers a possibility to simply compare item values side by side.

370

Period data comparison

The second bar report offers a possibility to compare the values of one or several items in custom periods.

371

One item data comparison

The third bar report offers a possibility to compare the values of one item for different hosts/predefined intervals (hourly/daily/weekly/monthly/yearly).

4 Configuration

Overview

The Configuration menu contains sections for setting up major Zabbix functions, such as hosts and host groups, data gathering,
data thresholds, sending problem notifications, creating data visualisation and others.

1 Host groups

Overview

In the Configuration → Host groups section users can configure and maintain host groups. A host group can contain both templates
and hosts.

A listing of existing host groups with their details is displayed.

372

Displayed data:

Column Description

Name Name of the host group. Clicking on the group name opens the host group
configuration form.

Number of templates and hosts in the group (displayed in parentheses).
Clicking on ”Templates” or ”Hosts” will, in the whole listing of templates or
hosts, filter out those that belong to the group.

Members Names of group members. Template names are displayed in grey, monitored
host names in blue and non-monitored host names in red. Clicking on a name
will open the template/host configuration form.

Mass editing options

A dropdown below the list offers some mass-editing options:

• Enable selected - change the status of all hosts in the group to ”Monitored”
• Disable selected - change the status of all hosts in the group to ”Not monitored”
• Delete selected - delete the host groups

To use these options, mark the check-boxes before the respective host groups, then select the required option and click on ”Go”.

2 Templates

Overview

In the Configuration → Templates section users can configure and maintain templates.

A listing of existing templates with their details is displayed.

373

From the dropdown to the right in the title bar you can choose whether to display all templates or only those belonging to a group.

Displayed data:

Column Description

Templates Name of the template. Clicking on the template name opens the template
configuration form.

Elements (Applications, Items, Triggers,
Graphs, Screens, Discovery, Web)

Number of the respective elements in the template (displayed in parentheses).
Clicking on the element name will, in the whole listing of that element, filter
out those that belong to the template.

Linked templates Templates that are linked to the template, in a nested setup where the
template will inherit all elements of the linked templates.

Linked to The hosts and templates that the template is linked to.

To configure a new template, click on the Create template button in the top right-hand corner. To import a template from an XML
file, click on the Import button in the top right-hand corner.

Mass editing options

A dropdown below the list offers some mass-editing options:

• Export selected - export the template to an XML file
• Delete selected - delete the template while leaving its linked elements (items, triggers etc.) with the hosts
• Delete selected with linked elements - delete the template and its linked elements from the hosts

To use these options, mark the check-boxes before the respective templates, then select the required option and click on ”Go”.

3 Hosts

Overview

In the Configuration → Hosts section users can configure and maintain hosts.

A listing of existing hosts with their details is displayed.

From the dropdown to the right in the Hosts bar you can choose whether to display all hosts or only those belonging to one particular
group.

374

Displayed data:

Column Description

Name Name of the host. Clicking on the host name opens the host configuration
form.

Elements (Applications, Items, Triggers,
Graphs, Discovery, Web)

Clicking on the element name will display items, triggers etc. of the host. The
number of the respective elements is displayed in parentheses.

Interface The main interface of the host is displayed.
Templates The templates linked to the host are displayed. If other templates are

contained in the linked template, those are displayed in parentheses,
separated by a comma. Clicking on a template name will open its
configuration form.

Status Host status is displayed - Monitored or Not monitored. By clicking on the
status you can change it.

Availability Availability of the host is displayed. Four icons each represent a supported
interface (Zabbix agent, SNMP, IPMI, JMX). If the interface is configured and
available, it is displayed in green. If it is configured and unavailable, it is
displayed in red, and, upon mouseover, will display details of why the interface
cannot be reached.
Note that active Zabbix agent items do not affect host availability.

To configure a new host, click on the Create host button in the top right-hand corner. To import a host from an XML file, click on
the Import button in the top right-hand corner.

Mass editing options

A dropdown below the list offers some mass-editing options:

• Export selected - export the hosts to an XML file
• Mass update - update several properties for a number of hosts at once
• Enable selected - change host status to Monitored
• Disable selected - change host status to Not monitored
• Delete selected - delete the hosts

To use these options, mark the check-boxes before the respective hosts, then select the required option and click on ”Go”.

Filter

As the list may contain very many hosts, it may be needed to filter out the ones you really need.

The narrow blue bar just below the Hosts bar is actually a link to the filter. If you click on it, a filter becomes available where you
can filter hosts by name, DNS, IP or port number.

1 Applications

375

Overview

The application list for a template can be accessed from Configuration → Templates and then clicking on Applications for the
respective template.

The application list for a host can be accessed from Configuration → Hosts and then clicking on Applications for the respective host.

A list of existing applications is displayed.

Displayed data:

Column Description

Name Name of the application, displayed as a blue link for directly created
applications.
Clicking on the application name link opens the application configuration form.
If the host application belongs to a template, the template name is displayed
before the application name, as a grey link. Clicking on the template link will
open the application list on the template level.

Show Click on Items to view the items contained in the application. The number of
items is displayed in parentheses.

To configure a new application, click on the Create application button in the top right-hand corner.

Mass editing options

A dropdown below the list offers some mass-editing options:

• Enable selected - change application status to Enabled
• Disable selected - change application status to Disabled
• Delete selected - delete the applications

To use these options, mark the check-boxes before the respective applications, then select the required option and click on ”Go”.

2 Items

Overview

The item list for a template can be accessed from Configuration → Templates and then clicking on Items for the respective template.

The item list for a host can be accessed from Configuration → Hosts and then clicking on Items for the respective host.

376

A list of existing items is displayed.

Displayed data:

Column Description

Wizard The wizard icon is a link to a wizard for creating a trigger based on the item.
Name Name of the item, mostly displayed as a blue link except for items created

from item prototypes.
Clicking on the item name link opens the item configuration form.
If the host item belongs to a template, the template name is displayed before
the item name, as a grey link. Clicking on the template link will open the item
list on the template level.
If the item has been created from an item prototype, its name is preceded by
the low level discovery rule name, in khaki. Clicking on the discovery rule
name will open the item prototype list.

Triggers Moving the mouse over Triggers will display an info box displaying the triggers
associated with the item.
The number of the triggers is displayed in parentheses.

Key Item key is displayed.
Interval Frequency of the check is displayed.
History How many days item data history will be kept is displayed.
Trends How many days item trends history will be kept is displayed.
Type Item type is displayed (Zabbix agent, SNMP agent, simple check, etc).
Applications Item applications are displayed.
Status Item status is displayed - Enabled, Disabled or Not supported. By clicking on

the status you can change it - from Enabled to Disabled (and back); from Not
supported to Disabled (and back).

Error A green checkbox icon is displayed if there are no errors. A red square icon
with a cross is displayed if there are errors. Move the mouse over the icon and
you will see a tooltip with the error description.
No icon is displayed if the item is disabled.

To configure a new item, click on the Create item button in the top right-hand corner.

Mass editing options

A dropdown below the list offers some mass-editing options:

• Enable selected - change item status to Enabled
• Disable selected - change item status to Disabled
• Mass update - update several properties for a number of items at once

377

• Copy selected to... - copy the items to other hosts or templates
• Clear history for selected - delete history and trend data for items
• Delete selected - delete the items

To use these options, mark the check-boxes before the respective items, then select the required option and click on ”Go”.

Filter

As the list may contain very many items, it may be needed to filter out the ones you really need.

The narrow blue bar just below the Items bar is actually a link to the filter. If you click on it, a filter becomes available where you
can filter items by several properties.

The Subfilter below the filter offers further filtering options (for the data already filtered). The links in red are groups of items with
a common parameter value. If you click on the link it turns green and only the items with this parameter value remain in the list.

3 Triggers

Overview

The trigger list for a template can be accessed from Configuration → Templates and then clicking on Triggers for the respective
template.

The trigger list for a host can be accessed from Configuration → Hosts and then clicking on Triggers for the respective host.

A list of existing triggers is displayed. By default, only the enabled triggers are displayed. To display disabled triggers as well, use
the Show disabled triggers link to the right in the Triggers bar.

378

Displayed data:

Column Description

Severity Severity of the trigger is displayed by both name and cell background colour.
Name Name of the trigger, mostly displayed as a blue link except for triggers created

from trigger prototypes.
Clicking on the trigger name link opens the trigger configuration form.
If the host trigger belongs to a template, the template name is displayed
before the trigger name, as a grey link. Clicking on the template link will open
the trigger list on the template level.
If the trigger has been created from a trigger prototype, its name is preceded
by the low level discovery rule name, in khaki. Clicking on the discovery rule
name will open the trigger prototype list.

Expression Trigger expression is displayed. The host-item part of the expression is
displayed as a link, leading to the item configuration form.

Status Trigger status is displayed - Enabled, Disabled or Unknown. By clicking on the
status you can change it - from Enabled to Disabled (and back); from Unknown
to Disabled (and back).

Error A green checkbox icon is displayed if there are no errors. A red icon with a
cross is displayed if there are errors. Move the mouse over the icon and you
will see a tooltip with the error description.
No icon is displayed if the rule is disabled.

To configure a new trigger, click on the Create trigger button in the top right-hand corner.

Mass editing options

A dropdown below the list offers some mass-editing options:

• Enable selected - change trigger status to Enabled
• Disable selected - change trigger status to Disabled
• Mass update - update several properties for a number of triggers at once
• Copy selected to... - copy the triggers to other hosts or templates
• Delete selected - delete the triggers

To use these options, mark the check-boxes before the respective triggers, then select the required option and click on ”Go”.

4 Graphs

379

Overview

The custom graph list for a template can be accessed from Configuration → Templates and then clicking on Graphs for the respective
template.

The custom graph list for a host can be accessed from Configuration → Hosts and then clicking on Graphs for the respective host.

A list of existing graphs is displayed.

Displayed data:

Column Description

Name Name of the custom graph, mostly displayed as a blue link except for graphs
created from graph prototypes.
Clicking on the graph name link opens the graph configuration form.
If the host graph belongs to a template, the template name is displayed before
the graph name, as a grey link. Clicking on the template link will open the
graph list on the template level.
If the graph has been created from a graph prototype, its name is preceded by
the low level discovery rule name, in khaki. Clicking on the discovery rule
name will open the graph prototype list.

Width Graph width is displayed.
Height Graph height is displayed.
Graph type Graph type is displayed - Normal, Stacked, Pie or Exploded.

To configure a new graph, click on the Create graph button in the top right-hand corner.

Mass editing options

A dropdown below the list offers some mass-editing options:

• Copy selected to... - copy the graphs to other hosts or templates
• Delete selected - delete the graphs

To use these options, mark the check-boxes before the respective graphs, then select the required option and click on ”Go”.

5 Discovery rules

Overview

The list of low-level discovery rules for a template can be accessed from Configuration → Templates and then clicking on Discovery
for the respective template.

The list of low-level discovery rules for a host can be accessed from Configuration → Hosts and then clicking on Discovery for the
respective host.

380

A list of existing low-level discovery rules is displayed.

Displayed data:

Column Description

Name Name of the rule, displayed as a blue link.
Clicking on the rule name opens the low-level discovery rule configuration
form.
If the discovery rule belongs to a template, the template name is displayed
before the rule name, as a grey link. Clicking on the template link will open the
rule list on the template level.

Items A link to the list of item prototypes is displayed.
The number of existing item prototypes is displayed in parentheses.

Triggers A link to the list of trigger prototypes is displayed.
The number of existing trigger prototypes is displayed in parentheses.

Graphs A link to the list of graph prototypes displayed.
The number of existing graph prototypes is displayed in parentheses.

Hosts A link to the list of host prototypes displayed.
The number of existing host prototypes is displayed in parentheses.

Key The item key used for discovery is displayed.
Interval The frequency of performing discovery is displayed.
Type The item type used for discovery is displayed (Zabbix agent, SNMP agent, etc).
Status Discovery rule status is displayed - Enabled, Disabled or Not supported. By

clicking on the status you can change it - from Enabled to Disabled (and back);
from Not supported to Disabled (and back).

Error A green checkbox icon is displayed if there are no errors. A red square icon
with a cross is displayed if there are errors. Move the mouse over the icon and
you will see a tooltip with the error description.
No icon is displayed if the rule is disabled.

To configure a new low-level discovery rule, click on the Create discovery rule button in the top right-hand corner.

Mass editing options

A dropdown below the list offers some mass-editing options:

• Enable selected - change the low-level discovery rule status to Enabled
• Disable selected - change the low-level discovery rule status to Disabled
• Delete selected - delete the low-level discovery rules

To use these options, mark the check-boxes before the respective discovery rules, then select the required option and click on
”Go”.

6 Web scenarios

Overview

The web scenario list for a template can be accessed from Configuration → Templates and then clicking on Web for the respective
template.

The web scenario list for a host can be accessed from Configuration → Hosts and then clicking on Web for the respective host.

A list of existing web scenarios is displayed. From the dropdown to the right in the Scenarios bar you can choose whether to display
all web scenarios or only those belonging to one particular group and host. Additionally you can choose to hide disabled scenarios
(or show them again) by clicking on the respective link.

381

Displayed data:

Column Description

Name Name of the web scenario. Clicking on the web scenario name opens the web
scenario configuration form.

Number of steps The number of steps contained in the scenario.
Update interval How often the scenario is performed.
Status Web scenario status is displayed - Enabled or Disabled.

By clicking on the status you can change it.

To configure a new web scenario, click on the Create scenario button in the top right-hand corner.

Mass editing options

A dropdown below the list offers some mass-editing options:

• Enable selected - change the scenario status to Enabled
• Disable selected - change the scenario status to Disabled
• Clear history for selected - clear history and trend data for the scenarios
• Delete selected - delete the web scenarios

To use these options, mark the check-boxes before the respective web scenarios, then select the required option and click on ”Go”.

4 Maintenance

Overview

In the Configuration → Maintenance section users can configure and maintain maintenance periods for hosts.

A listing of existing maintenance periods with their details is displayed.

From the dropdown to the right in the Maintenance periods bar you can choose whether to display all maintenance periods or only
those belonging to one particular group.

Displayed data:

Column Description

Name Name of the maintenance period. Clicking on the maintenance period name
opens the maintenance period configuration form.

Type The type of maintenance is displayed: With data collection or No data
collection

State The state of the maintenance period:
Approaching - will become active soon
Active - is active
Expired - is not active any more

Description Description of the maintenance period is displayed.

382

To configure a new maintenance period, click on the Create maintenance period button in the top right-hand corner.

Mass editing options

A dropdown below the list offers one mass-editing option:

• Delete selected - delete the maintenance periods

To use this option, mark the check-boxes before the respective maintenance periods and click on ”Go”.

5 Actions

Overview

In the Configuration → Actions section users can configure and maintain actions.

A listing of existing actions with their details is displayed. The actions displayed are actions assigned to the selected event source
(triggers, discovery, auto-registration).

To view actions assigned to a different event source, change the source from the dropdown to the right in the Actions bar.

For users without Super-admin rights actions are displayed according to permission settings. That means in some cases a user
without Super-admin rights isn’t able to view the complete action list because of certain permission restrictions. An action is
displayed to the user without Super-admin rights if the following conditions are fulfilled:

• The user has read-write access to host groups, hosts, templates and triggers in action conditions
• The user has read-write access to host groups, hosts and templates in action operations
• The user has read access to user groups and users in action operations

Displayed data:

Column Description

Name Name of the action. Clicking on the action name opens the action
configuration form.

Conditions Action conditions are displayed.
Operations Action operations are displayed.

Since Zabbix 2.2, the operation list also displays the media type (e-mail, SMS,
Jabber, etc) used for notification as well as the name and surname (in
parentheses after the alias) of a notification recipient.

Status Action status is displayed - Enabled or Disabled.
By clicking on the status you can change it.
If an action is disabled during an escalation in progress (like a message being
sent), the message in progress will be sent and then one more message on the
escalation will be sent. The follow-up message will have the following text at
the beginning of the message body: NOTE: Escalation cancelled: action
’<Action name>’ disabled. This way the recipient is informed that the
escalation is cancelled and no more steps will be executed.

To configure a new action, click on the Create action button in the top right-hand corner.

Mass editing options

A dropdown below the list offers some mass-editing options:

383

• Enable selected - change the action status to Enabled
• Disable selected - change the action status to Disabled
• Delete selected - delete the actions

To use these options, mark the check-boxes before the respective actions, then select the required option and click on ”Go”.

6 Screens

Overview

In the Configuration → Screens section users can configure and maintain screens.

A listing of existing screens with their details is displayed.

Displayed data:

Column Description

Name Name of the screen. By clicking on the screen name you can open the grid of
screen elements for editing.

Dimensions The number of columns and rows of the screen.
Screen Click on the Edit link to edit general screen properties (name and dimensions).

To create a new screen, click on the Create screen button in the top right-hand corner. To import a screen from an XML file, click
on the Import button in the top right-hand corner.

Mass editing options

A dropdown below the list offers some mass-editing options:

• Export selected - export the screens to an XML file
• Delete selected - delete the screens

To use these options, mark the check-boxes before the respective screens, then select the required option and click on ”Go”.

7 Slide shows

Overview

In the Configuration → Slide shows section users can configure and maintain slide shows.

A listing of existing slide shows with their details is displayed.

Displayed data:

384

Column Description

Name Name of the slide show. Clicking on the slide show name opens the slide show
configuration form.

Delay The default duration of showing one slide is displayed.
Count of slides The number of slides in the slide show is displayed.

To configure a new slide show, click on the Create slide show button in the top right-hand corner.

Mass editing options

A dropdown below the list offers one mass-editing option:

• Delete selected - delete the slide shows

To use this option, mark the check-boxes before the respective slide shows and click on ”Go”.

8 Maps

Overview

In the Configuration → Maps section users can configure and maintain network maps.

A listing of existing maps with their details is displayed.

Displayed data:

Column Description

Name Name of the map. By clicking on the map name you can access the grid for
adding map elements.

Width Map width is displayed.
Height Map height is displayed.
Edit Click on the Edit link to edit general map properties.

To create a new map, click on the Create map button in the top right-hand corner. To import a map from an XML file, click on the
Import button in the top right-hand corner.

Mass editing options

A dropdown below the list offers some mass-editing options:

• Export selected - export the maps to an XML file
• Delete selected - delete the maps

To use these options, mark the check-boxes before the respective maps, then select the required option and click on ”Go”.

9 Discovery

Overview

In the Configuration → Discovery section users can configure and maintain discovery rules.

A listing of existing discovery rules with their details is displayed.

385

Displayed data:

Column Description

Name Name of the discovery rule. Clicking on the discovery rule name opens the
discovery rule configuration form.

IP range The range of IP addresses to use for network scanning is displayed.
Delay The frequency of performing discovery displayed.
Checks The types of checks used for discovery are displayed.
Status Action status is displayed - Enabled or Disabled.

By clicking on the status you can change it.

To configure a new discovery rule, click on the Create discovery rule button in the top right-hand corner.

Mass editing options

A dropdown below the list offers some mass-editing options:

• Enable selected - change the discovery rule status to Enabled
• Disable selected - change the discovery rule status to Disabled
• Delete selected - delete the discovery rules

To use these options, mark the check-boxes before the respective discovery rules, then select the required option and click on
”Go”.

10 IT services

Overview

In the Configuration → IT services section users can configure and maintain an IT services hierarchy.

When you first open this section it only contains a root entry.

You can use it as a starting point of building the hierarchy of monitored infrastructure. Click on it and add services and then other
services below the ones you have added.

For details on adding services, see the IT services section.

5 Administration

Overview

386

The Administration menu is for administrative functions of Zabbix. This menu is available to users of Super Administrators type
only.

1 General

Overview

The Administration → General section contains a number of screens for setting frontend-related defaults and customizing Zabbix.

The dropdown to the right allows you to switch between different configuration screens.

1 GUI

This screen provides customization of several frontend-related defaults.

Configuration parameters:

Parameter Description

Default theme Default theme for users who have not set a specific one in their
profiles.

387

Parameter Description

Dropdown first entry Whether first entry in element selection dropdowns should be All or
None.
With remember selected checked, the last selected element in the
dropdown will be remembered (instead of the default) when
navigating to another page.

Search/Filter elements limit Maximum amount of elements (rows) that will be displayed in a
web-interface list, like, for example, in Monitoring → Events or
Configuration → Hosts.
Note: If set to, for example, ’50’, only the first 50 elements will be
displayed in all affected frontend lists. If some list contains more
than fifty elements, the indication of that will be the ’+’ sign in
”Displaying 1 to 50 of 50+ found”. Also, if filtering is used and still
there are more than 50 matches, only the first 50 will be displayed.

Max count of elements
to show inside table cell For entries that are displayed in a single table cell, no more than
configured here will be shown.

Enable event acknowledges This parameter defines if event acknowledgments are activated in
Zabbix interface.

Show events not older
than (in days) This parameter defines for how many days events are displayed in
Status of Triggers screen. Default is 7 days.

Max count of events per trigger to show Maximum number of event to show for each trigger in Status of
Triggers screen. Default is 100.

Show warning if Zabbix server is down This parameter enables a warning message to be displayed atop
the browser window if Zabbix server cannot be reached (may be
down). The message remains visible even if the user scrolls down
the page. If the mouse is moved over it, the message is
temporarily hidden to reveal the contents below.
This parameter is supported since Zabbix 2.0.1.

2 Housekeeper

The housekeeper is a periodical process, executed by Zabbix server. The process removes outdated information and information
deleted by user.

388

In this section housekeeping tasks can be enabled or disabled on a per-task basis separately for: events and alerts/IT ser-
vices/audit/user sessions/history/trends. If housekeeping is enabled, it is possible to set for how many days data records will be
kept before being removed by the housekeeper.

For history and trends an additional option is available: Override item history period and Override item trends period. This option
allows to globally set for how many days item history/trends will be kept, in this case overriding the values set for individual items
in Keep history/Keep trends fields in item configuration.

Since Zabbix 2.2.1, the settings have been changed to allow to override the history/trend storage period even if internal house-
keeping is disabled. Now, when using an external housekeeper, the history storage period should be set using the history Data
storage period field (instead of the ZBX_HISTORY_DATA_UPKEEP constant, removed since 2.2.1).

The Reset defaults button allows to revert any changes made.

3 Images

The Images section displays all the images available in Zabbix. Images are stored in the database.

389

The Type dropdown allows you to switch between icon and background images:

• Icons are used to display network map elements
• Backgrounds are used as background images of network maps

Adding image

You can add your own image by clicking on the Create image button in the top right corner.

Image attributes:

Parameter Description

Name Unique name of an image.
Type Set Icon or Background type.
Upload Select the file (PNG, JPEG) from a local system to be uploaded to

Zabbix.

Note:
Maximum size of the upload file is limited by value of ZBX_MAX_IMAGE_SIZE that is 1024x1024 bytes or 1 MB.

The upload of an image may fail if the image size is close to 1 MB and the max_allowed_packet MySQL configu-
ration parameter is at a default of 1MB. In this case, increase the max_allowed_packet parameter.

4 Icon mapping

This section allows to create the mapping of certain hosts with certain icons. Host inventory field information is used to create the
mapping.

390

http://dev.mysql.com/doc/refman/5.5/en/server-system-variables.html#sysvar_max_allowed_packet

The mappings can then be used in network map configuration to assign appropriate icons to matching hosts automatically.

To create a new icon map, click on Create icon map in the top right corner.

Configuration parameters:

Parameter Description

Name Unique name of icon map.
Mappings A list of mappings. The order of mappings determines which one

will have priority. You can move mappings up and down the list
with drag-and-drop.

Inventory field Host inventory field that will be looked into to seek a match.
Expression Regular expression describing the match.
Icon Icon to use if a match for the expression is found.
Default Default icon to use.

5 Regular expressions

This section allows to create custom regular expressions that can be used in several places in the frontend. See Regular expressions
section for details.

6 Macros

This section allows to define system-wide macros.

See User macros section for more details.

7 Value mapping

This section allows to create value maps that allow for human-readable representation of incoming data in Zabbix frontend. See
Value mapping section for more details.

8 Working time

Working time is system-wide parameter, which defines working time. Working time is displayed as a white background in graphs,
while non-working time is displayed in grey.

See Time period specification page for description of the time format.

9 Trigger severities

391

This section allows to customize trigger severity names and colors.

You can enter new names and color codes or click on the color to select another from the provided palette.

See Customising trigger severities page for more information.

10 Trigger displaying options

This section allows to customize how trigger status is displayed in the frontend.

The colors for acknowledged/unacknowledged events can be customized and blinking enabled or disabled. Also the time period
for displaying OK triggers and for blinking upon trigger status change can be customized.

11 Other parameters

This section allows to configure several other frontend parameters.

392

Parameter Description

Refresh unsupported items (in sec) Some items may become unsupported due to errors in user
parameters or because of an item not being supported by agent.
Zabbix can be configured to periodically make unsupported items
active.
Zabbix will activate unsupported item every N seconds set here. If
set to 0, the automatic activation will be disabled.
Note that the first attempt to reactivate the unsupported item may
occur earlier than the value configured here.
The configured value also applies to how often Zabbix proxies
reactivate unsupported items.

Group for discovered hosts Hosts discovered by network discovery and agent auto-registration
will be automatically placed in the host group, selected here.

User group for database down message User group for sending alarm message or ’None’.
Availability of Zabbix server depends on availability of backend
database. It cannot work without a database. Database watchdog,
a special Zabbix server process, will alarm selected users in case of
disaster. If the database is down, the watchdog will send
notifications to the user group set here, using all configured user
media entries. Zabbix server will not stop; it will wait until the
database is back again to continue processing. The watchdog tries
to establish a new connection to the database every 60 seconds. If
the database is still down the watchdog repeats sending alerts, but
not more often than every 15 minutes.
Note: Until Zabbix version 1.8.2 database watchdog was supported
for MySQL only. Since 1.8.2, it is supported for all databases.

Log unmatched SNMP traps Log SNMP trap if no corresponding SNMP interfaces have been
found.

2 DM

Overview

In the Administration → DM section distributed monitoring options (proxies or nodes) can be configured in the Zabbix front-end.

The dropdown in the top right-hand corner allows to switch between proxy or node screens.

Proxies

A listing of existing proxies with their details is displayed.

393

Displayed data:

Column Description

Name Name of the proxy. Clicking on the proxy name opens the proxy configuration
form.

Mode Proxy mode is displayed - Active or Passive.
Last seen (age) The time when the proxy was last seen by the server is displayed.
Host count The number of hosts monitored by the proxy is displayed.
Item count The number of items monitored by the proxy is displayed.
Required performance (vps) Required proxy performance is displayed (the number of values that need to

be collected per second).
Hosts All hosts monitored by the proxy are listed. Clicking on the host name opens

the host configuration form.

To configure a new proxy, click on the Create proxy button in the top right-hand corner.

Mass editing options

A dropdown below the list offers some mass-editing options:

• Enable selected - change the status of hosts monitored by the proxy to Monitored
• Disable selected - change the status of hosts monitored by the proxy to Not monitored
• Delete selected - delete the proxies

To use these options, mark the check-boxes before the respective proxies, then select the required option and click on ”Go”.

Nodes

If node setup is not configured, this screen is empty and displays a ”Your setup is not configured for distributed monitoring”
message.

See how to configure a node setup.

3 Authentication

Overview

In Administration → Authentication the user authentication method to Zabbix can be changed. The available methods are internal,
LDAP and HTTP authentication.

By default, internal Zabbix authentication is used. To change, click on the button with the method name and press Save.

Internal

Internal Zabbix authentication is used.

LDAP

External LDAP authentication can be used to check user names and passwords. Note that a user must exist in Zabbix as well,
however its Zabbix password will not be used.

Zabbix LDAP authentication works at least with Microsoft Active Directory and OpenLDAP.

394

Configuration parameters:

Parameter Description

LDAP host Name of LDAP server. For example: ldap://ldap.zabbix.com
For secure LDAP server use ldaps protocol.
ldaps://ldap.zabbix.com
With OpenLDAP 2.x.x and later, a full LDAP URI of the form
ldap://hostname:port or ldaps://hostname:port may be used.

Port Port of LDAP server. Default is 389.
For secure LDAP connection port number is normally 636.
Not used when using full LDAP URIs.

Base DN Base path to search accounts:
ou=Users,ou=system (for OpenLDAP),
DC=company,DC=com (for Microsoft Active Directory)

Search attribute LDAP account attribute used for search:
uid (for OpenLDAP),
sAMAccountName (for Microsoft Active Directory)

Bind DN LDAP account for binding and searching over the LDAP server,
examples:
uid=ldap_search,ou=system (for OpenLDAP),
CN=ldap_search,OU=user_group,DC=company,DC=com (for
Microsoft Active Directory)

Required, anonymous binding is not supported.
Bind password LDAP password of the account for binding and searching over the

LDAP server.
Test authentication Header of a section for testing
Login Name of a test user (which is currently logged in the Zabbix

frontend). This user name must exist in the LDAP server.
Zabbix will not activate LDAP authentication if it is unable to
authenticate the test user.

User password LDAP password of the test user.

395

Warning:
In case of trouble with certificates, to make a secure LDAP connection (ldaps) work you may need to add a TLS_REQCERT
allow line to the /etc/openldap/ldap.conf configuration file. It may decrease the security of connection to the LDAP catalog.

Note:
It is recommended to create a separate LDAP account (Bind DN) to perform binding and searching over the LDAP server
with minimal privileges in the LDAP instead of using real user accounts (used for logging in the Zabbix frontend).
Such an approach provides more security and does not require changing the Bind password when the user changes his
own password in the LDAP server.
In the table above it’s ldap_search account name.

Note:
Some user groups can still be authenticated by Zabbix. These groups must have frontend access set to Internal.

HTTP

Apache-based (HTTP) authentication can be used to check user names and passwords. Note that a user must exist in Zabbix as
well, however its Zabbix password will not be used.

Attention:
Be careful! Make sure that Apache authentication is configured and works properly before switching it on.

Note:
In case of Apache authentication all users (even with frontend access set to Internal) will be authenticated by Apache, not
by Zabbix!

4 Users

Overview

In the Administration → Users section both user groups and users of the system are maintained.

By default the user group screen is displayed. To switch to the user screen and back, use the dropdown in the top right-hand corner.

User groups

A listing of existing user groups with their details is displayed.

Displayed data:

396

Column Description

Name Name of the user group. Clicking on the user group name opens the user
group configuration form.

The number of users in the group (displayed in parentheses). Clicking on Users
will display the respective users filtered out in the user list.

Members Aliases of individual users in the user group (with name and surname in
parentheses). Clicking on the alias will open the user configuration form.

Status User group status is displayed - Enabled or Disabled. By clicking on the status
you can change it.

Frontend access Frontend access level is displayed:
System default - Zabbix, LDAP or HTTP authentication; depending on the
chosen authentication method
Internal - the user is authenticated by Zabbix regardless of system settings
Disabled - frontend access for this user is disabled.
By clicking on the current level you can change it.

Debug mode Debug mode status is displayed - Enabled or Disabled. By clicking on the
status you can change it.

To configure a new user group, click on the Create user group button in the top right-hand corner.

Mass editing options

A dropdown below the list offers some mass-editing options:

• Enable selected - change the user group status to Enabled
• Disable selected - change the user group status to Disabled
• Enable DEBUG - enable debug mode for the user groups
• Disable DEBUG - disable debug mode for the user groups
• Delete selected - delete the user groups

To use these options, mark the check-boxes before the respective user groups, then select the required option and click on ”Go”.

Users

A listing of existing users with their details is displayed.

From the dropdown to the right in the Users bar you can choose whether to display all users or those belonging to one particular
group.

Displayed data:

Column Description

Alias Alias of the user, used for logging into Zabbix. Clicking on the alias opens the
user configuration form.

Name First name of the user.
Surname Second name of the user.
User type User type is displayed - Zabbix Super Admin, Zabbix Admin or Zabbix User.
Groups Groups that the user is member of are listed. Clicking on the user group name

opens the user group configuration form.
Is online? The on-line status of the user is displayed - Yes or No. The time of last user

activity is displayed in parentheses.
Login The login status of the user is displayed - Ok or Blocked. A user can become

temporarily blocked upon more than five unsuccessful login attempts. By
clicking on Blocked you can unblock the user.

397

Column Description

Frontend access Frontend access level is displayed - System default, Internal or Disabled,
depending on the one set for the whole user group.

Debug mode Debug mode status is displayed - Enabled or Disabled, depending on the one
set for the whole user group.

Status User status is displayed - Enabled or Disabled, depending on the one set for
the whole user group.

To configure a new user, click on the Create user button in the top right-hand corner.

Mass editing options

A dropdown below the list offers some mass-editing options:

• Unblock selected - re-enable system access to blocked users
• Delete selected - delete the users

To use these options, mark the check-boxes before the respective users, then select the required option and click on ”Go”.

5 Media types

Overview

In the Administration → Media types section users can configure and maintain media type information.

Media type information contains general instructions for using a medium as delivery channel for notifications. Specific details,
such as the individual e-mail addresses to send a notification to are kept with individual users.

A listing of existing media types with their details is displayed.

Displayed data:

Column Description

Description Description of the media type. Clicking on the description opens the media
type configuration form.

Type Type of the media (e-mail, SMS, etc) is displayed.
Status Media type status is displayed - Enabled or Disabled.

By clicking on the status you can change it.
Used in actions All actions where the media type is used directly (selected in the Send only to

dropdown) are displayed. Clicking on the action name opens the action
configuration form.

Details Detailed information of the media type is displayed.

To configure a new media type, click on the Create media type button in the top right-hand corner.

Mass editing options

A dropdown below the list offers some mass-editing options:

• Enable selected - change the media type status to Enabled
• Disable selected - change the media type status to Disabled
• Delete selected - delete the media types

To use these options, mark the check-boxes before the respective media types, then select the required option and click on ”Go”.

398

6 Scripts

Overview

In the Administration → Scripts section user-defined global scripts can be configured and maintained.

These scripts, depending on the set user permissions, then become available for execution by clicking on the host in various
frontend locations (Dashboard, Latest data, Status of triggers, Events, Maps) and can also be run as an action operation. The
scripts are executed on the Zabbix server or agent.

A listing of existing scripts with their details is displayed.

Displayed data:

Column Description

Name Name of the script. Clicking on the script name opens the script configuration
form.

Type Script type is displayed - Script or IPMI command.
Execute on It is displayed whether the script will be executed on Zabbix server or agent.
Commands All commands to be executed within the script are displayed.
User group The user group that the script is available to is displayed (or All for all user

groups).
Host group The host group that the script is available for is displayed (or All for all host

groups).
Host access The permission level for the host group is displayed - Read or Write. Only users

with the required permission level will have access to executing the script.

To configure a new script, click on the Create script button in the top right-hand corner.

Mass editing options

A dropdown below the list offers one mass-editing option:

• Delete selected - delete the scripts

To use this option, mark the check-boxes before the respective scripts and click on ”Go”.

Configuring a global script

399

Script attributes:

Parameter Description

Name Unique name of the script.
Starting with Zabbix 2.2, the name can be prefixed with the
desired path, for example, Default/, putting the script into the
respective directory. When accessing scripts through the menu in
monitoring sections, they will be organized according to the given
directories.
A script cannot have the same name as an existing directory (and
vice versa). A script name must be unique within its directory.
Unescaped script names are validated for uniqueness, i.e. ”Ping”
and ”\Ping” cannot be added in the same folder. A single backslash
escapes any symbol directly after it. For example, characters ’/’
and ’\’ can be escaped by backslash, i.e. \/ or \\.

Type Select script type - Script or IPMI command.
A special dropdown selection for scripts containing IPMI commands
is available since Zabbix 2.0 version (previously a special syntax of
IPMI <command> had to be used in the command field).

400

Parameter Description

Execute on Select the radio button whether to execute the script on Zabbix
server or agent.
The option to execute scripts on Zabbix agent is available since
Zabbix 2.0 version (providing remote commands are enabled in the
EnableRemoteCommands parameter in Zabbix agent configuration
file).

Commands Enter full path to the commands to be executed within the script.
The following macros are supported in the commands:
{HOST.CONN}, {HOST.IP}, {HOST.DNS}, {HOST.HOST},
{HOST.NAME}. If a macro may resolve to a value with spaces (for
example, host name), don’t forget to quote as needed.
Starting with Zabbix 2.2, user macros are supported in script
commands.

Description Enter a description for the script.
User group Select the user group that the script will be available to (or All for

all user groups).
Host group Select the host group that the script will be available for (or All for

all host groups).
Required host permissions Select the permission level for the host group - Read or Write. Only

users with the required permission level will have access to
executing the script.

Enable confirmation Mark the checkbox to display a confirmation message before
executing the script. This feature might be especially useful with
potentially dangerous operations (like a reboot script) or ones that
might take a long time.

Confirmation text Enter a custom confirmation text for the confirmation popup
enabled with the checkbox above (for example, Remote system
will be rebooted. Are you sure?). To see how the text will look like,
click on Test confirmation next to the field.
Starting with Zabbix 2.2, the confirmation text will expand host
name macros - {HOST.HOST}, {HOST.NAME}, host connection
macros - {HOST.IP}, {HOST.DNS}, {HOST.CONN} and user macros.
Note: The macros will not be expanded when testing the
confirmation message.

7 Audit

Overview

In the Administration → Audit section users can view records of changes made in the frontend and details of executed actions.

By default frontend audit records are displayed. To switch to action details and back, use the dropdown in the top right-hand corner.

Logs

In this screen audit logs of various changes made in the frontend can be seen. You can use the filter, located below the Logs bar,
to narrow down the records by user, activity type, affected resource and the time period.

401

Displayed data:

Column Description

Time Timestamp of the audit record.
User User of the activity.
IP IP that was used in the activity.
Resource Affected resource is displayed.
Action Activity type is displayed - Login, Logout, Added, Updated, Deleted, Enabled or

Disabled.
ID ID of the affected resource is displayed.
Description Description of the resource is displayed.
Details Detailed information on the performed activity is displayed.

Actions

In this screen details of executed actions (notifications or remote commands) are displayed.

You can use the filter, located below the Actions bar, to narrow down the records by recipient of e-mail and time period.

402

Displayed data:

Column Description

Time Timestamp of the action.
Type Action type is displayed - Email or Command.
Status Action status is displayed:

in progress - action is in progress
sent - notification has been sent
executed - command has been executed
not sent - action has not been completed

Retries left The remaining number of times the server will try to send the notification is
displayed.

Recipient(s) Notification recipient(s) e-mail addresses are displayed.
Message The content of the message/remote command is displayed.

A remote command is separated from the target host with a colon symbol:
<host>:<command>. If the remote command is executed on Zabbix server,
then the information has the following format: Zabbix server:<command>

Error Error information regarding the action execution is displayed.

8 Queue

Overview

In the Administration → Queue section items that are waiting to be updated are displayed.

Ideally, when you open this section it should all be ”green” meaning no items in the queue. If all items are updated without delay,
there are none waiting. However, due to lacking server performance, connection problems or problems with agents, some items
may get delayed and the information is displayed in this section. For more details, see the Queue section.

Note:
Queue is available only if Zabbix server is running.

From the dropdown in the upper right corner you can select:

403

• queue overview by item type
• queue overview by proxy
• list of delayed items

Overview by item type

In this screen it is easy to locate if the problem is related to one or several item types.

Each line contains an item type. Each column shows the number of waiting items - waiting for 5-10 seconds/10-30 seconds/30-60
seconds/1-5 minutes/5-10 minutes or over 10 minutes respectively.

Overview by proxy

In this screen it is easy to locate if the problem is related to one of the proxies or the server.

Each line contains a proxy, with the server last in the list. Each column shows the number of waiting items - waiting for 5-10
seconds/10-30 seconds/30-60 seconds/1-5 minutes/5-10 minutes or over 10 minutes respectively.

List of waiting items

In this screen, each waiting item is listed.

404

Displayed data:

Column Description

Next check The time when the check was due is displayed.
Delayed by The length of the delay is displayed.
Host Host of the item is displayed.
Name Name of the waiting item is displayed.

Possible error messages

You may encounter a situation when no data is displayed and the following error message appears:

Error message in this case is the following:

Cannot display item queue. Permission denied

This happens when PHP configuration parameters $ZBX_SERVER_PORT or $ZBX_SERVER in zabbix.conf.php point to existing Zabbix
server which uses different database.

9 Notifications

Overview

In the Administration → Notifications section a report on the number of notifications sent to each user is displayed.

From the dropdowns in the top right-hand corner you can choose themedia type (or all), period (data for each day/week/month/year)
and year for the notifications sent.

405

Each column displays totals per one system user.

10 Installation

Overview

In the Administration → Installation section Zabbix frontend can be reinstalled.

To continue with the installation, click on Next. To exit the installation, click on Cancel.

2 User profile

Overview

In the user profile you can customize some Zabbix frontend features, such as the interface language, color theme, number of rows
displayed in the lists etc. The changes made here will apply for the user only.

To access the user profile configuration form, click on Profile in the upper right corner of Zabbix window.

Configuration

The User tab allows you to set various user preferences.

406

Parameter Description

Password Click on the link to display two fields for entering a new password.
Language Select the interface language of your choice.

The php gettext extension is required for the translations to work.
Theme Select a color theme specifically for your profile.
Auto-login Mark this checkbox to make Zabbix remember you and log you in

automatically for 30 days. Browser cookies are used for this.
Auto-logout With this checkbox marked you will be logged out automatically,

after the set amount of seconds (minimum 90 seconds).
Note that this option will not work:
* If the ”Show warning if Zabbix server is down” global
configuration option is enabled and Zabbix frontend is kept open;
* When Monitoring menu pages perform background information
refreshes. In case pages refreshing data in a specific time interval
(dashboards, graphs, screens, latest data, etc.) are left open
session lifetime is extended, respectively disabling auto-logout
feature;
* If logging in with the Remember me for 30 days option checked.
Auto-logout can accept 0, meaning that Auto-logout becomes
disabled after profile settings update.

Refresh (in seconds) You can set how often the information in the pages will be
refreshed on the Monitoring menu, except for Dashboard, which
uses its own refresh parameters for every widget.

Rows per page You can set how many rows will be displayed per page in the lists.
Fewer rows (and fewer records to display) mean faster loading
times.

URL (after login) You can set a specific URL to be displayed after the login. Instead
of the default Monitoring → Dashboard it can be, for example, the
URL of Monitoring → Triggers.

Note:
If some language is not available for selection in the user profile it means that a locale for it is not installed on the web
server. See the link at the bottom of this page to find out how to install them.

TheMedia tab allows you to specify the media details for the user, such as the types, the addresses to use and when to use them
to deliver notifications.

407

Note:
Only admin level users (Admin and Super Admin) can change their own media details.

The Messaging tab allows you to set global notifications.

See also

1. How to install additional locales to be able to select unavailable languages in the user profile

1 Global notifications

Overview

Global notifications are a way of displaying issues that are currently happening right on the screen you’re at in Zabbix frontend.

Without global notifications, working in some other location than Status of triggers or Dashboard pages would not show any
information regarding issues that are currently happening. Global notifications will display this information regardless of where
you are.

Global notifications involve both showing a message and playing a sound.

Attention:
The auto play of sounds may be disabled in recent browser versions by default. In this case, you need to change this
setting manually.

Configuration

Global notifications can be enabled per user in the Messaging tab of profile configuration.

408

http://www.zabbix.org/wiki/How_to/install_locale

Parameter Description

Frontend messaging Mark the checkbox to enable global notifications.
Message timeout You can set for how long the message will be displayed. By default,

messages will stay on screen for 60 seconds.
Play sound You can set how long the sound will be played.

Once - sound is played once and fully.
10 seconds - sound is repeated for 10 seconds.
Message timeout - sound is repeated while the message is
visible.

Trigger severity You can set the trigger severities that global notifications and
sounds will be activated for. You can also select the sounds
appropriate for various severities.
If no severity is marked then no messages will be displayed at all.
Also, recovery messages will only be displayed for those severities
that are marked. So if you mark Recovery and Disaster, global
notifications will be displayed for the problems and the recoveries
of disaster severity triggers.

Global messages displayed

As the messages arrive, they are displayed in a floating section on the right hand side. This section can be repositioned vertically
by dragging the section header.

For this section, several controls are available:

• Snooze button silences currently active alarm sound;

• Mute/Unmute button switches between playing and not playing the alarm sounds;

• Clear button removes all currently visible messages.

409

2 Sound in browsers

Overview

For the sounds to be played in Zabbix frontend, Frontend messaging must be enabled in the user profile Messaging tab, with all
trigger severities checked, and sounds should also be enabled in the global notification pop-up window.

The sounds of Zabbix frontend have been successfully tested in the following web browser versions and no additional configuration
was required:

• Firefox 3.5.16 on Linux
• Opera 11.01 on Linux
• Google Chrome 9.0 on Windows
• Firefox 3.5.16 on Windows
• IE7 browser on Windows
• Opera v11.01 on Windows
• Chrome v9.0 on Windows
• Safari v5.0 on Windows, but this browser requires Quick Time Player to be installed

Additional requirements

Firefox v 3.5.16

For playing wav files in the Firefox browser you can use one of the following applications:

• Windows Media Player
• Quick Time plug-in.

Then, in Tools → Options → Applications, in ”Wave sound (audio/wav)” set Windows Media Player to play these files.

Safari 5.0

Quick Time Player is required.

Microsoft Internet Explorer

To play sounds in MSIE7 and MSIE8:

• In Tools → Internet Options → Advanced enable Play sounds in webpages
• In Tools → Manage Add-ons... enableWindows Media Player
• In the Windows Media Player, in Tools→Options→File Types enable Windows audio file (wav)

In the Windows Media Player, in Tools→Options tab, ”File Types” is only available if the user is a member of ”Power Users” or
”Administrators” group, i.e. a regular user does not have access to this tab and does not see it.

An additional thing - if IE does not have some *.wav file in the local cache directory (%userprofile%\Local Settings\Temporary
Internet Files) the sound will not play the first time.

Known not to work

Browsers where the sound did not work:

• Opera 10.11 on Linux.

3 Global search

It is possible to search for various entities in the Zabbix frontend. Search input box is located in the upper right corner. Search can
be started by pressing enter or clicking on the Search button.

If there is a host that starts with the entered string, a dropdown will appear, listing all such hosts:

410

In the search results, it is possible to collapse each individual block. Enabled hosts will be displayed in blue, disabled hosts in red.

Entities searched It is possible to search for these entities and their properties:

• Hosts
– Visible name (or host name if visible name is not defined)
– IP address
– DNS name

• Templates
– Name

• Host groups
– Name

Links available For entities found the following links are available:

• Hosts
– Monitoring

∗ Latest data
∗ Triggers
∗ Events
∗ Graphs (since Zabbix 2.2)
∗ Host screens
∗ Web scenarios (since Zabbix 2.2)

– Configuration
∗ Host properties
∗ Applications
∗ Items
∗ Triggers
∗ Graphs
∗ Discovery rules (since Zabbix 2.2)
∗ Web scenarios (since Zabbix 2.2)

• Host groups
– Monitoring

∗ Latest data
∗ Triggers
∗ Events
∗ Graphs (since Zabbix 2.2)
∗ Web scenarios (since Zabbix 2.2)

– Configuration
∗ Host group properties
∗ Host group members (hosts and templates; separate links since Zabbix 2.0.2)

• Templates
– Configuration

∗ Template properties
∗ Applications
∗ Items
∗ Triggers

411

∗ Graphs
∗ Template screens
∗ Discovery rules (since Zabbix 2.2)
∗ Web scenarios (since Zabbix 2.2)

Below each block the amount of entities found and displayed is shown, for example, Displaying 13 of 13 found. The amount of
displayed entries in each block is limited to 100.

For all configuration entities amount of entities found is displayed in parenthesis. If no entities of that type are found, the entry is
displayed without a link.

4 Frontend maintenance mode

Overview

Zabbix web frontend can be temporarily disabled in order to prohibit access to it. This can be useful for protecting the Zabbix
database from any changes initiated by users, thus protecting the integrity of database.

Zabbix database can be stopped and maintenance tasks can be performed while Zabbix frontend is in maintenance mode.

Users from a defined range of IP addresses will be able to work with the frontend normally during maintenance mode.

Configuration

In order to enable maintenance mode, the maintenance.inc.php file (located in /conf of the Zabbix HTML document directory
on the webserver) must be modified to uncomment the following lines:

// Maintenance mode
define('ZBX_DENY_GUI_ACCESS',1);

// IP range, who allowed to connect to FrontEnd
$ZBX_GUI_ACCESS_IP_RANGE = array('127.0.0.1');

// MSG showed on Warning screen!
$_REQUEST['warning_msg'] = 'We are upgrading MySQL database till 15:00. Stay tuned...';

Parameter Details

ZBX_DENY_GUI_ACCESS Enable maintenance mode:
1 – maintenance mode is enabled, disabled
otherwise

ZBX_GUI_ACCESS_IP_RANGE Connections from these IP addresses will be allowed
during the maintenance mode.
For example:
192.168.1.1-255

warning_msg A message you can enter to inform users about the
maintenance.

Display

The following screen will be displayed when trying to access the Zabbix frontend while in maintenance mode. The screen is
refreshed every 30 seconds in order to return to a normal state without user intervention when the maintenance is over.

412

IP addresses defined in ZBX_GUI_ACCESS_IP_RANGE will be able to access the frontend as always.

5 Page parameters

Overview

Most Zabbix web interface pages support various HTTP GET parameters that control what will be displayed. They may be passed
by specifying parameter=value pairs after the URL, separated from the URL by a question mark (?) and from each other by
ampersands (&).

Status of triggers

Accessed as Monitoring → Triggers, page name tr_status.php.

Generic parameters

• groupid
• hostid
• fullscreen

Page specific parameters

• show_triggers - filter option Triggers status, 1 - Problem, 2 - Any
• show_events - filter option Events, 1 - Hide all, 2 - Show all, 3 - Show unacknowledged
• ack_status - filter optionAcknowledge status, 1 - Any, 2 - With unacknowledged events, 3 - With last event unacknowledged
• show_severity - filter option Min severity, 0-5 - corresponding severity, -1 - defaults to Not classified
• show_details - filter option Show details, 0 - do not show, 1 - show
• status_change_days - filter option Age less than, in days
• status_change - filter option Age less than, 0 - disabled, 1 - enabled (status_change_days will be used)
• txt_select - filter option Filter by name, freeform string
• show_maintenance - filter option Show hosts in maintenance, 0 - do not show hosts in maintenance, 1 - show hosts in
maintenance

6 Definitions

Overview

While many things in the frontend can be configured using the frontend itself, some customisations are currently only possible by
editing a definitions file.

This file is defines.inc.php located in /include of the Zabbix HTML document directory.

413

Parameters

Parameters in this file that could be of interest to users:

• ZBX_LOGIN_ATTEMPTS

Number of unsuccessful login attempts that is allowed to an existing system user before a login block in applied (see
ZBX_LOGIN_BLOCK). By default 5 attempts. Once the set number of login attempts is tried unsuccessfully, each additional
unsuccessful attempt results in a login block. Used with internal authentication only.

• ZBX_LOGIN_BLOCK

Number of seconds for blocking a user from accessing Zabbix frontend after a number of unsuccessful login attempts (see
ZBX_LOGIN_ATTEMPTS). By default 30 seconds. Used with internal authentication only.

• ZBX_PERIOD_DEFAULT

Default graph period, in seconds. One hour by default.

• ZBX_MIN_PERIOD

Minimum graph period, in seconds. One hour by default.

• ZBX_MAX_PERIOD

Maximum graph period, in seconds. Two years by default since 1.6.7, one year before that.

• ZBX_HISTORY_PERIOD

The maximum period to display history data in Latest data, Overview pages and Data overview screen element in seconds. By
default set to 86400 seconds (24 hours). Unlimited period, if set to 0 seconds.

• GRAPH_YAXIS_SIDE_DEFAULT

Default location of Y axis in simple graphs and default value for drop down box when adding items to custom graphs. Possible
values: 0 - left, 1 - right.

Default: 0

• ZBX_HISTORY_DATA_UPKEEP (available since 1.8.4; removed in 2.2.1)

Number of days, which will reflect on frontend choice when deciding which history or trends table to process for selected period
on data graphing. When this define is:

* less than zero - Zabbix takes item values for selected graph period configured in item "keep in history" field to make calculations;
* equal to zero - Zabbix takes item values only from trends;
* greater then zero - Zabbix overwrites item "keep in history" configured value with this define;

This define could be useful for partitioned history data storage.

Default: -1

• DEFAULT_LATEST_ISSUES_CNT

Controls how many issues are shown in the dashboard’s Last n issues widget. By default 20 issues are shown.

• SCREEN_REFRESH_TIMEOUT (available since 2.0.4)

Used in screens and defines the timeout seconds for a screen element update. When the defined number of seconds after launching
an update pass and the screen element has still not been updated, the screen element will be darkened.

Default: 30

• SCREEN_REFRESH_RESPONSIVENESS (available since 2.0.4)

Used in screens and defines the number of seconds after which query skipping will be switched off. Otherwise, if a screen element
is in update status all queries on update are skipped until a response is received. With this parameter in use, another update query
might be sent after N seconds without having to wait for the response to the first one.

Default: 10

• VALIDATE_URI_SCHEMES (available since 2.2.21)

Validate a URI against the scheme whitelist defined in ZBX_URI_VALID_SCHEMES.

Default: true

• ZBX_SHOW_TECHNICAL_ERRORS (available since 2.2.21)

414

Show technical errors (PHP/SQL) to non-Zabbix Super admin users and to users that are not part of user groups with debug mode
enabled.

Default: false

7 Creating your own theme

Overview

By default, Zabbix provides a number of predefined themes. You may follow the step-by-step procedure provided here in order to
create your own. Feel free to share result of your work with Zabbix community if you created something nice.

Step 1

To define your own theme you’ll need to create a CSS file and save it as styles/themes/mytheme/main.css. You can either copy the
files from a different theme and create your theme based on it or start from scratch. The rules in the main.css file will extend the
ones that are defined in the base Zabbix CSS files located in the styles folder. Any theme-specific images must be placed in the
styles/themes/mytheme/images folder.

Step 2

Add your theme to the list of themes returned by the Z::getThemes() method. You can do this by overriding the ZBase::getThemes()
method in the Z class. This can be done by adding the following code before the closing brace in include/classes/core/Z.php:

public static function getThemes() {
return array_merge(parent::getThemes(), array(

'mytheme' => _('My theme')
));

}

Attention:
Note that the name you specify within the first pair of quotes must match the name of the directory under which the theme
files have been saved.

To add multiple themes, just list them under the first theme, for example:

public static function getThemes() {
return array_merge(parent::getThemes(), array(

'mytheme' => _('My theme'),
'anothertheme' => _('Another theme'),
'onemoretheme' => _('One more theme')

));
}

Note that every theme except the last one must have a trailing comma.

Note:
To change graph colours, entry must be added in the database table graph_theme.

Step 3

Activate the new theme.

In Zabbix GUI, you may either set this theme to be the default one or change your theme in the user profile.

Enjoy the new look and feel!

8 Debug mode

Overview

Debug mode may be used to diagnose performance problems with frontend pages.

Configuration

Debug mode can be activated for individual users who belong to a user group:

415

• when configuring a user group;
• when viewing configured user groups.

When Debug mode is enabled for a user group, its users will see a Debug button in the upper right corner of the browser window.

Clicking on the Debug button opens a new window below the page contents which contains the SQL statistics of the page, along
with a list of API calls and individual SQL statements:

In case of performance problems with the page, this window may be used to search for the root cause of the problem.

Warning:
Enabled Debug mode negatively affects frontend performance.

17. API

Overview Zabbix API allows you to programmatically retrieve and modify the configuration of Zabbix and provides access to
historical data. It is widely used to:

• Create new applications to work with Zabbix;
• Integrate Zabbix with third party software;
• Automate routine tasks.

The Zabbix API is a web based API and is shipped as part of the web frontend. It uses the JSON-RPC 2.0 protocol which means two
things:

• The API consists of a set of separate methods;
• Requests and responses between the clients and the API are encoded using the JSON format.

More info about the protocol and JSON can be found in the JSON-RPC 2.0 specification and the JSON format homepage.

Structure The API consists of a number of methods that are nominally grouped into separate APIs. Each of the methods performs
one specific task. For example, the host.create method belongs to the host API and is used to create new hosts. Historically,
APIs are sometimes referred to as ”classes”.

Note:
Most APIs contain at least four methods: get, create, update and delete for retrieving, creating, updating and deleting
data respectfully, but some of the APIs may provide a totally different set of methods.

Performing requests Once you’ve set up the frontend, you can use remote HTTP requests to call the API. To do that you need
to send HTTP POST requests to the api_jsonrpc.php file located in the frontend directory. For example, if your Zabbix frontend
is installed under http://company.com/zabbix, the HTTP request to call the apiinfo.version method may look like this:

POST http://company.com/zabbix/api_jsonrpc.php HTTP/1.1
Content-Type: application/json-rpc

{"jsonrpc":"2.0","method":"apiinfo.version","id":1,"auth":null,"params":{}}

The request must have the Content-Type header set to one of these values: application/json-rpc, application/json
or application/jsonrequest.

Note:
You can use any HTTP client or a JSON-RPC testing tool to perform API requests manually, but for developing applications
we suggest you use one of the community maintained libraries.

Example workflow The following section will walk you through some usage examples in more detail.

Authentication Before you can access any data inside of Zabbix you’ll need to log in and obtain an authentication token. This
can be done using the user.login method. Let us suppose that you want to log in as a standard Zabbix Admin user. Then your JSON
request will look like this:

416

http://www.jsonrpc.org/specification
http://json.org/
http://zabbix.org/wiki/Docs/api/libraries

{
"jsonrpc": "2.0",
"method": "user.login",
"params": {

"user": "Admin",
"password": "zabbix"

},
"id": 1,
"auth": null

}

Let’s take a closer look at the request object. It has the following properties:

• jsonrpc - the version of the JSON-RPC protocol used by the API; the Zabbix API implements JSON-RPC version 2.0;
• method - the API method being called;
• params - parameters that will be passed to the API method;
• id - an arbitrary identifier of the request;
• auth - a user authentication token; since we don’t have one yet, it’s set to null.

If you provided the credentials correctly, the response returned by the API will contain the user authentication token:

{
"jsonrpc": "2.0",
"result": "0424bd59b807674191e7d77572075f33",
"id": 1

}

The response object in turn contains the following properties:

• jsonrpc - again, the version of the JSON-RPC protocol;
• result - the data returned by the method;
• id - identifier of the corresponding request.

Retrieving hosts We now have a valid user authentication token that can be used to access the data in Zabbix. For example,
let’s use the host.get method to retrieve the IDs, host names and interfaces of all configured hosts:

{
"jsonrpc": "2.0",
"method": "host.get",
"params": {

"output": [
"hostid",
"host"

],
"selectInterfaces": [

"interfaceid",
"ip"

]
},
"id": 2,
"auth": "0424bd59b807674191e7d77572075f33"

}

Attention:
Note that the auth property is now set to the authentication token we’ve obtained by calling user.login.

The response object will contain the requested data about the hosts:

{
"jsonrpc": "2.0",
"result": [

{
"hostid": "10084",
"host": "Zabbix server",
"interfaces": [

{

417

"interfaceid": "1",
"ip": "127.0.0.1"

}
]

}
],
"id": 2

}

Note:
For performance reasons we recommend to always list the object properties you want to retrieve and avoid retrieving
everything.

Creating a new item Let’s create a new item on ”Zabbix server” using the data we’ve obtained from the previous host.get
request. This can be done by using the item.create method:

{
"jsonrpc": "2.0",
"method": "item.create",
"params": {

"name": "Free disk space on $1",
"key_": "vfs.fs.size[/home/joe/,free]",
"hostid": "10084",
"type": 0,
"value_type": 3,
"interfaceid": "1",
"delay": 30

},
"auth": "0424bd59b807674191e7d77572075f33",
"id": 3

}

A successful response will contain the ID of the newly created item, which can be used to reference the item in the following
requests:

{
"jsonrpc": "2.0",
"result": {

"itemids": [
"24759"

]
},
"id": 3

}

Note:
The item.create method as well as other create methods can also accept arrays of objects and create multiple items
with one API call.

Creating multiple triggers So if create methods accept arrays, we can add multiple triggers like so:

{
"jsonrpc": "2.0",
"method": "trigger.create",
"params": [

{
"description": "Processor load is too high on {HOST.NAME}",
"expression": "{Linux server:system.cpu.load[percpu,avg1].last()}>5",

},
{

"description": "Too many processes on {HOST.NAME}",
"expression": "{Linux server:proc.num[].avg(5m)}>300",

}

418

],
"auth": "0424bd59b807674191e7d77572075f33",
"id": 4

}

A successful response will contain the IDs of the newly created triggers:

{
"jsonrpc": "2.0",
"result": {

"triggerids": [
"17369",
"17370"

]
},
"id": 4

}

Updating an item Enable an item, that is, set its status to ”0”:

{
"jsonrpc": "2.0",
"method": "item.update",
"params": {

"itemid": "10092",
"status": 0

},
"auth": "0424bd59b807674191e7d77572075f33",
"id": 5

}

A successful response will contain the ID of the updated item:

{
"jsonrpc": "2.0",
"result": {

"itemids": [
"10092"

]
},
"id": 5

}

Note:
The item.update method as well as other update methods can also accept arrays of objects and update multiple items
with one API call.

Updating multiple triggers Enable multiple triggers, that is, set their status to 0:

{
"jsonrpc": "2.0",
"method": "trigger.update",
"params": [

{
"triggerid": "13938",
"status": 0

},
{

"triggerid": "13939",
"status": 0

}
],
"auth": "0424bd59b807674191e7d77572075f33",
"id": 6

419

}

A successful response will contain the IDs of the updated triggers:

{
"jsonrpc": "2.0",
"result": {

"triggerids": [
"13938",
"13939"

]
},
"id": 6

}

Note:
This is the preferred method of updating. Some API methods like host.massupdate allow to write more simple code, but
it’s not recommended to use those methods, since they will be removed in the future releases.

Error handling Up to that point everything we’ve tried has worked fine. But what happens if we try to make an incorrect call to
the API? Let’s try to create another host by calling host.create but omitting the mandatory groups parameter.
{

"jsonrpc": "2.0",
"method": "host.create",
"params": {

"host": "Linux server",
"interfaces": [

{
"type": 1,
"main": 1,
"useip": 1,
"ip": "192.168.3.1",
"dns": "",
"port": "10050"

}
]

},
"id": 7,
"auth": "0424bd59b807674191e7d77572075f33"

}

The response will then contain an error message:

{
"jsonrpc": "2.0",
"error": {

"code": -32602,
"message": "Invalid params.",
"data": "No groups for host \"Linux server\"."

},
"id": 7

}

If an error occurred, instead of the result property, the response object will contain an error property with the following data:

• code - an error code;
• message - a short error summary;
• data - a more detailed error message.

Errors can occur in different cases, such as, using incorrect input values, a session timeout or trying to access unexisting objects.
Your application should be able to gracefully handle these kinds of errors.

API versions To simplify API versioning, starting from Zabbix 2.0.4, the version of the API matches the version of Zabbix itself.
You can use the apiinfo.version method to find out the version of the API you’re working with. This can be useful for adjusting your

420

application to use version-specific features.

We guarantee feature backward compatibility inside of a major version. When making backward incompatible changes between
major releases, we usually leave the old features as deprecated in the next release, and only remove them in the release after
that. Occasionally, we may remove features between major releases without providing any backward compatibility. It is important
that you never rely on any deprecated features and migrate to newer alternatives as soon as possible.

Note:
You can follow all of the changes made to the API in the API changelog.

Further reading You now know enough to start working with the Zabbix API, but don’t stop here. For further reading we suggest
you have a look at the list of available APIs.

Method reference

This section provides an overview of the functions provided by the Zabbix API and will help you find your way around the available
classes and methods.

Monitoring The Zabbix API allows you to access history and other data gathered during monitoring.

History

Retrieve historical values gathered by Zabbix monitoring processes for presentation or further processing.

History API

Events

Retrieve events generated by triggers, network discovery and other Zabbix systems for more flexible situation management or
third-party tool integration.

Event API

Service monitoring

Retrieve detailed service layer availability information about any IT service.

IT service SLA calculation

Configuration The Zabbix API allows you to manage the configuration of your monitoring system.

Hosts and host groups

Manage host groups, hosts and everything related to them, including host interfaces, host macros and maintenance periods.

Host API | Host group API | Host interface API | User macro API | Maintenance API

Items and applications

Define items to monitor. Create or remove applications and assign items to them.

Item API | Application API

Triggers

Configure triggers to notify you about problems in your system. Manage trigger dependencies.

Trigger API

Graphs

Edit graphs or separate graph items for better presentation of the gathered data.

Graph API | Graph item API

Templates

Manage templates and link them to hosts or other templates.

Template API

Export and import

421

Export and import Zabbix configuration data for configuration backups, migration or large-scale configuration updates.

Configuration API

Low-level discovery

Configure low-level discovery rules as well as item, trigger and graph prototypes to monitor dynamic entities.

LLD rule API | Item prototype API | Trigger protototype API | Graph prototype API | Host prototype API

Screens

Edit global and template-level screens or each screen item individually.

Screen API | Screen item API | Template screen API | Template screen item API

Actions and alerts

Define actions and operations to notify users about certain events or automatically execute remote commands. Gain access to
information about generated alerts and their receivers.

Action API | Alert API

IT services

Manage IT services for service-level monitoring and retrieve detailed SLA information about any service.

IT service API

Maps

Configure maps to create detailed dynamic representations of your IT infrastructure.

Map API

Web monitoring

Configure web scenarios to monitor your web applications and services.

Web scenario API

Network discovery

Manage network-level discovery rules to automatically find andmonitor new hosts. Gain full access to information about discovered
services and hosts.

Discovery rule API | Discovery check API | Discovery host API | Discovery service API

Administration With the Zabbix API you can change administration settings of your monitoring system.

Users

Add users that will have access to Zabbix, assign them to user groups and grant permissions. Configure media types and the ways
users will receive alerts.

User API | User group API | Media type API | Media API

General

Change certain global configuration options.

Icon map API | Image API | User macro API

Proxies

Manage the proxies used in your distributed monitoring setup.

Proxy API

Scripts

Configure and execute scripts to help you with your daily tasks.

Script API

API information Retrieve the version of the Zabbix API so that your application could use version-specific features.

API info API

422

Action

This class is designed to work with actions.

Object references:

• Action
• Action condition
• Action operation

Available methods:

• action.create - create new actions
• action.delete - delete actions
• action.exists - check if an action exists
• action.get - retrieve actions
• action.update - update actions

> Action object

The following objects are directly related to the action API.

Action

The action object has the following properties.

Property Type Description

actionid string (readonly) ID of the action.
esc_period
(required)

integer Default operation step duration. Must be greater than 60
seconds.

evaltype
(required)

integer Action condition evaluation method.

Possible values:
0 - AND / OR;
1 - AND;
2 - OR.

eventsource
(required)

integer (constant) Type of events that the action will handle.

Refer to the event ”source” property for a list of
supported event types.

name
(required)

string Name of the action.

def_longdata string Problem message text.
def_shortdata string Problem message subject.
r_longdata string Recovery message text.
r_shortdata string Recovery message subject.
recovery_msg integer Whether recovery messages are enabled.

Possible values:
0 - (default) disabled;
1 - enabled.

status integer Whether the action is enabled or disabled.

Possible values:
0 - (default) enabled;
1 - disabled.

Action condition

The action condition object defines a condition that must be met to perform the configured action operations. It has the following
properties.

423

Property Type Description

conditionid string (readonly) ID of the action condition.
conditiontype
(required)

integer Type of condition.

Possible values for trigger actions:
0 - host group;
1 - host;
2 - trigger;
3 - trigger name;
4 - trigger severity;
5 - trigger value;
6 - time period;
13 - host template;
15 - application;
16 - maintenance status;
17 - node.

Possible values for discovery actions:
7 - host IP;
8 - discovered service type;
9 - discovered service port;
10 - discovery status;
11 - uptime or downtime duration;
12 - received value;
18 - discovery rule;
19 - discovery check;
20 - proxy;
21 - discovery object.

Possible values for auto-registration actions:
20 - proxy;
22 - host name;
24 - host metadata.

Possible values for internal actions:
0 - host group;
1 - host;
13 - host template;
15 - application;
23 - event type;
17 - node.

value
(required)

string Value to compare with.

actionid string (readonly) ID of the action that the condition belongs to.
operator integer Condition operator.

Possible values:
0 - (default) =;
1 - <>;
2 - like;
3 - not like;
4 - in;
5 - >=;
6 - <=;
7 - not in.

The following operators and values are supported for each condition type.

Condition Condition name Supported operators Expected value

0 Host group =, <> Host group ID.
1 Host =, <> Host ID.

424

Condition Condition name Supported operators Expected value

2 Trigger =, <> Trigger ID.
3 Trigger name like, not like Trigger name.
4 Trigger severity =, <>, >=, <= Trigger severity. Refer to the

trigger ”severity” property
for a list of supported
trigger severities.

5 Trigger value = Trigger value. Refer to the
trigger ”value” property for
a list of supported trigger
values.

6 Time period in, not in Time when the event was
triggered as a time period.

7 Host IP =, <> One or several IP ranges to
check separated by
commas. Refer to the
network discovery
configuration section for
more information on
supported formats of IP
ranges.

8 Discovered service type =, <> Type of discovered service.
The type of service matches
the type of the discovery
check used to detect the
service. Refer to the
discovery check ”type”
property for a list of
supported types.

9 Discovered service port =, <> One or several port ranges
separated by commas.

10 Discovery status = Status of a discovered
object.

Possible values:
0 - host or service up;
1 - host or service down;
2 - host or service
discovered;
3 - host or service lost.

11 Uptime or downtime
duration

>=, <= Time indicating how long
has the discovered object
been in the current status in
seconds.

12 Received values =, <>, >=, <=, like, not like Value returned when
performing a Zabbix agent,
SNMPv1, SNMPv2 or
SNMPv3 discovery check.

13 Host template =, <> Linked template ID.
15 Application =, like, not like Name of the application.
16 Maintenance status in, not in No value required: using the

”in” operator means that
the host must be in
maintenance, ”not in” - not
in maintenance.

17 Node =, <> ID of the distributed
monitoring node.

18 Discovery rule =, <> ID of the discovery rule.
19 Discovery check =, <> ID of the discovery check.
20 Proxy =, <> ID of the proxy.

425

Condition Condition name Supported operators Expected value

21 Discovery object = Type of object that triggered
the discovery event.

Possible values:
1 - discovered host;
2 - discovered service.

22 Host name like, not like Host name.
23 Event type = Specific internal event.

Possible values:
0 - item in ”not supported”
state;
1 - item in ”normal” state;
2 - LLD rule in ”not
supported” state;
3 - LLD rule in ”normal”
state;
4 - trigger in ”unknown”
state;
5 - trigger in ”normal” state.

24 Host metadata like, not like Metadata of the
auto-registered host.

Action operation

The action operation object defines an operation that will be performed when an action is executed. It has the following properties.

Property Type Description

operationid string (readonly) ID of the action operation.
operationtype
(required)

integer Type of operation.

Possible values:
0 - send message;
1 - remote command;
2 - add host;
3 - remove host;
4 - add to host group;
5 - remove from host group;
6 - link to template;
7 - unlink from template;
8 - enable host;
9 - disable host.

actionid string ID of the action that the operation belongs to.
esc_period integer Duration of an escalation step in seconds. Must be

greater than 60 seconds. If set to 0, the default action
escalation period will be used.

Default: 0.
esc_step_from integer Step to start escalation from.

Default: 1.
esc_step_to integer Step to end escalation at.

Default: 1.
evaltype integer Operation condition evaluation method.

Possible values:
0 - (default) AND / OR;
1 - AND;
2 - OR.

426

Property Type Description

opcommand object Object containing the data about the command run by
the operation.

The operation command object is described in detail
below.

Required for remote command operations.
opcommand_grp array Host groups to run remote commands on.

Each object has the following properties:
opcommand_grpid - (string, readonly) ID of the object;
operationid - (string) ID of the operation;
groupid - (string) ID of the host group.

Required for remote command operations if
opcommand_hst is not set.

opcommand_hst array Host to run remote commands on.

Each object has the following properties:
opcommand_hstid - (string, readonly) ID of the object;
operationid - (string) ID of the operation;
hostid - (string) ID of the host; if set to 0 the command
will be run on the current host.

Required for remote command operations if
opcommand_grp is not set.

opconditions array Operation conditions used for trigger actions.

The operation condition object is described in detail
below.

opgroup array Host groups to add hosts to.

Each object has the following properties:
operationid - (string) ID of the operation;
groupid - (string) ID of the host group.

Required for ”add to host group” and ”remove from host
group” operations.

opmessage object Object containing the data about the message sent by
the operation.

The operation message object is described in detail
below.

Required for message operations.
opmessage_grp array User groups to send messages to.

Each object has the following properties:
operationid - (string) ID of the operation;
usrgrpid - (string) ID of the user group.

Required for message operations if opmessage_usr is
not set.

opmessage_usr array Users to send messages to.

Each object has the following properties:
operationid - (string) ID of the operation;
userid - (string) ID of the user.

Required for message operations if opmessage_grp is
not set.

427

Property Type Description

optemplate array Templates to link the hosts to to.

Each object has the following properties:
operationid - (string) ID of the operation;
templateid - (string) ID of the template.

Required for ”link to template” and ”unlink from
template” operations.

Action operation command

The operation command object contains data about the command that will be run by the operation.

Property Type Description

operationid string (readonly) ID of the operation.
command
(required)

string Command to run.

type
(required)

integer Type of operation command.

Possible values:
0 - custom script;
1 - IPMI;
2 - SSH;
3 - Telnet;
4 - global script.

authtype integer Authentication method used for SSH commands.

Possible values:
0 - password;
1 - public key.

Required for SSH commands.
execute_on integer Target on which the custom script operation command

will be executed.

Possible values:
0 - Zabbix agent;
1 - Zabbix server.

Required for custom script commands.
password string Password used for SSH commands with password

authentication and Telnet commands.
port string Port number used for SSH and Telnet commands.
privatekey string Name of the private key file used for SSH commands

with public key authentication.

Required for SSH commands with public key
authentication.

publickey string Name of the public key file used for SSH commands with
public key authentication.

Required for SSH commands with public key
authentication.

scriptid string ID of the script used for global script commands.

Required for global script commands.
username string User name used for authentication.

Required for SSH and Telnet commands.

428

Action operation message

The operation message object contains data about the message that will be sent by the operation.

Property Type Description

operationid string (readonly) ID of the action operation.
default_msg integer Whether to use the default action message text and

subject.

Possible values:
0 - (default) use the data from the operation;
1 - use the data from the action.

mediatypeid string ID of the media type that will be used to send the
message.

message string Operation message text.
subject string Operation message subject.

Action operation condition

The action operation condition object defines a condition that must be met to perform the current operation. It has the following
properties.

Property Type Description

opconditionid string (readonly) ID of the action operation condition
conditiontype
(required)

integer Type of condition.

Possible values:
14 - event acknowledged.

value
(required)

string Value to compare with.

operationid string (readonly) ID of the operation.
operator integer Condition operator.

Possible values:
0 - (default) =.

The following operators and values are supported for each operation condition type.

Condition Condition name Supported operators Expected value

14 Event acknowledged = Whether the event is
acknowledged.

Possible values:
0 - not acknowledged;
1 - acknowledged.

action.create

Description

object action.create(object/array actions)

This method allows to create new actions.

Parameters

(object/array) Actions to create.

Additionally to the standard action properties, the method accepts the following parameters.

429

Parameter Type Description

operations
(required)

array Action operations to create for the action.

conditions array Action conditions to create for the action.

Return values

(object) Returns an object containing the IDs of the created actions under the actionids property. The order of the returned
IDs matches the order of the passed actions.

Examples

Create a trigger action

Create an action that will be run when a trigger from host ”30045” that has the word ”memory” in its name goes into problem
state. The action must first send a message to all users in user group ”7”. If the event is not resolved in 4 minutes, it will run script
”3” on all hosts in group ”2”.

Request:

{
"jsonrpc": "2.0",
"method": "action.create",
"params": {

"name": "Trigger action",
"eventsource": 0,
"evaltype": 0,
"status": 0,
"esc_period": 120,
"def_shortdata": "{TRIGGER.NAME}: {TRIGGER.STATUS}",
"def_longdata": "{TRIGGER.NAME}: {TRIGGER.STATUS}\r\nLast value: {ITEM.LASTVALUE}\r\n\r\n{TRIGGER.URL}",
"conditions": [

{
"conditiontype": 1,
"operator": 0,
"value": "30045"

},
{

"conditiontype": 3,
"operator": 2,
"value": "memory"

}
],
"operations": [

{
"operationtype": 0,
"esc_period": 0,
"esc_step_from": 1,
"esc_step_to": 2,
"evaltype": 0,
"opmessage_grp": [

{
"usrgrpid": "7"

}
],
"opmessage": {

"default_msg": 1,
"mediatypeid": "1"

}
},
{

"operationtype": 1,
"esc_step_from": 3,
"esc_step_to": 4,
"evaltype": 0,

430

"opconditions": [
{

"conditiontype": 14,
"operator": 0,
"value": "0"

}
],
"opcommand_grp": [

{
"groupid": "2"

}
],
"opcommand": {

"type": 4,
"scriptid": "3"

}
}

]
},
"auth": "038e1d7b1735c6a5436ee9eae095879e",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": {

"actionids": [
"17"

]
},
"id": 1

}

Create a discovery action

Create an action that will link discovered hosts to template ”30085”.

Request:

{
"jsonrpc": "2.0",
"method": "action.create",
"params": {

"name": "Discovery action",
"eventsource": 1,
"status": 0,
"esc_period": 0,
"evaltype": 0,
"conditions": [

{
"conditiontype": 21,
"value": "1"

},
{

"conditiontype": 10,
"value": "2"

}
],
"operations": [

{
"esc_step_from": 1,
"esc_period": 0,
"optemplate": [

431

{
"templateid": "30085"

}
],
"operationtype": 6,
"esc_step_to": 1

}
]

},
"auth": "038e1d7b1735c6a5436ee9eae095879e",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": {

"actionids": [
"18"

]
},
"id": 1

}

See also

• Action condition
• Action operation

Source

CAction::create() in frontends/php/api/classes/CAction.php.

action.delete

Description

object action.delete(array actionIds)

This method allows to delete actions.

Parameters

(array) IDs of the actions to delete.

Return values

(object) Returns an object containing the IDs of the deleted actions under the actionids property.

Examples

Delete multiple actions

Delete two actions.

Request:

{
"jsonrpc": "2.0",
"method": "action.delete",
"params": [

"17",
"18"

],
"auth": "3a57200802b24cda67c4e4010b50c065",
"id": 1

}

Response:

432

{
"jsonrpc": "2.0",
"result": {

"actionids": [
"17",
"18"

]
},
"id": 1

}

Source

CAction::delete() in frontends/php/api/classes/CAction.php.

action.exists

Description

boolean action.exists(object filter)

This method checks if at least one action that matches the given filter criteria exists.

Parameters

(object) Criteria to search by.

The following parameters are supported as search criteria.

Parameter Type Description

actionid string/array IDs of actions.
name string/array Names of actions.
node string Name of the node the actions must belong to.

This will override the nodeids parameter.
nodeids string/array IDs of the nodes the actions must belong to.

Return values

(boolean) Returns true if at least one action that matches the given filter criteria exists.

Examples

Check action by name

Check if an action named ”Auto discovery. Linux servers.” exists.

Request:

{
"jsonrpc": "2.0",
"method": "action.exists",
"params": {

"name": "Auto discovery. Linux servers."
},
"auth": "3a57200802b24cda67c4e4010b50c065",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": true,
"id": 1

}

433

Source

CAction::exists() in frontends/php/api/classes/CAction.php.

action.get

Description

integer/array action.get(object parameters)

The method allows to retrieve actions according to the given parameters.

Parameters

(object) Parameters defining the desired output.

The method supports the following parameters.

Parameter Type Description

actionids string/array Return only actions with the given IDs.
groupids string/array Return only actions that use the given host groups in

action conditions.
hostids string/array Return only actions that use the given hosts in action

conditions.
triggerids string/array Return only actions that use the given triggers in

action conditions.
mediatypeids string/array Return only actions that use the given media types to

send messages.
usrgrpids string/array Return only actions that are configured to send

messages to the given user groups.
userids string/array Return only actions that are configured to send

messages to the given users.
scriptids string/array Return only actions that are configured to run the

given scripts.
selectConditions query Return action conditions in the conditions property.
selectOperations query Return action operations in the operations property.
sortfield string/array Sort the result by the given properties.

Possible values are: actionid, name and status.
countOutput flag These parameters being common for all get methods

are described in the reference commentary.
editable boolean
excludeSearch flag
filter object
limit integer
nodeids string/array
output query
preservekeys flag
search object
searchByAny boolean
searchWildcardsEnabled boolean
sortorder string/array
startSearch flag

Return values

(integer/array) Returns either:

• an array of objects;
• the count of retrieved objects, if the countOutput parameter has been used.

Examples

Retrieve discovery actions

Retrieve all configured discovery actions together with action conditions and operations.

434

Request:

{
"jsonrpc": "2.0",
"method": "action.get",
"params": {

"output": "extend",
"selectOperations": "extend",
"selectConditions": "extend",
"filter": {

"eventsource": 1
}

},
"auth": "038e1d7b1735c6a5436ee9eae095879e",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": [

{
"actionid": "2",
"name": "Auto discovery. Linux servers.",
"eventsource": "1",
"evaltype": "0",
"status": "1",
"esc_period": "0",
"def_shortdata": "",
"def_longdata": "",
"recovery_msg": "0",
"r_shortdata": "",
"r_longdata": "",
"conditions": {

{
"conditionid": "2",
"actionid": "2",
"conditiontype": "10",
"operator": "0",
"value": "0"

},
{

"conditionid": "3",
"actionid": "2",
"conditiontype": "8",
"operator": "0",
"value": "9"

},
{

"conditionid": "4",
"actionid": "2",
"conditiontype": "12",
"operator": "2",
"value": "Linux"

}
},
"operations": {

{
"operationid": "1",
"actionid": "2",
"operationtype": "6",
"esc_period": "0",
"esc_step_from": "1",

435

"esc_step_to": "1",
"evaltype": "0",
"opconditions": [],
"optemplate": [

{
"operationid": "1",
"templateid": "10001"

}
]

},
{

"operationid": "2",
"actionid": "2",
"operationtype": "4",
"esc_period": "0",
"esc_step_from": "1",
"esc_step_to": "1",
"evaltype": "0",
"opconditions": [],
"opgroup": [

{
"operationid": "2",
"groupid": "2"

}
]

}
}

}
],
"id": 1

}

See also

• Action condition
• Action operation

Source

CAction::get() in frontends/php/api/classes/CAction.php.

action.update

Description

object action.update(object/array actions)

This method allows to update existing actions.

Parameters

(object/array) Action properties to be updated.

The actionid property must be defined for each action, all other properties are optional. Only the passed properties will be
updated, all others will remain unchanged.

Additionally to the standard action properties, the method accepts the following parameters.

Parameter Type Description

conditions array Action conditions to replace existing conditions.
operations array Action operations to replace existing operations.

Return values

(object) Returns an object containing the IDs of the updated actions under the actionids property.

436

Examples

Disable action

Disable action, that is, set its status to ”1”.

Request:

{
"jsonrpc": "2.0",
"method": "action.update",
"params": {

"actionid": "2",
"status": "1"

},
"auth": "038e1d7b1735c6a5436ee9eae095879e",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": {

"actionids": [
"2"

]
},
"id": 1

}

See also

• Action condition
• Action operation

Source

CAction::update() in frontends/php/api/classes/CAction.php.

Alert

This class is designed to work with alerts.

Object references:

• Alert

Available methods:

• alert.get - retrieve alerts

> Alert object

The following objects are directly related to the alert API.

Alert

Note:
Alerts are created by the Zabbix server and cannot be modified via the API.

The alert object contains information about whether certain action operations have been executed successfully. It has the following
properties.

Property Type Description

alertid string ID of the alert.

437

Property Type Description

actionid string ID of the action that generated the alert.
alerttype integer Alert type.

Possible values:
0 - message;
1 - remote command.

clock timestamp Time when the alert was generated.
error string Error text if there are problems sending a message or

running a command.
esc_step integer Action escalation step during which the alert was

generated.
eventid string ID of the event that triggered the action.
mediatypeid string ID of the media type that was used to send the message.
message text Message text. Used for message alerts.
retries integer Number of times Zabbix tried to send the message.
sendto string Address, user name or other identifier of the recipient.

Used for message alerts.
status integer Status indicating whether the action operation has been

executed successfully.

Possible values for message alerts:
0 - message not sent;
1 - message sent;
2 - failed after a number of retries.

Possible values for command alerts:
1 - command run;
2 - tried to run the command on the Zabbix agent but it
was unavailable.

subject string Message subject. Used for message alerts.
userid string ID of the user that the message was sent to.

alert.get

Description

integer/array alert.get(object parameters)

The method allows to retrieve alerts according to the given parameters.

Parameters

(object) Parameters defining the desired output.

The method supports the following parameters.

Parameter Type Description

alertids string/array Return only alerts with the given IDs.
actionids string/array Return only alerts generated by the given actions.
eventids string/array Return only alerts generated by the given events.
groupids string/array Return only alerts generated by objects from the

given host groups.
hostids string/array Return only alerts generated by objects from the

given hosts.
mediatypeids string/array Return only message alerts that used the given media

types.
objectids string/array Return only alerts generated by the given objects
userids string/array Return only message alerts that were sent to the

given users.

438

Parameter Type Description

eventobject integer Return only alerts generated by events related to
objects of the given type.

Refer to the event ”object” property for a list of
supported object types.

Default: 0 - trigger.
eventsource integer Return only alerts generated by events of the given

type.

Refer to the event ”source” property for a list of
supported event types.

Default: 0 - trigger events.
time_from timestamp Return only alerts that have been generated after the

given time.
time_till timestamp Return only alerts that have been generated before

the given time.
selectHosts query Return the hosts that triggered the action operation in

the hosts property.
selectMediatypes query Return the media type that was used for the message

alert as an array in the mediatypes property.
selectUsers query Return the user that the message was addressed to as

an array in the users property.
sortfield string/array Sort the result by the given properties.

Possible values are: alertid, clock, eventid and
status.

countOutput flag These parameters being common for all get methods
are described in the reference commentary.

editable boolean
excludeSearch flag
filter object
limit integer
nodeids string/array
output query
preservekeys flag
search object
searchByAny boolean
searchWildcardsEnabled boolean
sortorder string/array
startSearch flag
triggerids
(deprecated)

string/array Return only alerts generated by the given triggers.

Return values

(integer/array) Returns either:

• an array of objects;
• the count of retrieved objects, if the countOutput parameter has been used.

Examples

Retrieve alerts by action ID

Retrieve all alerts generated by action ”3”.

Request:

{
"jsonrpc": "2.0",
"method": "alert.get",
"params": {

439

"output": "extend",
"actionids": "3"

},
"auth": "038e1d7b1735c6a5436ee9eae095879e",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": [

{
"alertid": "1",
"actionid": "3",
"eventid": "21243",
"userid": "1",
"clock": "1362128008",
"mediatypeid": "1",
"sendto": "support@company.com",
"subject": "PROBLEM: Zabbix agent on Linux server is unreachable for 5 minutes: ",
"message": "Trigger: Zabbix agent on Linux server is unreachable for 5 minutes: \nTrigger status: PROBLEM\nTrigger severity: Not classified",
"status": "0",
"retries": "3",
"error": "",
"esc_step": "1",
"alerttype": "0"

}
],
"id": 1

}

See also

• Host
• Media type
• User

Source

CAlert::get() in frontends/php/api/classes/CAlert.php.

API info

This class is designed to retrieve meta information about the API.

Available methods:

• apiinfo.version - retrieving the version of the Zabbix API

apiinfo.version

Description

string apiinfo.version(array)

This method allows to retrieve the version of the Zabbix API.

Parameters

Attention:
This method is available to unauthenticated users and should be called without the auth parameter in the JSON-RPC
request. Starting from Zabbix 2.4 the method will return an error if the auth parameter is given.

(array) The method accepts an empty array.

440

Return values

(string) Returns the version of the Zabbix API.

Note:
Starting from Zabbix 2.0.4 the version of the API matches the version of Zabbix.

Examples

Retrieving the version of the API

Retrieve the version of the Zabbix API.

Request:

{
"jsonrpc": "2.0",
"method": "apiinfo.version",
"params": [],
"id": 1,
"auth": "16a46baf181ef9602e1687f3110abf8a"

}

Response:

{
"jsonrpc": "2.0",
"result": "2.2.5",
"id": 1

}

Source

CAPIInfo::version() in frontends/php/api/classes/CAPIInfo.php.

Application

This class is designed to work with applications.

Object references:

• Application

Available methods:

• application.create - creating new applications
• application.delete - deleting applications
• application.exists - checking if applications exist
• application.get - retrieving application
• application.massadd - updating application
• application.update - adding items to applications

> Application object

The following objects are directly related to the application API.

Application

The application object has the following properties.

Property Type Description

applicationid string (readonly) ID of the application.
hostid
(required)

string ID of the host that the application belongs to.

Cannot be updated.

441

Property Type Description

name
(required)

string Name of the application

templateids array (readonly) IDs of the parent template applications.

application.create

Description

object application.create(object/array applications)

This method allows to create new applications.

Parameters

(object/array) Applications to create.

The method accepts applications with the standard application properties.

Return values

(object) Returns an object containing the IDs of the created applications under the applicationids property. The order of
the returned IDs matches the order of the passed applications.

Examples

Creating an application

Create an application to store SNMP items.

Request:

{
"jsonrpc": "2.0",
"method": "application.create",
"params": {

"name": "SNMP Items",
"hostid": "10050"

},
"auth": "038e1d7b1735c6a5436ee9eae095879e",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": {

"applicationids": [
"356"

]
},
"id": 1

}

Source

CApplication::create() in frontends/php/api/classes/CApplication.php.

application.delete

Description

object application.delete(array applicationIds)

This method allows to delete applications.

Parameters

(array) IDs of the applications to delete.

442

Return values

(object) Returns an object containing the IDs of the deleted applications under the applicationids property.

Examples

Deleting multiple applications

Delete two applications.

Request:

{
"jsonrpc": "2.0",
"method": "application.delete",
"params": [

"356",
"358"

],
"auth": "3a57200802b24cda67c4e4010b50c065",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": {

"applicationids": [
"356",
"358"

]
},
"id": 1

}

Source

CApplication::delete() in frontends/php/api/classes/CApplication.php.

application.exists

Description

boolean application.exists(object filter)

This method checks if at least one application that matches the given filter criteria exists.

Parameters

(object) Criteria to search by.

The following parameters are supported as search criteria.

Parameter Type Description

hostid string/array IDs of the hosts the applications must belong to.
name string/array Names of the applications
node string Name of the node the applications must belong to.

This will override the nodeids parameter.
nodeids string/array ID of the node the applications must belong to.

Return values

(boolean) Returns true if at least one application that matches the given filter criteria exists.

Examples

Check application on host

443

Check if application ”Memory” exists on host ”10084.”

Request:

{
"jsonrpc": "2.0",
"method": "application.exists",
"params": {

"hostid": "10084",
"name": "Memory"

},
"auth": "3a57200802b24cda67c4e4010b50c065",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": true,
"id": 1

}

Source

CApplication::exists() in frontends/php/api/classes/CApplication.php.

application.get

Description

integer/array application.get(object parameters)

The method allows to retrieve applications according to the given parameters.

Parameters

(object) Parameters defining the desired output.

The method supports the following parameters.

Parameter Type Description

applicationids string/array Return only applications with the given IDs.
groupids string/array Return only applications that belong to hosts from the

given host groups.
hostids string/array Return only applications that belong to the given

hosts.
inherited boolean If set to true return only applications inherited from a

template.
itemids string/array Return only applications that contain the given items.
templated boolean If set to true return only applications that belong to

templates.
templateids string/array Return only applications that belong to the given

templates.
expandData flag Return the name of the host that the application

belongs to as a property of the application object.
selectHosts query Return the hosts that the application belongs to in the

hosts property.
selectItems query Return the items contained in the application in the

items property.
sortfield string/array Sort the result by the given properties.

Possible values are: applicationid and name.
countOutput flag These parameters being common for all get methods

are described in detail in the reference commentary
page.

editable boolean

444

Parameter Type Description

excludeSearch flag
filter object
limit integer
nodeids string/array
output query
preservekeys flag
search object
searchByAny boolean
searchWildcardsEnabled boolean
sortorder string/array
startSearch flag

Return values

(integer/array) Returns either:

• an array of objects;
• the count of retrieved objects, if the countOutput parameter has been used.

Examples

Retrieving applications from a host

Retrieve all applications from a host sorted by name.

Request:

{
"jsonrpc": "2.0",
"method": "application.get",
"params": {

"output": "extend",
"hostids": "10001",
"sortfield": "name"

},
"auth": "038e1d7b1735c6a5436ee9eae095879e",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": [

{
"applicationid": "13",
"hostid": "10001",
"name": "CPU",
"templateids": []

},
{

"applicationid": "5",
"hostid": "10001",
"name": "Filesystems",
"templateids": []

},
{

"applicationid": "21",
"hostid": "10001",
"name": "General",
"templateids": []

},
{

"applicationid": "15",
"hostid": "10001",

445

"name": "Memory",
"templateids": []

},
],
"id": 1

}

See also

• Host
• Item

Source

CApplication::get() in frontends/php/api/classes/CApplication.php.

application.massadd

Description

object application.massadd(object parameters)

This method allows to simultaneously add multiple items to the given applications.

Parameters

(object) Parameters containing the IDs of the applications to update and the items to add to the applications.

The method accepts the following parameters.

Parameter Type Description

applications
(required)

array/object Applications to be updated.

The applications must have the applicationid
property defined.

items array/object Items to add to the given applications.

The items must have the itemid property defined.

Return values

(object) Returns an object containing the IDs of the updated applications under the applicationids property.

Examples

Adding items to multiple applications

Add the given items to two applications.

Request:

{
"jsonrpc": "2.0",
"method": "application.massadd",
"params": {

"applications": [
{

"applicationid": "247"
},
{

"applicationid": "246"
}

],
"items": [

{
"itemid": "22800"

},
{

446

"itemid": "22801"
}

]
},
"auth": "038e1d7b1735c6a5436ee9eae095879e",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": {

"applicationids": [
"247",
"246"

]
},
"id": 1

}

See also

• Item

Source

CApplication::massAdd() in frontends/php/api/classes/CApplication.php.

application.update

Description

object application.update(object/array applications)

This method allows to update existing applications.

Parameters

(object/array) Application properties to be updated.

The applicationid property must be defined for each application, all other properties are optional. Only the passed properties
will be updated, all others will remain unchanged.

Return values

(object) Returns an object containing the IDs of the updated applications under the applicationids property.

Examples

Changing the name of an application

Change the name of the application to ”Processes and performance”.

Request:

{
"jsonrpc": "2.0",
"method": "application.update",
"params": {

"applicationid": "13",
"name": "Processes and performance"

},
"auth": "038e1d7b1735c6a5436ee9eae095879e",
"id": 1

}

Response:

{
"jsonrpc": "2.0",

447

"result": {
"applicationids": [

"13"
]

},
"id": 1

}

Source

CApplication::update() in frontends/php/api/classes/CApplication.php.

Configuration

This class is designed to export and import Zabbix configuration data.

Available methods:

• configuration.export - exporting the configuration
• configuration.import - importing the configuration

configuration.export

Description

string configuration.export(object parameters)

This method allows to export configuration data as a serialized string.

Parameters

(object) Parameters defining the objects to be exported and the format to use.

Parameter Type Description

format
(required)

string Format in which the data must be exported.

Possible values:
json - JSON;
xml - XML.

options
(required)

object Objects to be exported.

The options object has the following parameters:
groups - (array) IDs of host groups to export;
hosts - (array) IDs of hosts to export;
images - (array) IDs of images to export;
maps - (array) IDs of maps to export.
screens - (array) IDs of screens to export;
templates - (array) IDs of templates to export;

Return values

(string) Returns a serialized string containing the requested configuration data.

Examples

Exporting a host

Export the configuration of a host as an XML string.

Request:

{
"jsonrpc": "2.0",
"method": "configuration.export",

448

"params": {
"options": {

"hosts": [
"10161"

]
},
"format": "xml"

},
"auth": "038e1d7b1735c6a5436ee9eae095879e",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": "<!--?xml version=\"1.0\" encoding=\"UTF-8\"?-→\n<zabbix_export><version>2.0</version><date>2012-04-18T11:20:14Z</date><groups><group><name>Zabbix servers</name></group></groups><hosts><host><host>Export host</host><name>Export host</name><proxyid>0</proxyid><status>0</status><ipmi_authtype>-1</ipmi_authtype><ipmi_privilege>2</ipmi_privilege><ipmi_username></ipmi_username><ipmi_password></ipmi_password><templates></templates><groups><group><name>Zabbix servers</name></group></groups><interfaces><interface><default>1</default><type>1</type><useip>1</useip><ip>127.0.0.1</ip><dns></dns><port>10050</port><interface_ref>if1</interface_ref></interface></interfaces><applications><application><name>Application</name></application></applications><items><item><name>Item</name><type>0</type><snmp_community></snmp_community><multiplier>0</multiplier><snmp_oid></snmp_oid><key>item.key</key><delay>30</delay><history>90</history><trends>365</trends><status>0</status><value_type>3</value_type><allowed_hosts></allowed_hosts><units></units><delta>0</delta><snmpv3_securityname></snmpv3_securityname><snmpv3_securitylevel>0</snmpv3_securitylevel><snmpv3_authpassphrase></snmpv3_authpassphrase><snmpv3_privpassphrase></snmpv3_privpassphrase><formula>1</formula><delay_flex></delay_flex><params></params><ipmi_sensor></ipmi_sensor><data_type>0</data_type><authtype>0</authtype><username></username><password></password><publickey></publickey><privatekey></privatekey><port></port><description></description><inventory_link>0</inventory_link><applications><application><name>Application</name></application></applications><valuemap></valuemap><interface_ref>if1</interface_ref></item></items><discovery_rules></discovery_rules><macros></macros><inventory></inventory></host></hosts><triggers><trigger><expression>{Export host:item.key.last()}=0</expression><name>Trigger</name><url></url><status>0</status><priority>2</priority><description>Host trigger</description><type>0</type><dependencies></dependencies></trigger></triggers><graphs><graph><name>Graph</name><width>900</width><height>200</height><yaxismin>0.0000</yaxismin><yaxismax>100.0000</yaxismax><show_work_period>1</show_work_period><show_triggers>1</show_triggers><type>0</type><show_legend>1</show_legend><show_3d>0</show_3d><percent_left>0.0000</percent_left><percent_right>0.0000</percent_right><ymin_type_1>0</ymin_type_1><ymax_type_1>0</ymax_type_1><ymin_item_1>0</ymin_item_1><ymax_item_1>0</ymax_item_1><graph_items><graph_item><sortorder>0</sortorder><drawtype>0</drawtype><color>C80000</color><yaxisside>0</yaxisside><calc_fnc>7</calc_fnc><type>0</type><item><host>Export host</host><key>item.key</key></item></graph_item></graph_items></graph></graphs></zabbix_export>\n",
"id": 1

}

Source

CConfiguration::export() in frontends/php/api/classes/CConfiguration.php.

configuration.import

Description

boolean configuration.import(object parameters)

This method allows to import configuration data from a serialized string.

Parameters

(object) Parameters containing the data to import and rules how the data should be handled.

Parameter Type Description

format
(required)

string Format of the serialized string.

Possible values:
json - JSON;
xml - XML.

source
(required)

string Serialized string containing the configuration data.

rules
(required)

object Rules on how new and existing objects should be
imported.

The rules parameter is described in detail in the
table below.

Note:
If no rules are given, the configuration will not be updated.

The rules object supports the following parameters.

449

Parameter Type Description

applications object Rules on how to import applications.

Supported parameters:
createMissing - (boolean) if set to true, new
applications will be created; default: false;
updateExisting - (boolean) if set to true,
existing applications will be updated; default: false.

discoveryRules object Rules on how to import LLD rules.

Supported parameters:
createMissing - (boolean) if set to true, new
LLD rules will be created; default: false;
updateExisting - (boolean) if set to true,
existing LLD rules will be updated; default: false.

graphs object Rules on how to import graphs.

Supported parameters:
createMissing - (boolean) if set to true, new
graphs will be created; default: false;
updateExisting - (boolean) if set to true,
existing graphs will be updated; default: false.

groups object Rules on how to import host groups.

Supported parameters:
createMissing - (boolean) if set to true, new
host groups will be created; default: false.

hosts object Rules on how to import hosts.

Supported parameters:
createMissing - (boolean) if set to true, new
hosts will be created; default: false;
updateExisting - (boolean) if set to true,
existing hosts will be updated; default: false.

images object Rules on how to import images.

Supported parameters:
createMissing - (boolean) if set to true, new
images will be created; default: false;
updateExisting - (boolean) if set to true,
existing images will be updated; default: false.

items object Rules on how to import items.

Supported parameters:
createMissing - (boolean) if set to true, new
items will be created; default: false;
updateExisting - (boolean) if set to true,
existing items will be updated; default: false.

maps object Rules on how to import maps.

Supported parameters:
createMissing - (boolean) if set to true, new
maps will be created; default: false;
updateExisting - (boolean) if set to true,
existing maps will be updated; default: false.

screens object Rules on how to import screens.

Supported parameters:
createMissing - (boolean) if set to true, new
screens will be created; default: false;
updateExisting - (boolean) if set to true,
existing screens will be updated; default: false.

450

Parameter Type Description

templateLinkage object Rules on how to import template links.

Supported parameters:
createMissing - (boolean) if set to true, new
links between templates and host will be created;
default: false.

templates object Rules on how to import templates.

Supported parameters:
createMissing - (boolean) if set to true, new
templates will be created; default: false;
updateExisting - (boolean) if set to true,
existing templates will be updated; default: false.

templateScreens object Rules on how to import template screens.

Supported parameters:
createMissing - (boolean) if set to true, new
template screens will be created; default: false;
updateExisting - (boolean) if set to true,
existing template screens will be updated; default:
false.

triggers object Rules on how to import triggers.

Supported parameters:
createMissing - (boolean) if set to true, new
triggers will be created; default: false;
updateExisting - (boolean) if set to true,
existing triggers will be updated; default: false.

Return values

(boolean) Returns true if importing has been successful.

Examples

Importing hosts and items

Import the host and items contained in the XML string. Leave everything else unchanged.

Request:

{
"jsonrpc": "2.0",
"method": "configuration.import",
"params": {

"format": "xml",
"rules": {

"hosts": {
"createMissing": true,
"updateExisting": true

},
"items": {

"createMissing": true,
"updateExisting": true

}
},
"source": "<!--?xml version=\"1.0\" encoding=\"UTF-8\"?-→<zabbix_export><version>2.0</version><date>2012-04-18T11:20:14Z</date><groups><group><name>Zabbix servers</name></group></groups><hosts><host><host>Export host</host><name>Export host</name><proxyid>0</proxyid><status>0</status><ipmi_authtype>-1</ipmi_authtype><ipmi_privilege>2</ipmi_privilege><ipmi_username></ipmi_username><ipmi_password></ipmi_password><templates></templates><groups><group><name>Zabbix servers</name></group></groups><interfaces><interface><default>1</default><type>1</type><useip>1</useip><ip>127.0.0.1</ip><dns></dns><port>10050</port><interface_ref>if1</interface_ref></interface></interfaces><applications><application><name>Application</name></application></applications><items><item><name>Item</name><type>0</type><snmp_community></snmp_community><multiplier>0</multiplier><snmp_oid></snmp_oid><key>item.key</key><delay>30</delay><history>90</history><trends>365</trends><status>0</status><value_type>3</value_type><allowed_hosts></allowed_hosts><units></units><delta>0</delta><snmpv3_securityname></snmpv3_securityname><snmpv3_securitylevel>0</snmpv3_securitylevel><snmpv3_authpassphrase></snmpv3_authpassphrase><snmpv3_privpassphrase></snmpv3_privpassphrase><formula>1</formula><delay_flex></delay_flex><params></params><ipmi_sensor></ipmi_sensor><data_type>0</data_type><authtype>0</authtype><username></username><password></password><publickey></publickey><privatekey></privatekey><port></port><description></description><inventory_link>0</inventory_link><applications><application><name>Application</name></application></applications><valuemap></valuemap><interface_ref>if1</interface_ref></item></items><discovery_rules></discovery_rules><macros></macros><inventory></inventory></host></hosts><triggers><trigger><expression>{Export host:item.key.last()}=0</expression><name>Trigger</name><url></url><status>0</status><priority>2</priority><description>Host trigger</description><type>0</type><dependencies></dependencies></trigger></triggers><graphs><graph><name>Graph</name><width>900</width><height>200</height><yaxismin>0.0000</yaxismin><yaxismax>100.0000</yaxismax><show_work_period>1</show_work_period><show_triggers>1</show_triggers><type>0</type><show_legend>1</show_legend><show_3d>0</show_3d><percent_left>0.0000</percent_left><percent_right>0.0000</percent_right><ymin_type_1>0</ymin_type_1><ymax_type_1>0</ymax_type_1><ymin_item_1>0</ymin_item_1><ymax_item_1>0</ymax_item_1><graph_items><graph_item><sortorder>0</sortorder><drawtype>0</drawtype><color>C80000</color><yaxisside>0</yaxisside><calc_fnc>7</calc_fnc><type>0</type><item><host>Export host</host><key>item.key</key></item></graph_item></graph_items></graph></graphs></zabbix_export>"

},
"auth": "038e1d7b1735c6a5436ee9eae095879e",
"id": 1

}

Response:

451

{
"jsonrpc": "2.0",
"result": true,
"id": 1

}

Source

CConfiguration::import() in frontends/php/api/classes/CConfiguration.php.

Discovered host

This class is designed to work with discovered hosts.

Object references:

• Discovered host

Available methods:

• dhost.exists - check if a discovered host exists
• dhost.get - retrieve discovered hosts

> Discovered host object

The following objects are directly related to the dhost API.

Discovered host

Note:
Discovered host are created by the Zabbix server and cannot be modified via the API.

The discovered host object contains information about a host discovered by a network discovery rule. It has the following properties.

Property Type Description

dhostid string ID of the discovered host.
druleid string ID of the discovery rule that detected the host.
lastdown timestamp Time when the discovered host last went down.
lastup timestamp Time when the discovered host last went up.
status integer Whether the discovered host is up or down. A host is up

if it has at least one active discovered service.

Possible values:
0 - host up;
1 - host down.

dhost.exists

Description

boolean dhost.exists(object filter)

This method checks if at least one discovered host that matches the given filter criteria exists.

Parameters

(object) Criteria to search by.

The following parameters are supported as search criteria.

Parameter Type Description

dhostid string/array IDs of the discovered hosts.

452

Parameter Type Description

node string Name of the node the discovered hosts must belong
to.

This will override the nodeids parameter.
nodeids string/array IDs of the nodes the discovered hosts must belong to.

Return values

(boolean) Returns true if at least one discovered host that matches the given filter criteria exists.

Examples

Check multiple discovered hosts

Check if discovered hosts with IDs ”1” and ”2” exists.

Request:

{
"jsonrpc": "2.0",
"method": "dhost.exists",
"params": {

"dhostid": [
"1",
"2"

]
},
"auth": "3a57200802b24cda67c4e4010b50c065",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": true,
"id": 1

}

Source

CDHost::exists() in frontends/php/api/classes/CDHost.php.

dhost.get

Description

integer/array dhost.get(object parameters)

The method allows to retrieve discovered hosts according to the given parameters.

Parameters

(object) Parameters defining the desired output.

The method supports the following parameters.

Parameter Type Description

dhostids string/array Return only discovered hosts with the given IDs.
druleids string/array Return only discovered hosts that have been created

by the given discovery rules.
dserviceids string/array Return only discovered hosts that are running the

given services.
selectDRules query Return the discovery rule that detected the host as an

array in the drules property.

453

Parameter Type Description

selectDServices query Return the discovered services running on the host in
the dservices property.

Supports count.
limitSelects integer Limits the number of records returned by subselects.

Applies to the following subselects:
selectDServices - results will be sorted by
dserviceid.

sortfield string/array Sort the result by the given properties.

Possible values are: dhostid and druleid.
countOutput flag These parameters being common for all get methods

are described in detail in the reference commentary.
editable boolean
excludeSearch flag
filter object
limit integer
nodeids string/array
output query
preservekeys flag
search object
searchByAny boolean
searchWildcardsEnabled boolean
sortorder string/array
startSearch flag

Return values

(integer/array) Returns either:

• an array of objects;
• the count of retrieved objects, if the countOutput parameter has been used.

Examples

Retrieve discovered hosts by discovery rule

Retrieve all hosts and the discovered services they are running that have been detected by discovery rule ”4”.

Request:

{
"jsonrpc": "2.0",
"method": "dhost.get",
"params": {

"output": "extend",
"selectDServices": "extend",
"druleids": "4"

},
"auth": "038e1d7b1735c6a5436ee9eae095879e",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": [

{
"dservices": [

{
"dserviceid": "1",
"dhostid": "1",
"type": "4",

454

"key_": "",
"value": "",
"port": "80",
"status": "0",
"lastup": "1337697227",
"lastdown": "0",
"dcheckid": "5",
"ip": "192.168.1.1",
"dns": "station.company.lan"

}
],
"dhostid": "1",
"druleid": "4",
"status": "0",
"lastup": "1337697227",
"lastdown": "0"

},
{

"dservices": [
{

"dserviceid": "2",
"dhostid": "2",
"type": "4",
"key_": "",
"value": "",
"port": "80",
"status": "0",
"lastup": "1337697234",
"lastdown": "0",
"dcheckid": "5",
"ip": "192.168.1.4",
"dns": "john.company.lan"

}
],
"dhostid": "2",
"druleid": "4",
"status": "0",
"lastup": "1337697234",
"lastdown": "0"

},
{

"dservices": [
{

"dserviceid": "3",
"dhostid": "3",
"type": "4",
"key_": "",
"value": "",
"port": "80",
"status": "0",
"lastup": "1337697234",
"lastdown": "0",
"dcheckid": "5",
"ip": "192.168.1.26",
"dns": "printer.company.lan"

}
],
"dhostid": "3",
"druleid": "4",
"status": "0",
"lastup": "1337697234",
"lastdown": "0"

455

},
{

"dservices": [
{

"dserviceid": "4",
"dhostid": "4",
"type": "4",
"key_": "",
"value": "",
"port": "80",
"status": "0",
"lastup": "1337697234",
"lastdown": "0",
"dcheckid": "5",
"ip": "192.168.1.7",
"dns": "mail.company.lan"

}
],
"dhostid": "4",
"druleid": "4",
"status": "0",
"lastup": "1337697234",
"lastdown": "0"

}
],
"id": 1

}

See also

• Discovered service
• Discovery rule

Source

CDHost::get() in frontends/php/api/classes/CDHost.php.

Discovered service

This class is designed to work with discovered services.

Object references:

• Discovered service

Available methods:

• dservice.exists - check if a discovered service exists
• dservice.get - retrieve discovered services

> Discovered service object

The following objects are directly related to the dservice API.

Discovered service

Note:
Discovered services are created by the Zabbix server and cannot be modified via the API.

The discovered service object contains information about a service discovered by a network discovery rule on a host. It has the
following properties.

456

Property Type Description

dserviceid string ID of the discovered service.
dcheckid string ID of the discovery check used to detect the service.
dhostid string ID of the discovered host running the service.
dns string DNS of the host running the service.
ip string IP address of the host running the service.
key_ string Key used by a Zabbix agent discovery check to locate

the service.
lastdown timestamp Time when the discovered service last went down.
lastup timestamp Time when the discovered service last went up.
port integer Service port number.
status integer Status of the service.

Possible values:
0 - service up;
1 - service down.

type integer Type of discovered service. The type of service matches
the type of the discovery check used to detect the
service.

Refer to the discovery check ”type” property for a list of
supported types.

value string Value returned by the service when performing a Zabbix
agent, SNMPv1, SNMPv2 or SNMPv3 discovery check.

dservice.exists

Description

boolean dservice.exists(object filter)

This method checks if at least one discovered service that matches the given filter criteria exists.

Parameters

(object) Criteria to search by.

The following parameters are supported as search criteria.

Parameter Type Description

dserviceid string/array IDs of discovered services.
node string Name of the node the discovered services must

belong to.

This will override the nodeids parameter.
nodeids string/array IDs of the nodes the discovered services must belong

to.

Return values

(boolean) Returns true if at least one discovered service that matches the given filter criteria exists.

Examples

Check multiple discovered services

Check if discovered services with IDs ”121” and ”73” exist.

Request:

{
"jsonrpc": "2.0",
"method": "dservice.exists",
"params": {

"dserviceid": [

457

"121",
"73"

]
},
"auth": "3a57200802b24cda67c4e4010b50c065",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": true,
"id": 1

}

Source

CDService::exists() in frontends/php/api/classes/CDService.php.

dservice.get

Description

integer/array dservice.get(object parameters)

The method allows to retrieve discovered services according to the given parameters.

Parameters

(object) Parameters defining the desired output.

The method supports the following parameters.

Parameter Type Description

dserviceids string/array Return only discovered services with the given IDs.
dhostids string/array Return only discovered services that belong to the

given discovered hosts.
dcheckids string/array Return only discovered services that have been

detected by the given discovery checks.
druleids string/array Return only discovered services that have been

detected by the given discovery rules.
selectDRules query Return the discovery rule that detected the service as

an array in the drules property.
selectDHosts query Return the discovered host that service belongs to as

an array in the dhosts property.
selectHosts query Return the hosts with the same IP address as the

service in the hosts property.

Supports count.
limitSelects integer Limits the number of records returned by subselects.

Applies to the following subselects:
selectHosts - result will be sorted by hostid.

sortfield string/array Sort the result by the given properties.

Possible values are: dserviceid, dhostid and ip.
countOutput flag These parameters being common for all get methods

are described in detail in the reference commentary.
editable boolean
excludeSearch flag
filter object
limit integer
nodeids string/array
output query
preservekeys flag

458

Parameter Type Description

search object
searchByAny boolean
searchWildcardsEnabled boolean
sortorder string/array
startSearch flag

Return values

(integer/array) Returns either:

• an array of objects;
• the count of retrieved objects, if the countOutput parameter has been used.

Examples

Retrieve services discovered on a host

Retrieve all discovered services detected on discovered host ”11”.

Request:

{
"jsonrpc": "2.0",
"method": "dservice.get",
"params": {

"output": "extend",
"dhostids": "11"

},
"auth": "038e1d7b1735c6a5436ee9eae095879e",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": [

{
"dserviceid": "12",
"dhostid": "11",
"type": "4",
"key_": "",
"value": "",
"port": "80",
"status": "1",
"lastup": "0",
"lastdown": "1348650607",
"dcheckid": "5",
"ip": "192.168.1.134",
"dns": "john.local"

},
{

"dserviceid": "13",
"dhostid": "11",
"type": "3",
"key_": "",
"value": "",
"port": "21",
"status": "1",
"lastup": "0",
"lastdown": "1348650610",
"dcheckid": "6",
"ip": "192.168.1.134",
"dns": "john.local"

}

459

],
"id": 1

}

See also

• Discovered host
• Discovery check
• Host

Source

CDService::get() in frontends/php/api/classes/CDService.php.

Discovery check

This class is designed to work with discovery checks.

Object references:

• Discovery check

Available methods:

• dcheck.get - retrieve discovery checks

> Discovery check object

The following objects are directly related to the dcheck API.

Discovery check

The discovery check object defines a specific check performed by a network discovery rule. It has the following properties.

Property Type Description

dcheckid string (readonly) ID of the discovery check.
druleid string (readonly) ID of the discovery rule that the check

belongs to.
key_ string The value of this property differs depending on the type

of the check:
- key to query for Zabbix agent checks, required;
- SNMP OID for SNMPv1, SNMPv2 and SNMPv3 checks,
required.

ports string One or several port ranges to check separated by
commas. Used for all checks except for ICMP.

Default: 0.
snmp_community string SNMP community.

Required for SNMPv1 and SNMPv2 agent checks.
snmpv3_authpassphrase string Auth passphrase used for SNMPv3 agent checks with

security level set to authNoPriv or authPriv.
snmpv3_authprotocol integer Authentication protocol used for SNMPv3 agent checks

with security level set to authNoPriv or authPriv.

Possible values:
0 - (default) MD5;
1 - SHA.

snmpv3_contextname string SNMPv3 context name. Used only by SNMPv3 checks.
snmpv3_privpassphrase string Priv passphrase used for SNMPv3 agent checks with

security level set to authPriv.

460

Property Type Description

snmpv3_privprotocol integer Privacy protocol used for SNMPv3 agent checks with
security level set to authPriv.

Possible values:
0 - (default) DES;
1 - AES.

snmpv3_securitylevel string Security level used for SNMPv3 agent checks.

Possible values:
0 - noAuthNoPriv;
1 - authNoPriv;
2 - authPriv.

snmpv3_securityname string Security name used for SNMPv3 agent checks.
type
(required)

integer Type of check.

Possible values:
0 - SSH;
1 - LDAP;
2 - SMTP;
3 - FTP;
4 - HTTP;
5 - POP;
6 - NNTP;
7 - IMAP;
8 - TCP;
9 - Zabbix agent;
10 - SNMPv1 agent;
11 - SNMPv2 agent;
12 - ICMP ping;
13 - SNMPv3 agent;
14 - HTTPS;
15 - Telnet.

uniq integer Whether to use this check as a device uniqueness
criteria. Only a single unique check can be configured
for a discovery rule. Used for Zabbix agent, SNMPv1,
SNMPv2 and SNMPv3 agent checks.

Possible values:
0 - (default) do not use this check as a uniqueness
criteria;
1 - use this check as a uniqueness criteria.

dcheck.get

integer/array dcheck.get(object parameters)

The method allows to retrieve discovery checks according to the given parameters.

Parameters

(object) Parameters defining the desired output.

The method supports the following parameters.

Parameter Type Description

dcheckids string/array Return only discovery checks with the given IDs.
druleids string/array Return only discovery checks that belong to the given

discovery rules.
dserviceids string/array Return only discovery checks that have detected the

given discovered services.

461

Parameter Type Description

sortfield string/array Sort the result by the given properties.

Possible values are: dcheckid and druleid.
countOutput flag These parameters being common for all get methods

are described in detail in the reference commentary.
editable boolean
excludeSearch flag
filter object
limit integer
nodeids string/array
output query
preservekeys flag
search object
searchByAny boolean
searchWildcardsEnabled boolean
sortorder string/array
startSearch flag

Return values

(integer/array) Returns either:

• an array of objects;
• the count of retrieved objects, if the countOutput parameter has been used.

Examples

Retrieve discovery checks for a discovery rule

Retrieve all discovery checks used by discovery rule ”6”.

Request:

{
"jsonrpc": "2.0",
"method": "dcheck.get",
"params": {

"output": "extend",
"dcheckids": "6"

},
"auth": "038e1d7b1735c6a5436ee9eae095879e",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": [

{
"dcheckid": "6",
"druleid": "4",
"type": "3",
"key_": "",
"snmp_community": "",
"ports": "21",
"snmpv3_securityname": "",
"snmpv3_securitylevel": "0",
"snmpv3_authpassphrase": "",
"snmpv3_privpassphrase": "",
"uniq": "0",
"snmpv3_authprotocol": "0",
"snmpv3_privprotocol": "0"

}
],

462

"id": 1
}

Source

CDCheck::get() in frontends/php/api/classes/CDCheck.php.

Discovery rule

This class is designed to work with network discovery rules.

Note:
This API is meant to work with network discovery rules. For the low-level discovery rules see the LLD rule API.

Object references:

• Discovery rule

Available methods:

• drule.create - create new discovery rules
• drule.delete - delete discovery rules
• drule.exists - check if a discovery rule exists
• drule.get - retrieve discovery rules
• drule.isreadable - check if discovery rules are readable
• drule.iswritable - check if discovery rules are writable
• drule.update - update discovery rules

> Discovery rule object

The following objects are directly related to the drule API.

Discovery rule

The discovery rule object defines a network discovery rule. It has the following properties.

Property Type Description

druleid string (readonly) ID of the discovery rule.
iprange
(required)

string One or several IP ranges to check separated by commas.

Refer to the network discovery configuration section for
more information on supported formats of IP ranges.

name
(required)

string Name of the discovery rule.

delay integer Execution interval of the discovery rule in seconds.

Default: 3600.
nextcheck timestamp (readonly) Time when the discovery rule will be executed

next.
proxy_hostid string ID of the proxy used for discovery.
status integer Whether the discovery rule is enabled.

Possible values:
0 - (default) enabled;
1 - disabled.

drule.create

Description

object drule.create(object/array discroveryRules)

463

This method allows to create new discrovery rules.

Parameters

(object/array) Discrovery rules to create.

Additionally to the standard discrovery rule properties, the method accepts the following parameters.

Parameter Type Description

dchecks
(required)

array Discovery checks to create for the discovery rule.

Return values

(object) Returns an object containing the IDs of the created discrovery rules under the druleids property. The order of the
returned IDs matches the order of the passed discrovery rules.

Examples

Create a discovery rule

Create a discovery rule to find machines running the Zabbix agent in the local network. The rule must use a single Zabbix agent
check on port 10050.

Request:

{
"jsonrpc": "2.0",
"method": "drule.create",
"params": {

"name": "Zabbix agent discovery",
"iprange": "192.168.1.1-255",
"dchecks": [

{
"type": "9",
"key_": "system.uname",
"ports": "10050",
"uniq": "0"

}
]

},
"auth": "038e1d7b1735c6a5436ee9eae095879e",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": {

"druleids": [
"6"

]
},
"id": 1

}

See also

• Discovery check

Source

CDRule::create() in frontends/php/api/classes/CDRule.php.

drule.delete

Description

464

object drule.delete(array discoveryRuleIds)

This method allows to delete discovery rules.

Parameters

(array) IDs of the discovery rules to delete.

Return values

(object) Returns an object containing the IDs of the deleted discovery rules under the druleids property.

Examples

Delete multiple discovery rules

Delete two discovery rules.

Request:

{
"jsonrpc": "2.0",
"method": "drule.delete",
"params": [

"4",
"6"

],
"auth": "3a57200802b24cda67c4e4010b50c065",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": {

"druleids": [
"4",
"6"

]
},
"id": 1

}

Source

CDRule::delete() in frontends/php/api/classes/CDRule.php.

drule.exists

Description

boolean drule.exists(object filter)

This method checks if at least one discrovery rule that matches the given filter criteria exists.

Parameters

(object) Criteria to search by.

The following parameters are supported as search criteria.

Parameter Type Description

druleids string/array IDs of discovery rules.
name string/array Names of discovery rules.
node string Name of the node the discrovery rules must belong to.

This will override the nodeids parameter.
nodeids string/array IDs of the nodes the discrovery rules must belong to.

465

Return values

(boolean) Returns true if at least one discrovery rule that matches the given filter criteria exists.

Examples

Check a discovery rule by name

Check if a discovery rule called ”Local network” exists.

Request:

{
"jsonrpc": "2.0",
"method": "drule.exists",
"params": {

"name": "Local network"
},
"auth": "3a57200802b24cda67c4e4010b50c065",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": true,
"id": 1

}

See also

• drule.isreadable
• drule.iswritable

Source

CDRule::exists() in frontends/php/api/classes/CDRule.php.

drule.get

Description

integer/array drule.get(object parameters)

The method allows to retrieve discovery rules according to the given parameters.

Parameters

(object) Parameters defining the desired output.

The method supports the following parameters.

Parameter Type Description

dhostids string/array Return only discovery rules that created the given
discovered hosts.

druleids string/array Return only discovery rules with the given IDs.
dserviceids string/array Return only discovery rules that created the given

discovered services.
selectDChecks query Return discovery checks used by the discovery rule in

the dchecks property.

Supports count.
selectDHosts query Return the discovered hosts that the discovery rule

created in the dhosts property.

Supports count.

466

Parameter Type Description

limitSelects integer Limits the number of records returned by subselects.

Applies to the following subselects:
selectDChecks - results will be sorted by
dcheckid;
selectDHosts - results will be sorted by dhostsid.

sortfield string/array Sort the result by the given properties.

Possible values are: druleid and name.
countOutput flag These parameters being common for all get methods

are described in detail in the reference commentary.
editable boolean
excludeSearch flag
filter object
limit integer
nodeids string/array
output query
preservekeys flag
search object
searchByAny boolean
searchWildcardsEnabled boolean
sortorder string/array
startSearch flag

Return values

(integer/array) Returns either:

• an array of objects;
• the count of retrieved objects, if the countOutput parameter has been used.

Examples

Retrieve all discovery rules

Retrieve all configured discovery rules and the discovery checks they use.

Request:

{
"jsonrpc": "2.0",
"method": "drule.get",
"params": {

"output": "extend",
"selectDChecks": "extend"

},
"auth": "038e1d7b1735c6a5436ee9eae095879e",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": [

{
"druleid": "2",
"proxy_hostid": "0",
"name": "Local network",
"iprange": "192.168.3.1-255",
"delay": "5",
"nextcheck": "1348754327",
"status": "0",
"dchecks": [

{

467

"dcheckid": "7",
"druleid": "2",
"type": "3",
"key_": "",
"snmp_community": "",
"ports": "21",
"snmpv3_securityname": "",
"snmpv3_securitylevel": "0",
"snmpv3_authpassphrase": "",
"snmpv3_privpassphrase": "",
"uniq": "0",
"snmpv3_authprotocol": "0",
"snmpv3_privprotocol": "0"

},
{

"dcheckid": "8",
"druleid": "2",
"type": "4",
"key_": "",
"snmp_community": "",
"ports": "80",
"snmpv3_securityname": "",
"snmpv3_securitylevel": "0",
"snmpv3_authpassphrase": "",
"snmpv3_privpassphrase": "",
"uniq": "0",
"snmpv3_authprotocol": "0",
"snmpv3_privprotocol": "0"

}
]

},
{

"druleid": "6",
"proxy_hostid": "0",
"name": "Zabbix agent discovery",
"iprange": "192.168.1.1-255",
"delay": "3600",
"nextcheck": "0",
"status": "0",
"dchecks": [

{
"dcheckid": "10",
"druleid": "6",
"type": "9",
"key_": "system.uname",
"snmp_community": "",
"ports": "10050",
"snmpv3_securityname": "",
"snmpv3_securitylevel": "0",
"snmpv3_authpassphrase": "",
"snmpv3_privpassphrase": "",
"uniq": "0",
"snmpv3_authprotocol": "0",
"snmpv3_privprotocol": "0"

}
]

}
],
"id": 1

}

See also

468

• Discovered host
• Discovery check

Source

CDRule::get() in frontends/php/api/classes/CDRule.php.

drule.isreadable

Description

boolean drule.isreadable(array discoveryRuleIds)

This method checks if the given discovery rules are available for reading.

Parameters

(array) IDs of the discovery rules to check.

Return values

(boolean) Returns true if the given discovery rules are available for reading.

Examples

Check multiple discovery rules

Check if the two discovery rules are readable.

Request:

{
"jsonrpc": "2.0",
"method": "drule.isreadable",
"params": [

"5",
"8"

],
"auth": "038e1d7b1735c6a5436ee9eae095879e",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": true,
"id": 1

}

See also

• drule.exists
• drule.iswritable

Source

CDRule::isReadable() in frontends/php/api/classes/CDRule.php.

drule.iswritable

Description

boolean drule.iswritable(array discoveryRuleIds)

This method checks if the given discovery rules are available for writing.

Parameters

(array) IDs of the discovery rules to check.

Return values

(boolean) Returns true if the given discovery rules are available for writing.

469

Examples

Check multiple discovery rules

Check if the two discovery rules are writable.

Request:

{
"jsonrpc": "2.0",
"method": "drule.iswritable",
"params": [

"5",
"8"

],
"auth": "038e1d7b1735c6a5436ee9eae095879e",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": true,
"id": 1

}

See also

• drule.isreadable
• drule.exists

Source

CDRule::isWritable() in frontends/php/api/classes/CDRule.php.

drule.update

Description

object drule.update(object/array discoveryRules)

This method allows to update existing discovery rules.

Parameters

(object/array) Discovery rule properties to be updated.

The druleid property must be defined for each discovery rule, all other properties are optional. Only the passed properties will
be updated, all others will remain unchanged.

Additionally to the standard discovery rule properties, the method accepts the following parameters.

Parameter Type Description

dchecks array Discovery checks to replace existing checks.

Return values

(object) Returns an object containing the IDs of the updated discovery rules under the druleids property.

Examples

Change the IP range of a discovery rule

Change the IP range of a discovery rule to ”192.168.2.1-255”.

Request:

{
"jsonrpc": "2.0",
"method": "drule.update",
"params": {

470

"druleid": "6",
"iprange": "192.168.2.1-255"

},
"auth": "038e1d7b1735c6a5436ee9eae095879e",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": {

"druleids": [
"6"

]
},
"id": 1

}

See also

• Discovery check

Source

CDRule::update() in frontends/php/api/classes/CDRule.php.

Event

This class is designed to work with events.

Object references:

• Event

Available methods:

• event.get - retrieving events
• event.acknowledge - acknowledging events

> Event object

The following objects are directly related to the event API.

Event

Note:
Events are created by the Zabbix server and cannot be modified via the API.

The event object has the following properties.

Property Type Description

eventid string ID of the event.
acknowledged integer Whether the event has been acknowledged.
clock timestamp Time when the event was created.
ns integer Nanoseconds when the event was created.

471

Property Type Description

object integer Type of object that is related to the event.

Possible values for trigger events:
0 - trigger.

Possible values for discovery events:
1 - discovered host;
2 - discovered service.

Possible values for auto-registration events:
3 - auto-registered host.

Possible values for internal events:
0 - trigger;
4 - item;
5 - LLD rule.

objectid string ID of the related object.
source integer Type of the event.

Possible values:
0 - event created by a trigger;
1 - event created by a discovery rule;
2 - event created by active agent auto-registration;
3 - internal event.

value integer State of the related object.

Possible values for trigger events:
0 - OK;
1 - problem.

Possible values for discovery events:
0 - host or service up;
1 - host or service down;
2 - host or service discovered;
3 - host or service lost.

Possible values for internal events:
0 - ”normal” state;
1 - ”unknown” or ”not supported” state.

This parameter is not used for active agent
auto-registration events.

event.acknowledge

Description

object event.acknowledge(object/array parameters)

This method allows to acknowledge events and add an acknowledgement message. If an event is already acknowledged, a new
message will still be added.

Attention:
Only trigger events can be acknowledged.

Parameters

(object/array) Parameters containing the IDs of the events acknowledge and a message.

472

Parameter Type Description

eventids
(required)

string/object IDs of the events to acknowledge.

message string Text of the acknowledgement message.

Return values

(object) Returns an object containing the IDs of the acknowledged events under the eventids property.

Examples

Acknowledging an event

Acknowledge a single event and leave a message.

Request:

{
"jsonrpc": "2.0",
"method": "event.acknowledge",
"params": {

"eventids": "20427",
"message": "Problem resolved."

},
"auth": "038e1d7b1735c6a5436ee9eae095879e",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": {

"eventids": [
"20427"

]
},
"id": 1

}

Source

CEvent::acknowledge() in frontends/php/api/classes/CEvent.php.

event.get

Description

integer/array event.get(object parameters)

The method allows to retrieve events according to the given parameters.

Attention:
Since Zabbix 2.2.6 this method may return events of a deleted entity if these events have not been removed by the
housekeeper yet.

Parameters

(object) Parameters defining the desired output.

The method supports the following parameters.

Parameter Type Description

eventids string/array Return only events with the given IDs.
groupids string/array Return only events created by objects that belong to

the given host groups.

473

Parameter Type Description

hostids string/array Return only events created by objects that belong to
the given hosts.

objectids string/array Return only events created by the given objects.
object integer Return only events created by objects of the given

type.

Refer to the event object page for a list of supported
object types.

Default: 0 - trigger.
acknowledged boolean If set to true return only acknowledged events.
eventid_from string Return only events with IDs greater or equal to the

given ID.
eventid_till string Return only events with IDs less or equal to the given

ID.
source integer Return only events with the given type.

Refer to the event object page for a list of supported
event types.

Default: 0 - trigger events.
time_from timestamp Return only events that have been created after or at

the given time.
time_till timestamp Return only events that have been created before or

at the given time.
value integer/array Return only events with the given values.
selectHosts query Return hosts containing the object that created the

event in the hosts property. Supported only for
events generated by triggers, items or LLD rules.

selectRelatedObject query Return the object that created the event in the
relatedObject property. The type of object
returned depends on the event type.

select_alerts query Return alerts generated by the event in the alerts
property. Alerts are sorted in reverse chronological
order.

select_acknowledges query Return event’s acknowledges in the acknowledges
property. Acknowledges are sorted in reverse
chronological order.

The event acknowledgement object has the following
properties:
acknowledgeid - (string) acknowledgement’s ID;
userid - (string) ID of the user that acknowledged
the event;
eventid - (string) ID of the acknowledged event;
clock - (timestamp) time when the event was
acknowledged;
message - (string) text of the acknowledgement
message;
alias - (string) alias of the user that
acknowledged the event;
name - (string) name of the user that
acknowledged the event;
surname - (string) surname of the user that
acknowledged the event.

Supports count.
sortfield string/array Sort the result by the given properties.

Possible values are: eventid, objectid, clock and
object (deprecated).

474

Parameter Type Description

countOutput flag These parameters being common for all get methods
are described in detail in the reference commentary
page.

editable boolean
excludeSearch flag
filter object
limit integer
nodeids string/array
output query
preservekeys flag
search object
searchByAny boolean
searchWildcardsEnabled boolean
sortorder string/array
startSearch flag
selectItems
(deprecated)

query Return items contained in the trigger that created the
event in the items property.

selectTriggers
(deprecated)

query Return the trigger that created the event as an array
in the triggers property.

triggerids
(deprecated)

string/array Return only events that have been created by the
given triggers.

Return values

(integer/array) Returns either:

• an array of objects;
• the count of retrieved objects, if the countOutput parameter has been used.

Examples

Retrieving trigger events

Retrieve the latest events from trigger ”13926.”

Request:

{
"jsonrpc": "2.0",
"method": "event.get",
"params": {

"output": "extend",
"select_acknowledges": "extend",
"objectids": "13926",
"sortfield": ["clock", "eventid"],
"sortorder": "DESC"

},
"auth": "038e1d7b1735c6a5436ee9eae095879e",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": [

{
"acknowledges": [

{
"acknowledgeid": "1",
"userid": "1",
"eventid": "9695",
"clock": "1350640590",
"message": "Problem resolved.\n\r----[BULK ACKNOWLEDGE]----",
"alias": "Admin",

475

"name": "Zabbix",
"surname": "Administrator"

}
],
"eventid": "9695",
"source": "0",
"object": "0",
"objectid": "13926",
"clock": "1347970410",
"value": "1",
"acknowledged": "1",
"ns": "413316245"

},
{

"acknowledges": [],
"eventid": "9671",
"source": "0",
"object": "0",
"objectid": "13926",
"clock": "1347970347",
"value": "0",
"acknowledged": "0",
"ns": "0"

}
],
"id": 1

}

Retrieving events by time period

Retrieve all events that have been created between October 9 and 10, 2012, in reverse chronological order.

Request:

{
"jsonrpc": "2.0",
"method": "event.get",
"params": {

"output": "extend",
"time_from": "1349797228",
"time_till": "1350661228",
"sortfield": ["clock", "eventid"],
"sortorder": "desc"

},
"auth": "038e1d7b1735c6a5436ee9eae095879e",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": [

{
"eventid": "20616",
"source": "0",
"object": "0",
"objectid": "14282",
"clock": "1350477814",
"value": "1",
"acknowledged": "0",
"ns": "0"

},
{

"eventid": "20617",

476

"source": "0",
"object": "0",
"objectid": "14283",
"clock": "1350477814",
"value": "0",
"acknowledged": "0",
"ns": "0"

},
{

"eventid": "20618",
"source": "0",
"object": "0",
"objectid": "14284",
"clock": "1350477815",
"value": "1",
"acknowledged": "0",
"ns": "0"

}
],
"id": 1

}

See also

• Alert
• Item
• Host
• LLD rule
• Trigger

Source

CEvent::get() in frontends/php/api/classes/CEvent.php.

Graph

This class is designed to work with items.

Object references:

• Graph

Available methods:

• graph.create - creating new graphs
• graph.delete - deleting graphs
• graph.exists - checking if graphs exists
• graph.get - retrieving graphs
• graph.getobjects - retrieving graphs by filters
• graph.update - updating graphs

> Graph object

The following objects are directly related to the graph API.

Graph

The graph object has the following properties.

Property Type Description

graphid string (readonly) ID of the graph.
height
(required)

integer Height of the graph in pixels.

477

Property Type Description

name
(required)

string Name of the graph

width
(required)

integer Width of the graph in pixels.

flags integer (readonly) Origin of the graph.

Possible values are:
0 - (default) a plain graph;
4 - a discovered graph.

graphtype integer Graph’s layout type.

Possible values:
0 - (default) normal;
1 - stacked;
2 - pie;
3 - exploded.

percent_left float Left percentile.

Default: 0.
percent_right float Right percentile.

Default: 0.
show_3d integer Whether to show pie and exploded graphs in 3D.

Possible values:
0 - (default) show in 2D;
1 - show in 3D.

show_legend integer Whether to show the legend on the graph.

Possible values:
0 - hide;
1 - (default) show.

show_work_period integer Whether to show the working time on the graph.

Possible values:
0 - hide;
1 - (default) show.

templateid string (readonly) ID of the parent template graph.
yaxismax float The fixed maximum value for the Y axis.

Default: 100.
yaxismin float The fixed minimum value for the Y axis.

Default: 0.
ymax_itemid string ID of the item that is used as the maximum value for the

Y axis.
ymax_type integer Maximum value calculation method for the Y axis.

Possible values:
0 - (default) calculated;
1 - fixed;
2 - item.

ymin_itemid string ID of the item that is used as the minimum value for the
Y axis.

ymin_type integer Minimum value calculation method for the Y axis.

Possible values:
0 - (default) calculated;
1 - fixed;
2 - item.

478

graph.create

Description

object graph.create(object/array graphs)

This method allows to create new graphs.

Parameters

(object/array) Graphs to create.

Additionally to the standard graph properties, the method accepts the following parameters.

Parameter Type Description

gitems
(required)

array Graph items to be created for the graph.

Return values

(object) Returns an object containing the IDs of the created graphs under the graphids property. The order of the returned IDs
matches the order of the passed graphs.

Examples

Creating a graph

Create a graph with two items.

Request:

{
"jsonrpc": "2.0",
"method": "graph.create",
"params": {

"name": "MySQL bandwidth",
"width": 900,
"height": 200,
"gitems": [

{
"itemid": "22828",
"color": "00AA00",
"sortorder": "0"

},
{

"itemid": "22829",
"color": "3333FF",
"sortorder": "1"

}
]

},
"auth": "038e1d7b1735c6a5436ee9eae095879e",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": {

"graphids": [
"652"

]
},
"id": 1

}

See also

479

• Graph item

Source

CGraph::create() in frontends/php/api/classes/CGraph.php.

graph.delete

Description

object graph.delete(array graphIds)

This method allows to delete graphs.

Parameters

(array) IDs of the graphs to delete.

Return values

(object) Returns an object containing the IDs of the deleted graphs under the graphids property.

Examples

Deleting multiple graphs

Delete two graphs.

Request:

{
"jsonrpc": "2.0",
"method": "graph.delete",
"params": [

"652",
"653"

],
"auth": "3a57200802b24cda67c4e4010b50c065",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": {

"graphids": [
"652",
"653"

]
},
"id": 1

}

Source

CGraph::delete() in frontends/php/api/classes/CGraph.php.

graph.exists

Description

boolean graph.exists(object filter)

This method checks if at least one graph that matches the given filter criteria exists.

Parameters

(object) Criteria to search by.

The following parameters are supported as search criteria.

480

Parameter Type Description

host string/array Technical names of the hosts that the graphs belong
to.

hostids string/array IDs of the hosts that the graphs belong to.
name string/array Names of the graphs.
node string Name of the node the graphs must belong to.

This will override the nodeids parameter.
nodeids string/array ID of the node the graphs must belong to.

Return values

(boolean) Returns true if at least one graph that matches the given filter criteria exists.

Examples

Checking graph by name

Check if a graph named ”CPU utilization” already exists on host ”Zabbix server”.

Request:

{
"jsonrpc": "2.0",
"method": "graph.exists",
"params": {

"name": "CPU utilization",
"host": "Zabbix server"

},
"auth": "3a57200802b24cda67c4e4010b50c065",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": true,
"id": 1

}

Source

CGraph::exists() in frontends/php/api/classes/CGraph.php.

graph.get

Description

integer/array graph.get(object parameters)

The method allows to retrieve graphs according to the given parameters.

Parameters

(object) Parameters defining the desired output.

The method supports the following parameters.

Parameter Type Description

graphids string/array Return only graphs with the given IDs.
groupids string/array Return only graphs that belong to hosts in the given

host groups.
templateids string/array Return only graph that belong to the given templates.
hostids string/array Return only graphs that belong to the given hosts.
itemids string/array Return only graphs that contain the given items.
templated boolean If set to true return only graphs that belong to

templates.

481

Parameter Type Description

inherited boolean If set to true return only graphs inherited from a
template.

expandName flag Expand macros in the graph name.
selectGroups query Return the host groups that the graph belongs to in

the groups property.
selectTemplates query Return the templates that the graph belongs to in the

templates property.
selectHosts query Return the hosts that the graph belongs to in the

hosts property.
selectItems query Return the items used in the graph in the items

property.
selectGraphItems query Return the graph items used in the graph in the

gitems property.
selectDiscoveryRule query Return the low-level discovery rule that created the

graph in the discoveryRule property.
filter object Return only those results that exactly match the given

filter.

Accepts an array, where the keys are property names,
and the values are either a single value or an array of
values to match against.

Supports additional filters:
host - technical name of the host that the graph
belongs to;
hostid - ID of the host that the graph belongs to.

sortfield string/array Sort the result by the given properties.

Possible values are: graphid, name and graphtype.
countOutput flag These parameters being common for all get methods

are described in detail in the reference commentary
page.

editable boolean
excludeSearch flag
limit integer
nodeids string/array
output query
preservekeys flag
search object
searchByAny boolean
searchWildcardsEnabled boolean
sortorder string/array
startSearch flag

Return values

(integer/array) Returns either:

• an array of objects;
• the count of retrieved objects, if the countOutput parameter has been used.

Examples

Retrieving graphs from hosts

Retrieve all graphs from host ”10107” and sort them by name.

Request:

{
"jsonrpc": "2.0",
"method": "graph.get",
"params": {

"output": "extend",

482

"hostids": 10107,
"sortfield": "name"

},
"auth": "038e1d7b1735c6a5436ee9eae095879e",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": [

{
"graphid": "612",
"name": "CPU jumps",
"width": "900",
"height": "200",
"yaxismin": "0.0000",
"yaxismax": "100.0000",
"templateid": "439",
"show_work_period": "1",
"show_triggers": "1",
"graphtype": "0",
"show_legend": "1",
"show_3d": "0",
"percent_left": "0.0000",
"percent_right": "0.0000",
"ymin_type": "0",
"ymax_type": "0",
"ymin_itemid": "0",
"ymax_itemid": "0",
"flags": "0"

},
{

"graphid": "613",
"name": "CPU load",
"width": "900",
"height": "200",
"yaxismin": "0.0000",
"yaxismax": "100.0000",
"templateid": "433",
"show_work_period": "1",
"show_triggers": "1",
"graphtype": "0",
"show_legend": "1",
"show_3d": "0",
"percent_left": "0.0000",
"percent_right": "0.0000",
"ymin_type": "1",
"ymax_type": "0",
"ymin_itemid": "0",
"ymax_itemid": "0",
"flags": "0"

},
{

"graphid": "614",
"name": "CPU utilization",
"width": "900",
"height": "200",
"yaxismin": "0.0000",
"yaxismax": "100.0000",
"templateid": "387",
"show_work_period": "1",

483

"show_triggers": "0",
"graphtype": "1",
"show_legend": "1",
"show_3d": "0",
"percent_left": "0.0000",
"percent_right": "0.0000",
"ymin_type": "1",
"ymax_type": "1",
"ymin_itemid": "0",
"ymax_itemid": "0",
"flags": "0"

},
{

"graphid": "645",
"name": "Disk space usage /",
"width": "600",
"height": "340",
"yaxismin": "0.0000",
"yaxismax": "0.0000",
"templateid": "0",
"show_work_period": "0",
"show_triggers": "0",
"graphtype": "2",
"show_legend": "1",
"show_3d": "1",
"percent_left": "0.0000",
"percent_right": "0.0000",
"ymin_type": "0",
"ymax_type": "0",
"ymin_itemid": "0",
"ymax_itemid": "0",
"flags": "4"

}
],
"id": 1

}

See also

• graph.getobjects
• Discovery rule
• Graph item
• Item
• Host
• Host group
• Template

Source

CGraph::get() in frontends/php/api/classes/CGraph.php.

graph.getobjects

Description

array graph.getobjects(object filter)

This method allows to retrieve graphs that match the given filter criteria.

Parameters

(object) Criteria to search by.

Additionally to the standard standard graph properties the following parameters are supported as search criteria.

484

Parameter Type Description

node string Name of the node the graphs must belong to.

This will override the nodeids parameter.
nodeids string/array ID of the node the graphs must belong to.

Return values

(array) Returns an array of objects with all properties.

Examples

Retrieving graphs from a host

Retrieve all graphs from host ”Zabbix server”.

Request:

{
"jsonrpc": "2.0",
"method": "graph.getobjects",
"params": {

"host": "Zabbix server"
},
"auth": "3a57200802b24cda67c4e4010b50c065",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": [

{
"graphid": "612",
"name": "CPU jumps",
"width": "900",
"height": "200",
"yaxismin": "0.0000",
"yaxismax": "100.0000",
"templateid": "439",
"show_work_period": "1",
"show_triggers": "1",
"graphtype": "0",
"show_legend": "1",
"show_3d": "0",
"percent_left": "0.0000",
"percent_right": "0.0000",
"ymin_type": "0",
"ymax_type": "0",
"ymin_itemid": "0",
"ymax_itemid": "0",
"flags": "0"

},
{

"graphid": "613",
"name": "CPU load",
"width": "900",
"height": "200",
"yaxismin": "0.0000",
"yaxismax": "100.0000",
"templateid": "433",
"show_work_period": "1",
"show_triggers": "1",
"graphtype": "0",

485

"show_legend": "1",
"show_3d": "0",
"percent_left": "0.0000",
"percent_right": "0.0000",
"ymin_type": "1",
"ymax_type": "0",
"ymin_itemid": "0",
"ymax_itemid": "0",
"flags": "0"

},
{

"graphid": "614",
"name": "CPU utilization",
"width": "900",
"height": "200",
"yaxismin": "0.0000",
"yaxismax": "100.0000",
"templateid": "387",
"show_work_period": "1",
"show_triggers": "0",
"graphtype": "1",
"show_legend": "1",
"show_3d": "0",
"percent_left": "0.0000",
"percent_right": "0.0000",
"ymin_type": "1",
"ymax_type": "1",
"ymin_itemid": "0",
"ymax_itemid": "0",
"flags": "0"

}
],
"id": 1

}

See also

• graph.get

Source

CGraph::getObject() in frontends/php/api/classes/CGraph.php.

graph.update

Description

object graph.update(object/array graphs)

This method allows to update existing graphs.

Parameters

(object/array) Graph properties to be updated.

The graphid property must be defined for each graph, all other properties are optional. Only the passed properties will be updated,
all others will remain unchanged.

Additionally to the standard graph properties the method accepts the following parameters.

Parameter Type Description

gitems array Graph items to replace existing graph items. If a
graph item has the gitemid property defined it will
be updated, otherwise a new graph item will be
created.

486

Return values

(object) Returns an object containing the IDs of the updated graphs under the graphids property.

Examples

Setting the maximum for the Y scale

Set the the maximum of the Y scale to a fixed value of 100.

Request:

{
"jsonrpc": "2.0",
"method": "graph.update",
"params": {

"graphid": "439",
"ymax_type": 1,
"yaxismax": 100

},
"auth": "038e1d7b1735c6a5436ee9eae095879e",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": {

"graphids": [
"439"

]
},
"id": 1

}

Source

CGraph::update() in frontends/php/api/classes/CGraph.php.

Graph item

This class is designed to work with hosts.

Object references:

• Graph item

Available methods:

• graphitem.get - retrieving graph items

> Graph item object

The following objects are directly related to the graphitem API.

Graph item

Note:
Graph items can only be modified via the graph API.

The graph item object has the following properties.

Property Type Description

gitemid string (readonly) ID of the graph item.

487

Property Type Description

color
(required)

string Graph item’s draw color as a hexadecimal color code.

itemid
(required)

string ID of the item.

calc_fnc integer Value of the item that will be displayed.

Possible values:
1 - minimum value;
2 - (default) average value;
4 - maximum value;
7 - all values;
9 - last value, used only by pie and exploded graphs.

drawtype integer Draw style of the graph item.

Possible values:
0 - (default) line;
1 - filled region;
2 - bold line;
3 - dot;
4 - dashed line;
5 - gradient line.

graphid string ID of the graph that the graph item belongs to.
sortorder integer Position of the item in the graph.

Default: 0.
type integer Type of graph item.

Possible values:
0 - (default) simple;
2 - graph sum, used only by pie and exploded graphs.

yaxisside integer Side of the graph where the graph item’s Y scale will be
drawn.

Possible values:
0 - (default) left side;
1 - right side.

graphitem.get

Description

integer/array graphitem.get(object parameters)

The method allows to retrieve graph items according to the given parameters.

Parameters

(object) Parameters defining the desired output.

The method supports the following parameters.

Parameter Type Description

gitemids string/array Return only graph items with the given IDs.
graphids string/array Return only graph items that belong to the given

graphs.
itemids string/array Return only graph items with the given item IDs.
type integer Return only graph items with the given type.

Refer to the graph item object page for a list of
supported graph item types.

488

Parameter Type Description

expandData flag Return additional data about the item and the host.

Adds the following properties to each graph item:
key_ - (string) key of the item;
hostid - (string) ID of the host;
flags - (string) origin of the item;
host - (string) technical name of the host.

selectGraphs query Return the graph that the item belongs to as an array
in the graphs property.

sortfield string/array Sort the result by the given properties.

Possible values are: gitemid.
countOutput flag These parameters being common for all get methods

are described in detail in the reference commentary
page.

editable boolean
limit integer
nodeids string/array
output query
preservekeys flag
sortorder string/array

Return values

(integer/array) Returns either:

• an array of objects;
• the count of retrieved objects, if the countOutput parameter has been used.

Examples

Retrieving graph items from a graph

Retrieve all graph items used in a graph with additional information about the item and the host.

Request:

{
"jsonrpc": "2.0",
"method": "graphitem.get",
"params": {

"output": "extend",
"expandData": 1,
"graphids": "387"

},
"auth": "038e1d7b1735c6a5436ee9eae095879e",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": [

{
"gitemid": "1242",
"graphid": "387",
"itemid": "22665",
"drawtype": "1",
"sortorder": "1",
"color": "FF5555",
"yaxisside": "0",
"calc_fnc": "2",
"type": "0",
"key_": "system.cpu.util[,steal]",

489

"hostid": "10001",
"flags": "0",
"host": "Template OS Linux"

},
{

"gitemid": "1243",
"graphid": "387",
"itemid": "22668",
"drawtype": "1",
"sortorder": "2",
"color": "55FF55",
"yaxisside": "0",
"calc_fnc": "2",
"type": "0",
"key_": "system.cpu.util[,softirq]",
"hostid": "10001",
"flags": "0",
"host": "Template OS Linux"

},
{

"gitemid": "1244",
"graphid": "387",
"itemid": "22671",
"drawtype": "1",
"sortorder": "3",
"color": "009999",
"yaxisside": "0",
"calc_fnc": "2",
"type": "0",
"key_": "system.cpu.util[,interrupt]",
"hostid": "10001",
"flags": "0",
"host": "Template OS Linux"

}
],
"id": 1

}

See also

• Graph

Source

CGraphItem::get() in frontends/php/api/classes/CGraphItem.php.

Graph prototype

This class is designed to work with graph prototypes.

Object references:

• Graph prototype

Available methods:

• graphprototype.create - creating new graph prototypes
• graphprototype.delete - deleting graph prototypes
• graphprototype.exists - checking if graph prototypes exist
• graphprototype.get - retrieving graph prototypes
• graphprototype.getobjects - retrieving graph objects by filters
• graphprototype.update - updating graph prototypes

490

> Graph prototype object

The following objects are directly related to the graphprototype API.

Graph prototype

The graph prototype object has the following properties.

Property Type Description

graphid string (readonly) ID of the graph prototype.
height
(required)

integer Height of the graph prototype in pixels.

name
(required)

string Name of the graph prototype.

width
(required)

integer Width of the graph prototype in pixels.

graphtype integer Graph prototypes’s layout type.

Possible values:
0 - (default) normal;
1 - stacked;
2 - pie;
3 - exploded.

percent_left float Left percentile.

Default: 0.
percent_right float Right percentile.

Default: 0.
show_3d integer Whether to show discovered pie and exploded graphs in

3D.

Possible values:
0 - (default) show in 2D;
1 - show in 3D.

show_legend integer Whether to show the legend on the discovered graph.

Possible values:
0 - hide;
1 - (default) show.

show_work_period integer Whether to show the working time on the discovered
graph.

Possible values:
0 - hide;
1 - (default) show.

templateid string (readonly) ID of the parent template graph prototype.
yaxismax float The fixed maximum value for the Y axis.
yaxismin float The fixed minimum value for the Y axis.
ymax_itemid string ID of the item that is used as the maximum value for the

Y axis.
ymax_type integer Maximum value calculation method for the Y axis.

Possible values:
0 - (default) calculated;
1 - fixed;
2 - item.

ymin_itemid string ID of the item that is used as the minimum value for the
Y axis.

491

Property Type Description

ymin_type integer Minimum value calculation method for the Y axis.

Possible values:
0 - (default) calculated;
1 - fixed;
2 - item.

graphprototype.create

Description

object graphprototype.create(object/array graphPrototypes)

This method allows to create new graph prototypes.

Parameters

(object/array) Graph prototypes to create.

Additionally to the standard graph prototype properties, the method accepts the following parameters.

Parameter Type Description

gitems
(required)

array Graph items to be created for the graph prototypes.
Graph items can reference both items and item
prototypes, but at least one item prototype must be
present.

Return values

(object) Returns an object containing the IDs of the created graph prototypes under the graphids property. The order of the
returned IDs matches the order of the passed graph prototypes.

Examples

Creating a graph prototype

Create a graph prototype with two items.

Request:

{
"jsonrpc": "2.0",
"method": "graphprototype.create",
"params": {

"name": "Disk space usage {#FSNAME}",
"width": 900,
"height": 200,
"gitems": [

{
"itemid": "22828",
"color": "00AA00"

},
{

"itemid": "22829",
"color": "3333FF"

}
]

},
"auth": "038e1d7b1735c6a5436ee9eae095879e",
"id": 1

}

Response:

492

{
"jsonrpc": "2.0",
"result": {

"graphids": [
"652"

]
},
"id": 1

}

See also

• Graph item

Source

CGraphPrototype::create() in frontends/php/api/classes/CGraphPrototype.php.

graphprototype.delete

Description

object graphprototype.delete(array graphPrototypeIds)

This method allows to delete graph prototypes.

Parameters

(array) IDs of the graph prototypes to delete.

Return values

(object) Returns an object containing the IDs of the deleted graph prototypes under the graphids property.

Examples

Deleting multiple graph prototypes

Delete two graph prototypes.

Request:

{
"jsonrpc": "2.0",
"method": "graphprototype.delete",
"params": [

"652",
"653"

],
"auth": "3a57200802b24cda67c4e4010b50c065",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": {

"graphids": [
"652",
"653"

]
},
"id": 1

}

Source

CGraphPrototype::delete() in frontends/php/api/classes/CGraphPrototype.php.

493

graphprototype.exists

Description

boolean graphprototype.exists(object filter)

This method checks if at least one graph prototype that matches the given filter criteria exists.

Parameters

(object) Criteria to search by.

The following parameters are supported as search criteria.

Parameter Type Description

host string/array Technical names of the hosts that the graph
prototypes belong to.

hostids string/array IDs of the hosts that the graph prototypes belong to.
name string/array Names of the graph prototypes.
node string Name of the node the graph prototypes must belong

to.

This will override the nodeids parameter.
nodeids string/array ID of the node the graph prototypes must belong to.

Return values

(boolean) Returns true if at least one graph prototype that matches the given filter criteria exists.

Examples

Checking a graph prototype on a host

Check if graph prototype ”Disk space usage {#FSNAME}” exists on host ”Zabbix server”.

Request:

{
"jsonrpc": "2.0",
"method": "graphprototype.exists",
"params": {

"name": "Disk space usage {#FSNAME}",
"host": "Zabbix server"

},
"auth": "3a57200802b24cda67c4e4010b50c065",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": true,
"id": 1

}

Source

CGraphPrototype::exists() in frontends/php/api/classes/CGraphPrototype.php.

graphprototype.get

Description

integer/array graphprototype.get(object parameters)

The method allows to retrieve graph prototypes according to the given parameters.

Parameters

494

(object) Parameters defining the desired output.

The method supports the following parameters.

Parameter Type Description

discoveryids string/array Return only graph prototypes that belong to the given
discovery rules.

graphids string/array Return only graph prototypes with the given IDs.
groupids string/array Return only graph prototypes that belong to hosts in

the given host groups.
hostids string/array Return only graph prototypes that belong to the given

hosts.
inherited boolean If set to true return only graph prototypes inherited

from a template.
itemids string/array Return only graph prototypes that contain the given

item prototypes.
templated boolean If set to true return only graph prototypes that

belong to templates.
templateids string/array Return only graph prototypes that belong to the given

templates.
selectDiscoveryRule query Return the LLD rule that the graph prototype belongs

to in the discoveryRule property.
selectGraphItems query Return the graph items used in the graph prototype in

the gitems property.
selectGroups query Return the host groups that the graph prototype

belongs to in the groups property.
selectHosts query Return the hosts that the graph prototype belongs to

in the hosts property.
selectItems query Return the items and item prototypes used in the

graph prototype in the items property.
selectTemplates query Return the templates that the graph prototype

belongs to in the templates property.
filter object Return only those results that exactly match the given

filter.

Accepts an array, where the keys are property names,
and the values are either a single value or an array of
values to match against.

Supports additional filters:
host - technical name of the host that the graph
prototype belongs to;
hostid - ID of the host that the graph prototype
belongs to.

sortfield string/array Sort the result by the given properties.

Possible values are: graphid, name and graphtype.
countOutput flag These parameters being common for all get methods

are described in detail in the reference commentary.
editable boolean
excludeSearch flag
limit integer
nodeids string/array
output query
preservekeys flag
search object
searchByAny boolean
searchWildcardsEnabled boolean
sortorder string/array
startSearch flag

Return values

495

(integer/array) Returns either:

• an array of objects;
• the count of retrieved objects, if the countOutput parameter has been used.

Examples

Retrieving graph prototypes from a LLD rule

Retrieve all graph prototypes from an LLD rule.

Request:

{
"jsonrpc": "2.0",
"method": "graphprototype.get",
"params": {

"output": "extend",
"discoveryids": "27426"

},
"auth": "038e1d7b1735c6a5436ee9eae095879e",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": [

{
"graphid": "1017",
"parent_itemid": "27426",
"name": "Disk space usage {#FSNAME}",
"width": "600",
"height": "340",
"yaxismin": "0.0000",
"yaxismax": "0.0000",
"templateid": "442",
"show_work_period": "0",
"show_triggers": "0",
"graphtype": "2",
"show_legend": "1",
"show_3d": "1",
"percent_left": "0.0000",
"percent_right": "0.0000",
"ymin_type": "0",
"ymax_type": "0",
"ymin_itemid": "0",
"ymax_itemid": "0"

}
],
"id": 1

}

See also

• graphprototype.getobjects
• Discovery rule
• Graph item
• Item
• Host
• Host group
• Template

Source

CGraphPrototype::get() in frontends/php/api/classes/CGraphPrototype.php.

496

graphprototype.getobjects

Description

array graphprototype.getobjects(object filter)

This method allows to retrieve graph prototypes that match the given filter criteria.

Parameters

(object) Criteria to search by.

Additionally to the standard standard graph prototype properties the following parameters are supported as search criteria.

Parameter Type Description

node string Name of the node the graph prototypes must belong
to.

This will override the nodeids parameter.
nodeids string/array IDs of the nodes the graph prototypes must belong to.

Return values

(array) Returns an array of objects with all properties.

Examples

Retrieving graph prototypes from a host

Retrieve all graph prototypes from host ”Zabbix server”.

Request:

{
"jsonrpc": "2.0",
"method": "graphprototype.getobjects",
"params": {

"host": "Zabbix server"
},
"auth": "3a57200802b24cda67c4e4010b50c065",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": [

{
"graphid": "1017",
"name": "Disk space usage {#FSNAME}",
"width": "600",
"height": "340",
"yaxismin": "0.0000",
"yaxismax": "0.0000",
"templateid": "442",
"show_work_period": "0",
"show_triggers": "0",
"graphtype": "2",
"show_legend": "1",
"show_3d": "1",
"percent_left": "0.0000",
"percent_right": "0.0000",
"ymin_type": "0",
"ymax_type": "0",
"ymin_itemid": "0",
"ymax_itemid": "0"

497

}
],
"id": 1

}

See also

• graphprototype.get

Source

CGraphPrototype::getObject() in frontends/php/api/classes/CGraphPrototype.php.

graphprototype.update

Description

object graphprototype.update(object/array graphPrototypes)

This method allows to update existing graph prototypes.

Parameters

(object/array) Graph prototype properties to be updated.

The graphid property must be defined for each graph prototype, all other properties are optional. Only the passed properties will
be updated, all others will remain unchanged.

Additionally to the standard graph prototype properties, the method accepts the following parameters.

Parameter Type Description

gitems array Graph items to replace existing graph items. If a
graph item has the gitemid property defined it will
be updated, otherwise a new graph item will be
created.

Return values

(object) Returns an object containing the IDs of the updated graph prototypes under the graphids property.

Examples

Changing the size of a graph prototype

Change the size of a graph prototype to 1100 to 400 pixels.

Request:

{
"jsonrpc": "2.0",
"method": "graphprototype.update",
"params": {

"graphid": "439",
"width": 1100,
"height": 400

},
"auth": "038e1d7b1735c6a5436ee9eae095879e",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": {

"graphids": [
"439"

]
},

498

"id": 1
}

Source

CGraphPrototype::update() in frontends/php/api/classes/CGraphPrototype.php.

History

This class is designed to work with history data.

Object references:

• History

Available methods:

• history.get - retrieving history data.

> History object

The following objects are directly related to the history API.

Note:
History objects differ depending on the item’s type of information. They are created by the Zabbix server and cannot be
modified via the API.

Float history

The float history object has the following properties.

Property Type Description

clock timestamp Time when that value was received.
itemid string ID of the related item.
ns integer Nanoseconds when the value was received.
value float Received value.

Integer history

The integer history object has the following properties.

Property Type Description

clock timestamp Time when that value was received.
itemid string ID of the related item.
ns integer Nanoseconds when the value was received.
value integer Received value.

String history

The string history object has the following properties.

Property Type Description

clock timestamp Time when that value was received.
itemid string ID of the related item.
ns integer Nanoseconds when the value was received.
value string Received value.

Text history

The text history object has the following properties.

499

Property Type Description

id string ID of the history entry.
clock timestamp Time when that value was received.
itemid string ID of the related item.
ns integer Nanoseconds when the value was received.
value text Received value.

Log history

The log history object has the following properties.

Property Type Description

id string ID of the history entry.
clock timestamp Time when that value was received.
itemid string ID of the related item.
logeventid integer Windows event log entry ID.
ns integer Nanoseconds when the value was received.
severity integer Windows event log entry level.
source string Windows event log entry source.
timestamp timestamp Windows event log entry time.
value text Received value.

history.get

Description

integer/array history.get(object parameters)

The method allows to retrieve history data according to the given parameters.

Attention:
Since Zabbix 2.2.6 this method may return historical data of a deleted entity if this data has not been removed by the
housekeeper yet.

Parameters

(object) Parameters defining the desired output.

The method supports the following parameters.

Parameter Type Description

history integer History object types to return.

Possible values:
0 - numeric float;
1 - character;
2 - log;
3 - numeric unsigned;
4 - text.

Default: 3.
hostids string/array Return only history from the given hosts.
itemids string/array Return only history from the given items.
time_from timestamp Return only values that have been received after or at

the given time.
time_till timestamp Return only values that have been received before or

at the given time.
sortfield string/array Sort the result by the given properties.

Possible values are: itemid and clock.

500

Parameter Type Description

countOutput flag These parameters being common for all get methods
are described in detail in the reference commentary
page.

editable boolean
excludeSearch flag
filter object
limit integer
nodeids string/array
output query
search object
searchByAny boolean
searchWildcardsEnabled boolean
sortorder string/array
startSearch flag

Return values

(integer/array) Returns either:

• an array of objects;
• the count of retrieved objects, if the countOutput parameter has been used.

Examples

Retrieving item history data

Return 10 latest values received from a numeric(float) item.

Request:

{
"jsonrpc": "2.0",
"method": "history.get",
"params": {

"output": "extend",
"history": 0,
"itemids": "23296",
"sortfield": "clock",
"sortorder": "DESC",
"limit": 10

},
"auth": "038e1d7b1735c6a5436ee9eae095879e",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": [

{
"itemid": "23296",
"clock": "1351090996",
"value": "0.0850",
"ns": "563157632"

},
{

"itemid": "23296",
"clock": "1351090936",
"value": "0.1600",
"ns": "549216402"

},
{

"itemid": "23296",
"clock": "1351090876",

501

"value": "0.1800",
"ns": "537418114"

},
{

"itemid": "23296",
"clock": "1351090816",
"value": "0.2100",
"ns": "522659528"

},
{

"itemid": "23296",
"clock": "1351090756",
"value": "0.2150",
"ns": "507809457"

},
{

"itemid": "23296",
"clock": "1351090696",
"value": "0.2550",
"ns": "495509699"

},
{

"itemid": "23296",
"clock": "1351090636",
"value": "0.3600",
"ns": "477708209"

},
{

"itemid": "23296",
"clock": "1351090576",
"value": "0.3750",
"ns": "463251343"

},
{

"itemid": "23296",
"clock": "1351090516",
"value": "0.3150",
"ns": "447947017"

},
{

"itemid": "23296",
"clock": "1351090456",
"value": "0.2750",
"ns": "435307141"

}
],
"id": 1

}

Source

CHistory::get() in frontends/php/api/classes/CHistory.php.

Host

This class is designed to work with hosts.

Object references:

• Host
• Host inventory

Available methods:

502

• host.create - creating new hosts
• host.delete - deleting hosts
• host.exists - checking if a host exists
• host.get - retrieving hosts
• host.isreadable - checking if hosts are readable
• host.iswritable - checking if hosts are writable
• host.massadd - adding related objects to hosts
• host.massremove - removing related objects from hosts
• host.massupdate - replacing or removing related objects from hosts
• host.update - updating hosts

> Host object

The following objects are directly related to the host API.

Host

The host object has the following properties.

Property Type Description

hostid string (readonly) ID of the host.
host
(required)

string Technical name of the host.

available integer (readonly) Availability of Zabbix agent.

Possible values are:
0 - (default) unknown;
1 - available;
2 - unavailable.

disable_until timestamp (readonly) The next polling time of an unavailable
Zabbix agent.

error string (readonly) Error text if Zabbix agent is unavailable.
errors_from timestamp (readonly) Time when Zabbix agent became unavailable.
flags integer (readonly) Origin of the host.

Possible values:
0 - a plain host;
4 - a discovered host.

inventory_mode integer Host inventory population mode.

Possible values are:
-1 - disabled;
0 - (default) manual;
1 - automatic.

ipmi_authtype integer IPMI authentication algorithm.

Possible values are:
-1 - (default) default;
0 - none;
1 - MD2;
2 - MD5
4 - straight;
5 - OEM;
6 - RMCP+.

ipmi_available integer (readonly) Availability of IPMI agent.

Possible values are:
0 - (default) unknown;
1 - available;
2 - unavailable.

503

Property Type Description

ipmi_disable_until timestamp (readonly) The next polling time of an unavailable IPMI
agent.

ipmi_error string (readonly) Error text if IPMI agent is unavailable.
ipmi_errors_from timestamp (readonly) Time when IPMI agent became unavailable.
ipmi_password string IPMI password.
ipmi_privilege integer IPMI privilege level.

Possible values are:
1 - callback;
2 - (default) user;
3 - operator;
4 - admin;
5 - OEM.

ipmi_username string IPMI username.
jmx_available integer (readonly) Availability of JMX agent.

Possible values are:
0 - (default) unknown;
1 - available;
2 - unavailable.

jmx_disable_until timestamp (readonly) The next polling time of an unavailable JMX
agent.

jmx_error string (readonly) Error text if JMX agent is unavailable.
jmx_errors_from timestamp (readonly) Time when JMX agent became unavailable.
maintenance_from timestamp (readonly) Starting time of the effective maintenance.
maintenance_status integer (readonly) Effective maintenance status.

Possible values are:
0 - (default) no maintenance;
1 - maintenance in effect.

maintenance_type integer (readonly) Effective maintenance type.

Possible values are:
0 - (default) maintenance with data collection;
1 - maintenance without data collection.

maintenanceid string (readonly) ID of the maintenance that is currently in
effect on the host.

name string Visible name of the host.

Default: host property value.
proxy_hostid string ID of the proxy that is used to monitor the host.
snmp_available integer (readonly) Availability of SNMP agent.

Possible values are:
0 - (default) unknown;
1 - available;
2 - unavailable.

snmp_disable_until timestamp (readonly) The next polling time of an unavailable SNMP
agent.

snmp_error string (readonly) Error text if SNMP agent is unavailable.
snmp_errors_from timestamp (readonly) Time when SNMP agent became unavailable.
status integer Status and function of the host.

Possible values are:
0 - (default) monitored host;
1 - unmonitored host.

Host inventory

The host inventory object has the following properties.

504

Note:
Each property has it’s own unique ID number, which is used to associate host inventory fields with items.

ID Property Type Description

4 alias string Alias.
11 asset_tag string Asset tag.
28 chassis string Chassis.
23 contact string Contact person.
32 contract_number string Contract number.
47 date_hw_decomm string HW decommissioning date.
46 date_hw_expiry string HW maintenance expiry date.
45 date_hw_install string HW installation date.
44 date_hw_purchase string HW purchase date.
34 deployment_status string Deployment status.
14 hardware string Hardware.
15 hardware_full string Detailed hardware.
39 host_netmask string Host subnet mask.
38 host_networks string Host networks.
40 host_router string Host router.
30 hw_arch string HW architecture.
33 installer_name string Installer name.
24 location string Location.
25 location_lat string Location latitude.
26 location_lon string Location longitude.
12 macaddress_a string MAC address A.
13 macaddress_b string MAC address B.
29 model string Model.
3 name string Name.
27 notes string Notes.
41 oob_ip string OOB IP address.
42 oob_netmask string OOB host subnet mask.
43 oob_router string OOB router.
5 os string OS name.
6 os_full string Detailed OS name.
7 os_short string Short OS name.
61 poc_1_cell string Primary POC mobile number.
58 poc_1_email string Primary email.
57 poc_1_name string Primary POC name.
63 poc_1_notes string Primary POC notes.
59 poc_1_phone_a string Primary POC phone A.
60 poc_1_phone_b string Primary POC phone B.
62 poc_1_screen string Primary POC screen name.
68 poc_2_cell string Secondary POC mobile number.
65 poc_2_email string Secondary POC email.
64 poc_2_name string Secondary POC name.
70 poc_2_notes string Secondary POC notes.
66 poc_2_phone_a string Secondary POC phone A.
67 poc_2_phone_b string Secondary POC phone B.
69 poc_2_screen string Secondary POC screen name.
8 serialno_a string Serial number A.
9 serialno_b string Serial number B.
48 site_address_a string Site address A.
49 site_address_b string Site address B.
50 site_address_c string Site address C.
51 site_city string Site city.
53 site_country string Site country.
56 site_notes string Site notes.
55 site_rack string Site rack location.
52 site_state string Site state.
54 site_zip string Site ZIP/postal code.
16 software string Software.

505

ID Property Type Description

18 software_app_a string Software application A.
19 software_app_b string Software application B.
20 software_app_c string Software application C.
21 software_app_d string Software application D.
22 software_app_e string Software application E.
17 software_full string Software details.
10 tag string Tag.
1 type string Type.
2 type_full string Type details.
35 url_a string URL A.
36 url_b string URL B.
37 url_c string URL C.
31 vendor string Vendor.

host.create

Description

object host.create(object/array hosts)

This method allows to create new hosts.

Parameters

(object/array) Hosts to create.

Additionally to the standard host properties, the method accepts the following parameters.

Parameter Type Description

groups
(required)

object/array Host groups to add the host to.

The host groups must have the groupid property
defined.

interfaces
(required)

object/array Interfaces to be created for the host.

templates object/array Templates to be linked to the host.

The templates must have the templateid property
defined.

macros object/array User macros to be created for the host.
inventory object Host inventory properties.

Return values

(object) Returns an object containing the IDs of the created hosts under the hostids property. The order of the returned IDs
matches the order of the passed hosts.

Examples

Creating a host

Create a host called ”Linux server” with an IP interface, add it to a group, link a template to it and set the MAC addresses in the
host inventory.

Request:

{
"jsonrpc": "2.0",
"method": "host.create",
"params": {

"host": "Linux server",
"interfaces": [

{
"type": 1,

506

"main": 1,
"useip": 1,
"ip": "192.168.3.1",
"dns": "",
"port": "10050"

}
],
"groups": [

{
"groupid": "50"

}
],
"templates": [

{
"templateid": "20045"

}
],
"macros": [

{
"macro": "{$USER_ID}",
"value": "123321"

}
],
"inventory_mode": 0,
"inventory": {

"macaddress_a": "01234",
"macaddress_b": "56768"

}
},
"auth": "038e1d7b1735c6a5436ee9eae095879e",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": {

"hostids": [
"107819"

]
},
"id": 1

}

See also

• Host group
• Template
• User macro
• Host interface
• Host inventory

Source

CHost::create() in frontends/php/api/classes/CHost.php.

host.delete

Description

object host.delete(array hosts)

This method allows to delete hosts.

Parameters

507

(array) IDs of hosts to delete.

Warning:
The method can also accept an array of host objects with the hostid property defined. This format is deprecated.

Return values

(object) Returns an object containing the IDs of the deleted hosts under the hostids property.

Examples

Deleting multiple hosts

Delete two hosts.

Request:

{
"jsonrpc": "2.0",
"method": "host.delete",
"params": [

"13",
"32"

],
"auth": "038e1d7b1735c6a5436ee9eae095879e",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": {

"hostids": [
"13",
"32"

]
},
"id": 1

}

Source

CHost::delete() in frontends/php/api/classes/CHost.php.

host.exists

Description

boolean host.exists(object filter)

This method checks if at least one host that matches the given filter criteria exists.

Parameters

(object) Criteria to search by.

The following parameters are supported as search criteria.

Parameter Type Description

hostid string/array Host IDs.
host string/array Technical names of the hosts.
name string/array Visible names of the hosts.
node string Name of the node the hosts must belong to.

This will override the nodeids parameter.
nodeids string/array IDs of the node the hosts must belong to.

508

Return values

(boolean) Returns true if at least one host that matches the given filter criteria exists.

Examples

Check host on a node

Check if a host with the technical name ”Zabbix Server” exists on the node with ID 1.

Request:

{
"jsonrpc": "2.0",
"method": "host.exists",
"params": {

"host": "Zabbix Server",
"nodeids": [

"1"
]

},
"auth": "038e1d7b1735c6a5436ee9eae095879e",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": true,
"id": 1

}

See also

• host.isreadable
• host.iswritable

Source

CHost::exists() in frontends/php/api/classes/CHost.php.

host.get

Description

integer/array host.get(object parameters)

The method allows to retrieve hosts according to the given parameters.

Parameters

(object) Parameters defining the desired output.

The method supports the following parameters.

Parameter Type Description

groupids string/array Return only hosts that belong to the given groups.
applicationids string/array Return only hosts that have the given applications.
dserviceids string/array Return only hosts that are related to the given

discovered services.
graphids string/array Return only hosts that have the given graphs.
hostids string/array Return only hosts with the given host IDs.
httptestids string/array Return only hosts that have the given web checks.
interfaceids string/array Return only hosts that use the given interfaces.
itemids string/array Return only hosts that have the given items.
maintenanceids string/array Return only hosts that are affected by the given

maintenances.
monitored_hosts flag Return only monitored hosts.
proxy_hosts flag Return only proxies.

509

Parameter Type Description

proxyids string/array Return only hosts that are monitored by the given
proxies.

templated_hosts flag Return both hosts and templates.
templateids string/array Return only hosts that are linked to the given

templates.
triggerids string/array Return only hosts that have the given triggers.
with_items flag Return only hosts that have items.

Overrides the with_monitored_items and
with_simple_graph_items parameters.

with_applications flag Return only hosts that have applications.
with_graphs flag Return only hosts that have graphs.
with_httptests flag Return only hosts that have web checks.

Overrides the with_monitored_httptests
parameter.

with_monitored_httptests flag Return only hosts that have enabled web checks.
with_monitored_items flag Return only hosts that have enabled items.

Overrides the with_simple_graph_items
parameter.

with_monitored_triggers flag Return only hosts that have enabled triggers. All of
the items used in the trigger must also be enabled.

with_simple_graph_items flag Return only hosts that have items with numeric type
of information.

with_triggers flag Return only hosts that have triggers.

Overrides the with_monitored_triggers
parameter.

withInventory flag Return only hosts that have inventory data.
selectGroups query Return a groups property with host groups that the

host belongs to.
selectApplications query Return an applications property with host

applications.

Supports count.
selectDiscoveries query Return a discoveries property with host low-level

discovery rules.

Supports count.
selectDiscoveryRule query Return a discoveryRule property with the low-level

discovery rule that created the host (from host
prototype in VMware monitoring).

selectGraphs query Return a graphs property with host graphs.

Supports count.

510

Parameter Type Description

selectHostDiscovery query Return a hostDiscovery property with host
discovery object data.

The host discovery object links a discovered host to a
host prototype or a host prototypes to an LLD rule and
has the following properties:
host - (string) host of the host prototype;
hostid - (string) ID of the discovered host or host
prototype;
parent_hostid - (string) ID of the host prototype
from which the host has been created;
parent_itemid - (string) ID of the LLD rule that
created the discovered host;
lastcheck - (timestamp) time when the host was
last discovered;
ts_delete - (timestamp) time when a host that is no
longer discovered will be deleted.

selectHttpTests query Return an httpTests property with host web
scenarios.

Supports count.
selectInterfaces query Return an interfaces property with host interfaces.

Supports count.
selectInventory query Return an inventory property with host inventory

data.
selectItems query Return an items property with host items.

Supports count.
selectMacros query Return a macros property with host macros.
selectParentTemplates query Return a parentTemplates property with templates

that the host is linked to.

Supports count.
selectScreens query Return a screens property with host screens.

Supports count.
selectTriggers query Return a triggers property with host triggers.

Supports count.
filter object Return only those results that exactly match the given

filter.

Accepts an array, where the keys are property names,
and the values are either a single value or an array of
values to match against.

Allows filtering by interface properties.
limitSelects integer Limits the number of records returned by subselects.

Applies to the following subselects:
selectParentTemplates - results will be sorted by
host;
selectInterfaces;
selectItems - sorted by name;
selectDiscoveries - sorted by name;
selectTriggers - sorted by description;
selectGraphs - sorted by name;
selectApplications - sorted by name;
selectScreens - sorted by name.

511

Parameter Type Description

search object Return results that match the given wildcard search.

Accepts an array, where the keys are property names,
and the values are strings to search for. If no
additional options are given, this will perform a LIKE
"%…%" search.

Allows searching by interface properties. Works only
with text fields.

sortfield string/array Sort the result by the given properties.

Possible values are: hostid, host, name, status.
countOutput flag These parameters being common for all get methods

are described in detail in the reference commentary.
editable boolean
excludeSearch flag
limit integer
nodeids string/array
output query
preservekeys flag
searchByAny boolean
searchWildcardsEnabled boolean
sortorder string/array
startSearch flag

Return values

(integer/array) Returns either:

• an array of objects;
• the count of retrieved objects, if the countOutput parameter has been used.

Examples

Retrieving data by name

Retrieve all data about two hosts named ”Zabbix server” and ”Linux server”.

Request:

{
"jsonrpc": "2.0",
"method": "host.get",
"params": {

"filter": {
"host": [

"Zabbix server",
"Linux server"

]
}

},
"auth": "038e1d7b1735c6a5436ee9eae095879e",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": [

{
"maintenances": [],
"hostid": "10160",
"proxy_hostid": "0",
"host": "Zabbix server",

512

"status": "0",
"disable_until": "0",
"error": "",
"available": "0",
"errors_from": "0",
"lastaccess": "0",
"ipmi_authtype": "-1",
"ipmi_privilege": "2",
"ipmi_username": "",
"ipmi_password": "",
"ipmi_disable_until": "0",
"ipmi_available": "0",
"snmp_disable_until": "0",
"snmp_available": "0",
"maintenanceid": "0",
"maintenance_status": "0",
"maintenance_type": "0",
"maintenance_from": "0",
"ipmi_errors_from": "0",
"snmp_errors_from": "0",
"ipmi_error": "",
"snmp_error": "",
"jmx_disable_until": "0",
"jmx_available": "0",
"jmx_errors_from": "0",
"jmx_error": "",
"name": "Zabbix server"

},
{

"maintenances": [],
"hostid": "10167",
"proxy_hostid": "0",
"host": "Linux server",
"status": "0",
"disable_until": "0",
"error": "",
"available": "0",
"errors_from": "0",
"lastaccess": "0",
"ipmi_authtype": "-1",
"ipmi_privilege": "2",
"ipmi_username": "",
"ipmi_password": "",
"ipmi_disable_until": "0",
"ipmi_available": "0",
"snmp_disable_until": "0",
"snmp_available": "0",
"maintenanceid": "0",
"maintenance_status": "0",
"maintenance_type": "0",
"maintenance_from": "0",
"ipmi_errors_from": "0",
"snmp_errors_from": "0",
"ipmi_error": "",
"snmp_error": "",
"jmx_disable_until": "0",
"jmx_available": "0",
"jmx_errors_from": "0",
"jmx_error": "",
"name": "Linux server"

}
],

513

"id": 1
}

Retrieving host groups

Retrieve names of the groups host ”Zabbix server” is member of, but no host details themselves.

Request:

{
"jsonrpc": "2.0",
"method": "host.get",
"params": {

"output": ["hostid"],
"selectGroups": "extend",
"filter": {

"host": [
"Zabbix server"

]
}

},
"auth": "038e1d7b1735c6a5436ee9eae095879e",
"id": 2

}

Response:

{
"jsonrpc": "2.0",
"result": [

{
"hostid": "10085",
"groups": [

{
"groupid": "2",
"name": "Linux servers",
"internal": "0",
"flags": "0"

},
{

"groupid": "4",
"name": "Zabbix servers",
"internal": "0",
"flags": "0"

}
]

}
],
"id": 2

}

Retrieving linked templates

Retrieve the IDs and names of templates linked to host ”10084”.

Request:

{
"jsonrpc": "2.0",
"method": "host.get",
"params": {

"output": ["hostid"],
"selectParentTemplates": [

"templateid",
"name"

],
"hostids": "10084"

514

},
"id": 1,
"auth": "70785d2b494a7302309b48afcdb3a401"

}

Response:

{
"jsonrpc": "2.0",
"result": [

{
"hostid": "10084",
"parentTemplates": [

{
"name": "Template OS Linux",
"templateid": "10001"

},
{

"name": "Template App Zabbix Server",
"templateid": "10047"

}
]

}
],
"id": 1

}

See also

• host.getobjects
• Host group
• Template
• User macro
• Host interface

Source

CHost::get() in frontends/php/api/classes/CHost.php.

host.getobjects

Description

array host.getobjects(object filter)

This method allows to retrieve hosts that match the given filter criteria.

Parameters

(object) Criteria to search by.

Additionally to the standard standard host properties the following parameters are supported as search criteria.

Parameter Type Description

node string Name of the node the hosts must belong to.

This will override the nodeids parameter.
nodeids string/array ID of the node the hosts must belong to.

Return values

(array) Returns an array of objects with all properties.

Examples

Retrieving a host by name

Retrieve the host with the technical name ”Zabbix server”.

515

Request:

{
"jsonrpc": "2.0",
"method": "host.getobjects",
"params": {

"name": "Zabbix server"
},
"auth": "3a57200802b24cda67c4e4010b50c065",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": [

{
"maintenances": [],
"hostid": "10084",
"proxy_hostid": "0",
"host": "Zabbix server",
"status": "0",
"disable_until": "0",
"error": "",
"available": "1",
"errors_from": "0",
"lastaccess": "0",
"ipmi_authtype": "-1",
"ipmi_privilege": "2",
"ipmi_username": "",
"ipmi_password": "",
"ipmi_disable_until": "0",
"ipmi_available": "0",
"snmp_disable_until": "0",
"snmp_available": "0",
"maintenanceid": "0",
"maintenance_status": "0",
"maintenance_type": "0",
"maintenance_from": "0",
"ipmi_errors_from": "0",
"snmp_errors_from": "0",
"ipmi_error": "",
"snmp_error": "",
"jmx_disable_until": "0",
"jmx_available": "0",
"jmx_errors_from": "0",
"jmx_error": "",
"name": "Zabbix server"

}
],
"id": 1

}

See also

• host.get

Source

CHost::getObject() in frontends/php/api/classes/CHost.php.

host.isreadable

Description

516

boolean host.isreadable(array hostIds)

This method checks if the given hosts are available for reading.

Parameters

(array) IDs of the hosts to check.

Return values

(boolean) Returns true if the given hosts are available for reading.

Examples

Check multiple hosts

Check if the two hosts are readable.

Request:

{
"jsonrpc": "2.0",
"method": "host.isreadable",
"params": [

"143",
"943"

],
"auth": "038e1d7b1735c6a5436ee9eae095879e",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": true,
"id": 1

}

See also

• host.exists
• host.iswritable

Source

CHost::isReadable() in frontends/php/api/classes/CHost.php.

host.iswritable

Description

boolean host.iswritable(array hostIds)

This method checks if the given hosts are available for writing.

Parameters

(array) IDs of the hosts to check.

Return values

(boolean) Returns true if the given hosts are available for writing.

Examples

Check multiple hosts

Check if the two hosts are writable.

Request:

{
"jsonrpc": "2.0",
"method": "host.iswritable",

517

"params": [
"143",
"943"

],
"auth": "038e1d7b1735c6a5436ee9eae095879e",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": true,
"id": 1

}

See also

• host.isreadable
• host.exists

Source

CHost::isWritable() in frontends/php/api/classes/CHost.php.

host.massadd

Description

object host.massadd(object parameters)

This method allows to simultaneously add multiple related objects to all the given hosts.

Parameters

(object) Parameters containing the IDs of the hosts to update and the objects to add to all the hosts.

The method accepts the following parameters.

Parameter Type Description

hosts
(required)

object/array Hosts to be updated.

The hosts must have the hostid property defined.
groups object/array Host groups to add to the given hosts.

The host groups must have the groupid property
defined.

interfaces object/array Host interfaces to be created for the given hosts.
macros object/array User macros to be created for the given hosts.
templates object/array Templates to link to the given hosts.

The templates must have the templateid property
defined.

Return values

(object) Returns an object containing the IDs of the updated hosts under the hostids property.

Examples

Adding macros

Add two new macros to two hosts.

Request:

518

{
"jsonrpc": "2.0",
"method": "host.massadd",
"params": {

"hosts": [
{

"hostid": "10160"
},
{

"hostid": "10167"
}

],
"macros": [

{
"macro": "{$TEST1}",
"value": "MACROTEST1"

},
{

"macro": "{$TEST2}",
"value": "MACROTEST2"

}
]

},
"auth": "038e1d7b1735c6a5436ee9eae095879e",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": {

"hostids": [
"10160",
"10167"

]
},
"id": 1

}

See also

• host.update
• Host group
• Template
• User macro
• Host interface

Source

CHost::massAdd() in frontends/php/api/classes/CHost.php.

host.massremove

Description

object host.massremove(object parameters)

This method allows to remove related objects from multiple hosts.

Parameters

(object) Parameters containing the IDs of the hosts to update and the objects that should be removed.

519

Parameter Type Description

hostids
(required)

string/array IDs of the hosts to be updated.

groupids string/array Host groups to remove the given hosts from.
interfaces object/array Host interfaces to remove from the given hosts.

The host interface object must have the ip, dns and
port properties defined.

macros string/array User macros to delete from the given hosts.
templateids string/array Templates to unlink from the given hosts.
templateids_clear string/array Templates to unlink and clear from the given hosts.

Return values

(object) Returns an object containing the IDs of the updated hosts under the hostids property.

Examples

Unlinking templates

Unlink a template from two hosts and delete all of the templated entities.

Request:

{
"jsonrpc": "2.0",
"method": "host.massremove",
"params": {

"hostids": ["69665", "69666"],
"templateids_clear": "325"

},
"auth": "038e1d7b1735c6a5436ee9eae095879e",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": {

"hostids": [
"69665",
"69666"

]
},
"id": 1

}

See also

• host.update
• User macro
• Host interface

Source

CHost::massRemove() in frontends/php/api/classes/CHost.php.

host.massupdate

Description

object host.massupdate(object parameters)

This method allows to simultaneously replace or remove related objects and update properties on multiple hosts.

Parameters

(object) Parameters containing the IDs of the hosts to update and the properties that should be updated.

520

Additionally to the standard host properties, the method accepts the following parameters.

Parameter Type Description

hosts
(required)

object/array Hosts to be updated.

The hosts must have the hostid property defined.
groups object/array Host groups to replace the current host groups the

hosts belong to.

The host groups must have the groupid property
defined.

interfaces object/array Host interfaces to replace the current host interfaces
on the given hosts.

inventory object Host inventory properties.

Host inventory mode cannot be updated using the
inventory parameter, use inventory_mode
instead.

inventory_mode integer Host inventory population mode.

Refer to the host inventory object page for a list of
supported inventory modes.

macros object/array User macros to replace the current user macros on
the given hosts.

templates object/array Templates to replace the currently linked templates on
the given hosts.

The templates must have the templateid property
defined.

templates_clear object/array Templates to unlink and clear from the given hosts.

The templates must have the templateid property
defined.

Return values

(object) Returns an object containing the IDs of the updated hosts under the hostids property.

Examples

Enabling multiple hosts

Enable monitoring of two hosts, i.e., set their status to 0.

Request:

{
"jsonrpc": "2.0",
"method": "host.massupdate",
"params": {

"hosts": [
{

"hostid": "69665"
},
{

"hostid": "69666"
}

],
"status": 0

},
"auth": "038e1d7b1735c6a5436ee9eae095879e",
"id": 1

}

Response:

521

{
"jsonrpc": "2.0",
"result": {

"hostids": [
"69665",
"69666"

]
},
"id": 1

}

See also

• host.update
• host.massadd
• host.massremove
• Host group
• Template
• User macro
• Host interface

Source

CHost::massUpdate() in frontends/php/api/classes/CHost.php.

host.update

Description

object host.update(object/array hosts)

This method allows to update existing hosts.

Parameters

(object/array) Host properties to be updated.

The hostid property must be defined for each host, all other properties are optional. Only the given properties will be updated,
all others will remain unchanged.

Additionally to the standard host properties, the method accepts the following parameters.

Parameter Type Description

groups object/array Host groups to replace the current host groups the
host belongs to.

The host groups must have the groupid property
defined. All host groups that are not listed in the
request will be unlinked.

interfaces object/array Host interfaces to replace the current host interfaces.

All interfaces that are not listed in the request will be
removed.

inventory object Host inventory properties.
macros object/array User macros to replace the current user macros.

All macros that are not listed in the request will be
removed.

templates object/array Templates to replace the currently linked templates.
All templates that are not listed in the request will be
only unlinked.

The templates must have the templateid property
defined.

522

Parameter Type Description

templates_clear object/array Templates to unlink and clear from the host.

The templates must have the templateid property
defined.

Note:
As opposed to the Zabbix frontend, when name (visible host name) is the same as host (technical host name), updating
host via API will not automatically update name. Both properties need to be updated explicitly.

Return values

(object) Returns an object containing the IDs of the updated hosts under the hostids property.

Examples

Enabling a host

Enable host monitoring, i.e. set its status to 0.

Request:

{
"jsonrpc": "2.0",
"method": "host.update",
"params": {

"hostid": "10126",
"status": 0

},
"auth": "038e1d7b1735c6a5436ee9eae095879e",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": {

"hostids": [
"10126"

]
},
"id": 1

}

Unlinking templates

Unlink and clear two templates from host.

Request:

{
"jsonrpc": "2.0",
"method": "host.update",
"params": {

"hostid": "10126",
"templates_clear": [

{
"templateid": "10124"

},
{

"templateid": "10125"
}

]
},
"auth": "038e1d7b1735c6a5436ee9eae095879e",

523

"id": 1
}

Response:

{
"jsonrpc": "2.0",
"result": {

"hostids": [
"10126"

]
},
"id": 1

}

Updating host macros

Replace all host macros with two new ones.

Request:

{
"jsonrpc": "2.0",
"method": "host.update",
"params": {

"hostid": "10126",
"macros": [

{
"macro": "{$PASS}",
"value": "password"

},
{

"macro": "{$DISC}",
"value": "sda"

}
]

},
"auth": "038e1d7b1735c6a5436ee9eae095879e",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": {

"hostids": [
"10126"

]
},
"id": 1

}

Updating host inventory

Change inventory mode and add location

Request:

{
"jsonrpc": "2.0",
"method": "host.update",
"params": {

"hostid": "10387",
"inventory_mode": 0,
"inventory": {

"location": "Latvia, Riga"
}

524

},
"auth": "038e1d7b1735c6a5436ee9eae095879e",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": {

"hostids": [
"10387"

]
},
"id": 2

}

See also

• host.massadd
• host.massupdate
• host.massremove
• Host group
• Template
• User macro
• Host interface
• Host inventory

Source

CHost::update() in frontends/php/api/classes/CHost.php.

Host group

This class is designed to work with host groups.

Object references:

• Host group

Available methods:

• hostgroup.create - creating new host groups
• hostgroup.delete - deleting host groups
• hostgroup.exists - checking if a host group exists
• hostgroup.get - retrieving host groups
• hostgroup.getobjects - retrieving host groups by filters
• hostgroup.isreadable - checking if host groups are readable
• hostgroup.iswritable - checking if host groups are writable
• hostgroup.massadd - adding related objects to host groups
• hostgroup.massremove - removing related objects from host groups
• hostgroup.massupdate - replacing or removing related objects from host groups
• hostgroup.update - updating host groups

> Host group object

The following objects are directly related to the hostgroup API.

Host group

The host group object has the following properties.

Property Type Description

groupid string (readonly) ID of the host group.

525

Property Type Description

name
(required)

string Name of the host group.

flags integer (readonly) Origin of the host group.

Possible values:
0 - a plain host group;
4 - a discovered host group.

internal integer (readonly) Whether the group is used internally by the
system. An internal group cannot be deleted.

Possible values:
0 - (default) not internal;
1 - internal.

hostgroup.create

Description

object hostgroup.create(object/array hostGroups)

This method allows to create new host groups.

Parameters

(object/array) Host groups to create. The method accepts host groups with the standard host group properties.

Return values

(object) Returns an object containing the IDs of the created host groups under the groupids property. The order of the returned
IDs matches the order of the passed host groups.

Examples

Creating a host group

Create a host group called ”Linux servers”.

Request:

{
"jsonrpc": "2.0",
"method": "hostgroup.create",
"params": {

"name": "Linux servers"
},
"auth": "038e1d7b1735c6a5436ee9eae095879e",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": {

"groupids": [
"107819"

]
},
"id": 1

}

Source

CHostGroup::create() in frontends/php/api/classes/CHostGroup.php.

526

hostgroup.delete

Description

object hostgroup.delete(array hostGroupIds)

This method allows to delete host groups.

A host group can not be deleted if:

• it contains hosts that belong to this group only;
• it’s marked as internal;
• it is used by a host prototype;
• it is used in a global script.

Parameters

(array) IDs of the host groups to delete.

Return values

(object) Returns an object containing the IDs of the deleted host groups under the groupids property.

Examples

Deleting multiple host groups

Delete two host groups.

Request:

{
"jsonrpc": "2.0",
"method": "hostgroup.delete",
"params": [

"107824",
"107825"

],
"auth": "3a57200802b24cda67c4e4010b50c065",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": {

"groupids": [
"107824",
"107825"

]
},
"id": 1

}

Source

CHostGroup::delete() in frontends/php/api/classes/CHostGroup.php.

hostgroup.exists

Description

boolean hostgroup.exists(object filter)

This method checks if at least one host group that matches the given filter criteria exists.

Parameters

(object) Criteria to search by.

The following parameters are supported as search criteria.

527

Parameter Type Description

groupid string/array Host group IDs.
name string/array Names of the host groups.
node string Name of the node the host groups must belong to.

This will override the nodeids parameter.
nodeids string/array IDs of the nodes the host groups must belong to.

Return values

(boolean) Returns true if at least one host group that matches the given filter criteria exists.

Examples

Check host group on a node

Check if a host group called ”Zabbix servers” exists on the node with ID 1.

Request:

{
"jsonrpc": "2.0",
"method": "hostgroup.exists",
"params": {

"name": "Linux servers",
"nodeids": [

"1"
]

},
"auth": "3a57200802b24cda67c4e4010b50c065",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": true,
"id": 1

}

See also

• hostgroup.isreadable
• hostgroup.iswritable

Source

CHostGroup::exists() in frontends/php/api/classes/CHostGroup.php.

hostgroup.get

Description

integer/array hostgroup.get(object parameters)

The method allows to retrieve host groups according to the given parameters.

Parameters

(object) Parameters defining the desired output.

The method supports the following parameters.

Parameter Type Description

graphids string/array Return only host groups that contain hosts or
templates with the given graphs.

groupids string/array Return only host groups with the given host group IDs.

528

Parameter Type Description

hostids string/array Return only host groups that contain the given hosts.
maintenanceids string/array Return only host groups that are affected by the given

maintenances.
monitored_hosts flag Return only host groups that contain monitored hosts.
not_proxy_hosts flag Return only host groups that do not contain proxies.
real_hosts flag Return only host groups that contain hosts.
templated_hosts flag Return only host groups that contain templates.
templateids string/array Return only host groups that contain the given

templates.
triggerids string/array Return only host groups that contain hosts or

templates with the given triggers.
with_applications flag Return only host groups that contain hosts with

applications.
with_graphs flag Return only host groups that contain hosts with

graphs.
with_hosts_and_templates flag Return only host groups that contain hosts or

templates.
with_httptests flag Return only host groups that contain hosts with web

checks.

Overrides the with_monitored_httptests
parameter.

with_items flag Return only host groups that contain hosts or
templates with items.

Overrides the with_monitored_items
andwith_simple_graph_items parameters.

with_monitored_httptests flag Return only host groups that contain hosts with
enabled web checks.

with_monitored_items flag Return only host groups that contain hosts or
templates with enabled items.

Overrides the with_simple_graph_items
parameter.

with_monitored_triggers flag Return only host groups that contain hosts with
enabled triggers. All of the items used in the trigger
must also be enabled.

with_simple_graph_items flag Return only host groups that contain hosts with
numeric items.

with_triggers flag Return only host groups that contain hosts with
triggers.

Overrides the with_monitored_triggers
parameter.

selectDiscoveryRule query Return the LLD rule that created the host group in the
discoveryRule property.

selectGroupDiscovery query Return the host group discovery object in the
groupDiscovery property.

The host group discovery object links a discovered
host group to a host group prototype and has the
following properties:
groupid - (string) ID of the discovered host group;
lastcheck - (timestamp) time when the host
group was last discovered;
name - (string) name of the host goup prototype;
parent_group_prototypeid - (string) ID of the
host group prototype from which the host group has
been created;
ts_delete - (timestamp) time when a host group
that is no longer discovered will be deleted.

529

Parameter Type Description

selectHosts query Return the hosts that belong to the host group in the
hosts property.

Supports count.
selectTemplates query Return the templates that belong to the host group in

the templates property.

Supports count.
limitSelects integer Limits the number of records returned by subselects.

Applies to the following subselects:
selectHosts - results will be sorted by host;
selectTemplates - results will be sorted by host.

sortfield string/array Sort the result by the given properties.

Possible values are: groupid, name.
countOutput flag These parameters being common for all get methods

are described in detail in the reference commentary
page.

editable boolean
excludeSearch flag
filter object
limit integer
nodeids string/array
output query
preservekeys flag
search object
searchByAny boolean
searchWildcardsEnabled boolean
sortorder string/array
startSearch flag

Return values

(integer/array) Returns either:

• an array of objects;
• the count of retrieved objects, if the countOutput parameter has been used.

Examples

Retrieving data by name

Retrieve all data about two host groups named ”Zabbix servers” and ”Linux servers”.

Request:

{
"jsonrpc": "2.0",
"method": "hostgroup.get",
"params": {

"output": "extend",
"filter": {

"name": [
"Zabbix servers",
"Linux servers"

]
}

},
"auth": "6f38cddc44cfbb6c1bd186f9a220b5a0",
"id": 1

}

Response:

530

{
"jsonrpc": "2.0",
"result": [

{
"groupid": "2",
"name": "Linux servers",
"internal": "0"

},
{

"groupid": "4",
"name": "Zabbix servers",
"internal": "0"

}
],
"id": 1

}

See also

• hostgroup.getobjects
• Host
• Template

Source

CHostGroup::get() in frontends/php/api/classes/CHostGroup.php.

hostgroup.getobjects

Description

array hostgroup.getobjects(object filter)

This method allows to retrieve host groups that match the given filter criteria.

Parameters

(object) Criteria to search by.

The following parameters are supported as search criteria.

Parameter Type Description

groupid string/array Host group IDs.
name string/array Names of the host groups.
node string Name of the node the host groups must belong to.

This will override the nodeids parameter.
nodeids string/array IDs of the nodes the host groups must belong to.

Return values

(array) Returns an array of objects with all properties.

Examples

Retrieve a host group by name

Retrieve a host group called ”Zabbix servers.”

Request:

{
"jsonrpc": "2.0",
"method": "hostgroup.getobjects",
"params": {

"name": "Linux servers"
},
"auth": "3a57200802b24cda67c4e4010b50c065",

531

"id": 1
}

Response:

{
"jsonrpc": "2.0",
"result": [

{
"groupid": "2",
"name": "Linux servers",
"internal": "0"

}
],
"id": 16

}

See also

• hostgroup.get

Source

CHostGroup::getObject() in frontends/php/api/classes/CHostGroup.php.

hostgroup.isreadable

Description

boolean hostgroup.isreadable(array hostGroupIds)

This method checks if the given host groups are available for reading.

Parameters

(array) IDs of the host groups to check.

Return values

(boolean) Returns true if the given host groups are available for reading.

Examples

Check multiple host groups

Check if the two host groups are readable.

Request:

{
"jsonrpc": "2.0",
"method": "hostgroup.isreadable",
"params": [

"5",
"7"

],
"auth": "038e1d7b1735c6a5436ee9eae095879e",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": true,
"id": 1

}

See also

• hostgroup.exists
• hostgroup.iswritable

532

Source

CHostGroup::isReadable() in frontends/php/api/classes/CHostGroup.php.

hostgroup.iswritable

Description

boolean hostgroup.iswritable(array hostGroupIds)

This method checks if the given host groups are available for writing.

Parameters

(array) IDs of the host groups to check.

Return values

(boolean) Returns true if the given host groups are available for writing.

Examples

Check multiple host groups

Check if the two host groups are writable.

Request:

{
"jsonrpc": "2.0",
"method": "hostgroup.iswritable",
"params": [

"5",
"7"

],
"auth": "038e1d7b1735c6a5436ee9eae095879e",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": true,
"id": 1

}

See also

• hostgroup.isreadable
• hostgroup.exists

Source

CHostGroup::isWritable() in frontends/php/api/classes/CHostGroup.php.

hostgroup.massadd

Description

object hostgroup.massadd(object parameters)

This method allows to simultaneously add multiple related objects to all the given host groups.

Parameters

(object) Parameters containing the IDs of the host groups to update and the objects to add to all the host groups.

The method accepts the following parameters.

533

Parameter Type Description

groups
(required)

object/array Host groups to be updated.

The host groups must have the groupid property
defined.

hosts object/array Hosts to add to all host groups.

The hosts must have the hostid property defined.
templates object/array Templates to add to all host groups.

The templates must have the templateid property
defined.

Return values

(object) Returns an object containing the IDs of the updated host groups under the groupids property.

Examples

Adding hosts to host groups

Add two hosts to host groups with IDs 5 and 6.

Request:

{
"jsonrpc": "2.0",
"method": "hostgroup.massadd",
"params": {

"groups": [
{

"groupid": "5"
},
{

"groupid": "6"
}

],
"hosts": [

{
"hostid": "30050"

},
{

"hostid": "30001"
}

]
},
"auth": "f223adf833b2bf2ff38574a67bba6372",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": {

"groupids": [
"5",
"6"

]
},
"id": 1

}

See also

• Host

534

• Template

Source

CHostGroup::massAdd() in frontends/php/api/classes/CHostGroup.php.

hostgroup.massremove

Description

object hostgroup.massremove(object parameters)

This method allows to remove related objects from multiple host groups.

Parameters

(object) Parameters containing the IDs of the host groups to update and the objects that should be removed.

Parameter Type Description

groupids
(required)

string/array IDs of the host groups to be updated.

hostids string/array Hosts to remove from all host groups.
templateids string/array Templates to remove from all host groups.

Return values

(object) Returns an object containing the IDs of the updated host groups under the groupids property.

Examples

Removing hosts from host groups

Remove two hosts from the given host groups.

Request:

{
"jsonrpc": "2.0",
"method": "hostgroup.massremove",
"params": {

"groupids": [
"5",
"6"

],
"hostids": [

"30050",
"30001"

]
},
"auth": "038e1d7b1735c6a5436ee9eae095879e",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": {

"groupids": [
"5",
"6"

]
},
"id": 1

}

Source

CHostGroup::massRemove() in frontends/php/api/classes/CHostGroup.php.

535

hostgroup.massupdate

Description

object hostgroup.massupdate(object parameters)

This method allows to simultaneously replace or remove related objects for multiple host groups.

Parameters

(object) Parameters containing the IDs of the host groups to update and the objects that should be updated.

Parameter Type Description

groups
(required)

object/array Host groups to be updated.

The host groups must have the groupid property
defined.

hosts object/array Hosts to replace the current hosts on the given host
groups.

The hosts must have the hostid property defined.
templates object/array Templates to replace the current templates on the

given host groups.

The templates must have the templateid property
defined.

Return values

(object) Returns an object containing the IDs of the updated host groups under the groupids property.

Examples

Replacing hosts in a host group

Replace all hosts in the host group with ID.

Request:

{
"jsonrpc": "2.0",
"method": "hostgroup.massupdate",
"params": {

"groups": [
{

"groupid": "6"
}

],
"hosts": [

{
"hostid": "30050"

}
]

},
"auth": "f223adf833b2bf2ff38574a67bba6372",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": {

"groupids": [
"6",

]
},

536

"id": 1
}

See also

• hostgroup.update
• hostgroup.massadd
• Host
• Template

Source

CHostGroup::massUpdate() in frontends/php/api/classes/CHostGroup.php.

hostgroup.update

Description

object hostgroup.update(object/array hostGroups)

This method allows to update existing hosts groups.

Parameters

(object/array) Host group properties to be updated.

The groupid property must be defined for each host group, all other properties are optional. Only the given properties will be
updated, all others will remain unchanged.

Return values

(object) Returns an object containing the IDs of the updated host groups under the groupids property.

Examples

Renaming a host group

Rename a host group to ”Linux hosts.”

Request:

{
"jsonrpc": "2.0",
"method": "hostgroup.update",
"params": {

"groupid": "7",
"name": "Linux hosts"

},
"auth": "700ca65537074ec963db7efabda78259",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": {

"groupids": [
"7"

]
},
"id": 1

}

Source

CHostGroup::update() in frontends/php/api/classes/CHostGroup.php.

537

Host interface

This class is designed to work with host interfaces.

Object references:

• Host interface

Available methods:

• hostinterface.create - creating new host interfaces
• hostinterface.delete - deleting host interfaces
• hostinterface.exists - checking if a host interface exists
• hostinterface.get - retrieving host interfaces
• hostinterface.massadd - adding host interfaces to hosts
• hostinterface.massremove - removing host interfaces from hosts
• hostinterface.replacehostinterfaces - replacing host interfaces on a host
• hostinterface.update - updating host interfaces

> Host interface object

The following objects are directly related to the hostinterface API.

Host interface

The host interface object has the following properties.

Attention:
Note that both IP and DNS are required. If you do not want to use DNS, set it to an empty string.

Property Type Description

interfaceid string (readonly) ID of the interface.
dns
(required)

string DNS name used by the interface.

Can be empty if the connection is made via IP.
hostid
(required)

string ID of the host the interface belongs to.

ip
(required)

string IP address used by the interface.

Can be empty if the connection is made via DNS.
main
(required)

integer Whether the interface is used as default on the host.
Only one interface of some type can be set as default on
a host.

Possible values are:
0 - not default;
1 - default.

port
(required)

string Port number used by the interface. Can contain user
macros.

type
(required)

integer Interface type.

Possible values are:
1 - agent;
2 - SNMP;
3 - IPMI;
4 - JMX.

538

Property Type Description

useip
(required)

integer Whether the connection should be made via IP.

Possible values are:
0 - connect using host DNS name;
1 - connect using host IP address.

hostinterface.create

Description

object hostinterface.create(object/array hostInterfaces)

This method allows to create new host interfaces.

Parameters

(object/array) Host interfaces to create. The method accepts host interfaces with the standard host interface properties.

Return values

(object) Returns an object containing the IDs of the created host interfaces under the interfaceids property. The order of
the returned IDs matches the order of the passed host interfaces.

Examples

Create a new interface

Create a secondary IP agent interface on host ”30052.”

Request:

{
"jsonrpc": "2.0",
"method": "hostinterface.create",
"params": {

"hostid": "30052",
"dns": "",
"ip": "127.0.0.1",
"main": 0,
"port": "10050",
"type": 1,
"useip": 1

},
"auth": "038e1d7b1735c6a5436ee9eae095879e",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": {

"interfaceids": [
"30062"

]
},
"id": 1

}

See also

• hostinterface.massadd
• host.massadd

Source

CHostInterface::create() in frontends/php/api/classes/CHostInterface.php.

539

hostinterface.delete

Description

object hostinterface.delete(array hostInterfaceIds)

This method allows to delete host interfaces.

Parameters

(array) IDs of the host interfaces to delete.

Return values

(object) Returns an object containing the IDs of the deleted host interfaces under the interfaceids property.

Examples

Delete a host interface

Delete the host interface with ID 30062.

Request:

{
"jsonrpc": "2.0",
"method": "hostinterface.delete",
"params": [

"30062"
],
"auth": "3a57200802b24cda67c4e4010b50c065",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": {

"interfaceids": [
"30062"

]
},
"id": 1

}

See also

• hostinterface.massremove
• host.massremove

Source

CHostInterface::delete() in frontends/php/api/classes/CHostInterface.php.

hostinterface.exists

Description

boolean hostinterface.exists(object filter)

This method checks if at least one host interface that matches the given filter criteria exists.

Parameters

(object) Criteria to search by.

The following parameters are supported as search criteria.

Parameter Type Description

dns string/array DNS of the host interfaces.

540

Parameter Type Description

hostid string/array IDs of the hosts that the host interfaces must belong
to.

interfaceid string/array Host interface IDs.
ip string/array IPs of the host interfaces.
node string Name of the node the host interfaces must belong to.

This will override the nodeids parameter.
nodeids string/array IDs of the node the host interfaces must belong to.

Return values

(boolean) Returns true if at least one host interface that matches the given filter criteria exists.

Examples

Check interface on host

Check if a host interface with IP 127.0.0.1 exists on host 30037.

Request:

{
"jsonrpc": "2.0",
"method": "hostinterface.exists",
"params": {

"hostid": "30037",
"ip": "127.0.0.1"

},
"auth": "3a57200802b24cda67c4e4010b50c065",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": true,
"id": 1

}

Source

CHostInterface::exists() in frontends/php/api/classes/CHostInterface.php.

hostinterface.get

Description

integer/array hostinterface.get(object parameters)

The method allows to retrieve host interfaces according to the given parameters.

Parameters

(object) Parameters defining the desired output.

The method supports the following parameters.

Parameter Type Description

hostids string/array Return only host interfaces used by the given hosts.
interfaceids string/array Return only host interfaces with the given IDs.
itemids string/array Return only host interfaces used by the given items.
triggerids string/array Return only host interfaces used by items in the given

triggers.

541

Parameter Type Description

selectItems query Return the items that use the interface in the items
property.

Supports count.
selectHosts query Return the host that uses the interface as an array in

the hosts property.
limitSelects integer Limits the number of records returned by subselects.

Applies to the following subselects:
selectItems.

sortfield string/array Sort the result by the given properties.

Possible values are: interfaceid, dns, ip.
countOutput flag These parameters being common for all get methods

are described in detail in the reference commentary
page.

editable boolean
excludeSearch flag
filter object
limit integer
nodeids string/array
output query
preservekeys flag
search object
searchByAny boolean
searchWildcardsEnabled boolean
sortorder string/array
startSearch flag

Return values

(integer/array) Returns either:

• an array of objects;
• the count of retrieved objects, if the countOutput parameter has been used.

Examples

Retrieve host interfaces

Retrieve all data about the interfaces used by host ”30057.”

Request:

{
"jsonrpc": "2.0",
"method": "hostinterface.get",
"params": {

"output": "extend",
"hostids": "30057"

},
"auth": "038e1d7b1735c6a5436ee9eae095879e",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": [

{
"interfaceid": "30050",
"hostid": "30057",
"main": "1",
"type": "1",

542

"useip": "1",
"ip": "127.0.0.1",
"dns": "",
"port": "10050"

},
{

"interfaceid": "30067",
"hostid": "30057",
"main": "0",
"type": "1",
"useip": "0",
"ip": "",
"dns": "localhost",
"port": "10050"

},
{

"interfaceid": "30068",
"hostid": "30057",
"main": "1",
"type": "2",
"useip": "1",
"ip": "127.0.0.1",
"dns": "",
"port": "161"

}
],
"id": 1

}

See also

• Host
• Item

Source

CHostInterface::get() in frontends/php/api/classes/CHostInterface.php.

hostinterface.massadd

Description

object hostinterface.massadd(object parameters)

This method allows to simultaneously add host interfaces to multiple hosts.

Parameters

(object) Parameters containing the host interfaces to be created on the given hosts.

The method accepts the following parameters.

Parameter Type Description

hosts
(required)

object/array Hosts to be updated.

The hosts must have the hostid property defined.
interfaces
(required)

object/array Host interfaces to create on the given hosts.

Return values

(object) Returns an object containing the IDs of the created host interfaces under the interfaceids property.

Examples

Creating interfaces

543

Create an interface on two hosts.

Request:

{
"jsonrpc": "2.0",
"method": "hostinterface.massadd",
"params": {

"hosts": [
{

"hostid": "30050"
},
{

"hostid": "30052"
}

],
"interfaces": {

"dns": "",
"ip": "127.0.0.1",
"main": 0,
"port": "10050",
"type": 1,
"useip": 1

}
},
"auth": "038e1d7b1735c6a5436ee9eae095879e",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": {

"interfaceids": [
"30069",
"30070"

]
},
"id": 1

}

See also

• hostinterface.create
• host.massadd
• Host

Source

CHostInterface::massAdd() in frontends/php/api/classes/CHostInterface.php.

hostinterface.massremove

Description

object hostinterface.massremove(object parameters)

This method allows to remove host interfaces from the given hosts.

Parameters

(object) Parameters containing the IDs of the hosts to be updated and the interfaces to be removed.

Parameter Type Description

hostids
(required)

string/array IDs of the hosts to be updated.

544

Parameter Type Description

interfaces
(required)

object/array Host interfaces to remove from the given hosts.

The host interface object must have the ip, dns and
port properties defined

Return values

(object) Returns an object containing the IDs of the deleted host interfaces under the interfaceids property.

Examples

Removing interfaces

Remove the ”127.0.0.1” SNMP interface from two hosts.

Request:

{
"jsonrpc": "2.0",
"method": "hostinterface.massremove",
"params": {

"hostids": [
"30050",
"30052"

],
"interfaces": {

"dns": "",
"ip": "127.0.0.1",
"port": "161"

}
},
"auth": "038e1d7b1735c6a5436ee9eae095879e",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": {

"interfaceids": [
"30069",
"30070"

]
},
"id": 1

}

See also

• hostinterface.delete
• host.massremove

Source

CHostInterface::massRemove() in frontends/php/api/classes/CHostInterface.php.

hostinterface.replacehostinterfaces

Description

object hostinterface.replacehostinterfaces(object parameters)

This method allows to replace all host interfaces on a given host.

Parameters

(object) Parameters containing the ID of the host to be updated and the new host interfaces.

545

Parameter Type Description

hostid
(required)

string ID of the host to be updated.

interfaces
(required)

object/array Host interfaces to replace the current host interfaces
with.

Return values

(object) Returns an object containing the IDs of the created host interfaces under the interfaceids property.

Examples

Replacing host interfaces

Replace all host interfaces with a single agent interface.

Request:

{
"jsonrpc": "2.0",
"method": "hostinterface.replacehostinterfaces",
"params": {

"hostid": "30052",
"interfaces": {

"dns": "",
"ip": "127.0.0.1",
"main": 1,
"port": "10050",
"type": 1,
"useip": 1

}
},
"auth": "038e1d7b1735c6a5436ee9eae095879e",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": {

"interfaceids": [
"30081"

]
},
"id": 1

}

See also

• host.update
• host.massupdate

Source

CHostInterface::replaceHostInterfaces() in frontends/php/api/classes/CHostInterface.php.

hostinterface.update

Description

object hostinterface.update(object/array hostInterfaces)

This method allows to update existing host interfaces.

Parameters

(object/array) Host interface properties to be updated.

546

The interfaceid property must be defined for each host interface, all other properties are optional. Only the given properties
will be updated, all others will remain unchanged.

Return values

(object) Returns an object containing the IDs of the updated host interfaces under the interfaceids property.

Examples

Changing a host interface port

Change the port of a host interface.

Request:

{
"jsonrpc": "2.0",
"method": "hostinterface.update",
"params": {

"interfaceid": "30048",
"port": "30050"

},
"auth": "038e1d7b1735c6a5436ee9eae095879e",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": {

"interfaceids": [
"30048"

]
},
"id": 1

}

Source

CHostInterface::update() in frontends/php/api/classes/CHostInterface.php.

Host prototype

This class is designed to work with host prototypes.

Object references:

• Host prototype
• Host prototype inventory
• Group link
• Group prototype

Available methods:

• hostprototype.create - creating new host prototypes
• hostprototype.delete - deleting host prototypes
• hostprototype.get - retrieving host prototypes
• hostprototype.isreadable - checking if host prototypes are readable
• hostprototype.iswritable - checking if host prototypes are writable
• hostprototype.update - updating host prototypes

> Host prototype object

The following objects are directly related to the hostprototype API.

Host prototype

547

The host prototype object has the following properties.

Property Type Description

hostid string (readonly) ID of the host prototype.
host
(required)

string Technical name of the host prototype.

name string Visible name of the host prototype.

Default: host property value.
status integer Status of the host prototype.

Possible values are:
0 - (default) monitored host;
1 - unmonitored host.

templateid string (readonly) ID of the parent template host prototype.

Host prototype inventory

The host prototype inventory object has the following properties.

Property Type Description

inventory_mode integer Host prototype inventory population mode.

Possible values are:
-1 - disabled;
0 - (default) manual;
1 - automatic.

Group link

The group link object links a host prototype with a host group and has the following properties.

Property Type Description

group_prototypeid string (readonly) ID of the group link.
groupid
(required)

string ID of the host group.

hostid string (readonly) ID of the host prototype
templateid string (readonly) ID of the parent template group link.

Group prototype

The group prototype object defines a group that will be created for a discovered host and has the following properties.

Property Type Description

group_prototypeid string (readonly) ID of the group prototype.
name
(required)

string Name of the group prototype.

hostid string (readonly) ID of the host prototype
templateid string (readonly) ID of the parent template group prototype.

hostprototype.create

Description

object hostprototype.create(object/array hostPrototypes)

This method allows to create new host prototypes.

Parameters

(object/array) Host prototypes to create.

548

Additionally to the standard host prototype properties, the method accepts the following parameters.

Parameter Type Description

groupLinks
(required)

array Group links to be created for the host prototype.

ruleid
(required)

string ID of the LLD rule that the host prototype belongs to.

groupPrototypes array Group prototypes to be created for the host prototype.
inventory object Host prototype inventory properties.
templates object/array Templates to be linked to the host prototype.

The templates must have the templateid property
defined.

Return values

(object) Returns an object containing the IDs of the created host prototypes under the hostids property. The order of the
returned IDs matches the order of the passed host prototypes.

Examples

Creating a host prototype

Create a host prototype ”{#VM.NAME}” on LLD rule ”23542” with a group prototype ”{#HV.NAME}”. Link it to host group ”2”.

Request:

{
"jsonrpc": "2.0",
"method": "hostprototype.create",
"params": {

"host": "{#VM.NAME}",
"ruleid": "23542",
"groupLinks": [

{
"groupid": "2"

}
],
"groupPrototypes": [

{
"name": "{#HV.NAME}"

}
]

},
"auth": "038e1d7b1735c6a5436ee9eae095879e",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": {

"hostids": [
"10103"

]
},
"id": 1

}

See also

• Group link
• Group prototype
• Host prototype inventory

549

Source

CHostPrototype::create() in frontends/php/api/classes/CHostPrototype.php.

hostprototype.delete

Description

object hostprototype.delete(array hostPrototypeIds)

This method allows to delete host prototypes.

Parameters

(array) IDs of the host prototypes to delete.

Return values

(object) Returns an object containing the IDs of the deleted host prototypes under the hostids property.

Examples

Deleting multiple host prototypes

Delete two host prototypes.

Request:

{
"jsonrpc": "2.0",
"method": "hostprototype.delete",
"params": [

"10103",
"10105"

],
"auth": "3a57200802b24cda67c4e4010b50c065",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": {

"hostids": [
"10103",
"10105"

]
},
"id": 1

}

Source

CHostPrototype::delete() in frontends/php/api/classes/CHostPrototype.php.

hostprototype.get

Description

integer/array hostprototype.get(object parameters)

The method allows to retrieve host prototypes according to the given parameters.

Parameters

(object) Parameters defining the desired output.

The method supports the following parameters.

550

Parameter Type Description

hostids string/array Return only host prototypes with the given IDs.
discoveryids string/array Return only host prototype that belong to the given

LLD rules.
inherited boolean If set to true return only items inherited from a

template.
selectDiscoveryRule query Return the LLD rule that the host prototype belongs to

in the discoveryRule property.
selectGroupLinks query Return the group links of the host prototype in the

groupLinks property.
selectGroupPrototypes query Return the group prototypes of the host prototype in

the groupPrototypes property.
selectInventory boolean/array Return the host prototype inventory in the

inventory property.

Possible values are true to return all of the data, or
an array of property names to return only specific
properties.

selectParentHost query Return the host that the host prototype belongs to in
the parentHost property.

selectTemplates query Return the templates linked to the host prototype in
the templates property.

sortfield string/array Sort the result by the given properties.

Possible values are: hostid, host, name and
status.

countOutput flag These parameters being common for all get methods
are described in detail on the Generic Zabbix API
information page.

editable boolean
excludeSearch flag
filter object
limit integer
nodeids string/array
output query
preservekeys flag
search object
searchByAny boolean
searchWildcardsEnabled boolean
sortorder string/array
startSearch flag

Return values

(integer/array) Returns either:

• an array of objects;
• the count of retrieved objects, if the countOutput parameter has been used.

Examples

Retrieving host prototypes from an LLD rule

Retrieve all host prototypes and their group links and group prototypes from an LLD rule.

Request:

{
"jsonrpc": "2.0",
"method": "hostprototype.get",
"params": {

"output": "extend",
"selectGroupLinks": "extend",
"selectGroupPrototypes": "extend",
"discoveryids": "23554"

551

},
"auth": "038e1d7b1735c6a5436ee9eae095879e",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": [

{
"hostid": "10092",
"host": "{#HV.UUID}",
"status": "0",
"name": "{#HV.NAME}",
"templateid": "0",
"groupLinks": [

{
"group_prototypeid": "4",
"hostid": "10092",
"groupid": "7",
"templateid": "0"

}
],
"groupPrototypes": [

{
"group_prototypeid": "7",
"hostid": "10092",
"name": "{#CLUSTER.NAME}",
"templateid": "0"

}
]

}
],
"id": 1

}

See also

• Group link
• Group prototype
• Host prototype inventory

Source

CHostPrototype::get() in frontends/php/api/classes/CHostPrototype.php.

hostprototype.isreadable

Description

boolean hostprototype.isreadable(array hostPrototypeIds)

This method checks if the given host prototypes are available for reading.

Parameters

(array) IDs of the host prototypes to check.

Return values

(boolean) Returns true if the given host prototypes are available for reading.

Examples

Check multiple host prototypes

Check if the two host prototypes are readable.

Request:

552

{
"jsonrpc": "2.0",
"method": "hostprototype.isreadable",
"params": [

"10092",
"10093"

],
"auth": "038e1d7b1735c6a5436ee9eae095879e",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": true,
"id": 1

}

See also

• hostprototype.iswritable

Source

CHostPrototype::isReadable() in frontends/php/api/classes/CHostPrototype.php.

hostprototype.iswritable

Description

boolean hostprototype.iswritable(array hostPrototypeIds)

This method checks if the given host prototypes are available for writing.

Parameters

(array) IDs of the host prototypes to check.

Return values

(boolean) Returns true if the given host prototypes are available for writing.

Examples

Check multiple host prototypes

Check if the two host prototypes are writable.

Request:

{
"jsonrpc": "2.0",
"method": "hostprototype.iswritable",
"params": [

"10092",
"10093"

],
"auth": "038e1d7b1735c6a5436ee9eae095879e",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": true,
"id": 1

}

See also

553

• hostprototype.isreadable

Source

CHostPrototype::isWritable() in frontends/php/api/classes/CHostPrototype.php.

hostprototype.update

Description

object hostprototype.update(object/array hostPrototypes)

This method allows to update existing host prototypes.

Parameters

(object/array) Host prototype properties to be updated.

The hostid property must be defined for each host prototype, all other properties are optional. Only the passed properties will
be updated, all others will remain unchanged.

Additionally to the standard host prototype properties, the method accepts the following parameters.

Parameter Type Description

groupLinks array Group links to replace the current group links on the
host prototype.

groupPrototypes array Group prototypes to replace the existing group
prototypes on the host prototype.

inventory object Host prototype inventory properties.
templates object/array Templates to replace the currently linked templates.

The templates must have the templateid property
defined.

Return values

(object) Returns an object containing the IDs of the updated host prototypes under the hostids property.

Examples

Disabling a host prototype

Disable a host prototype, that is, set its status to 1.

Request:

{
"jsonrpc": "2.0",
"method": "hostprototype.update",
"params": {

"hostid": "10092",
"status": 1

},
"auth": "038e1d7b1735c6a5436ee9eae095879e",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": {

"hostids": [
"10092"

]
},
"id": 1

}

554

See also

• Group link
• Group prototype
• Host prototype inventory

Source

CHostPrototype::update() in frontends/php/api/classes/CHostPrototype.php.

Icon map

This class is designed to work with icon maps.

Object references:

• Icon map
• Icon mapping

Available methods:

• iconmap.create - create new icon maps
• iconmap.delete - delete icon maps
• iconmap.get - retrieve icon maps
• iconmap.isreadable - check if an icon map is readable
• iconmap.iswritable - check if an icon map is writable
• iconmap.update - update icon maps

> Icon map object

The following objects are directly related to the iconmap API.

Icon map

The icon map object has the following properties.

Property Type Description

iconmapid string (readonly) ID of the icon map.
default_iconid
(reqiured)

string ID of the default icon.

name
(required)

string Name of the icon map.

Icon mapping

The icon mapping object defines a specific icon to be used for hosts with a certain inventory field value. It has the following
properties.

Property Type Description

iconmappingid string (readonly) ID of the icon map.
iconid
(required)

string ID of the icon used by the icon mapping.

expression
(required)

string Expression to match the inventory field against.

inventory_link
(required)

integer ID of the host inventory field.

Refer to the host inventory object for a list of supported
inventory fields.

iconmapid string (readonly) ID of the icon map that the icon mapping
belongs to.

555

Property Type Description

sortorder integer Position of the icon mapping in the icon map.

Default: 0.

iconmap.create

Description

object iconmap.create(object/array iconMaps)

This method allows to create new icon maps.

Parameters

(object/array) Icon maps to create.

Additionally to the standard icon map properties, the method accepts the following parameters.

Parameter Type Description

mappings
(required)

array Icon mappings to be created for the icon map.

Return values

(object) Returns an object containing the IDs of the created icon maps under the iconmapids property. The order of the
returned IDs matches the order of the passed icon maps.

Examples

Create an icon map

Create an icon map to display hosts of different types.

Request:

{
"jsonrpc": "2.0",
"method": "iconmap.create",
"params": {

"name": "Type icons",
"default_iconid": "2",
"mappings": [

{
"inventory_link": 1,
"expression": "server",
"iconid": "3"

},
{

"inventory_link": 1,
"expression": "switch",
"iconid": "4"

}
]

},
"auth": "038e1d7b1735c6a5436ee9eae095879e",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": {

"iconmapids": [
"2"

556

]
},
"id": 1

}

See also

• Icon mapping

Source

CIconMap::create() in frontends/php/api/classes/CIconMap.php.

iconmap.delete

Description

object iconmap.delete(array iconMapIds)

This method allows to delete icon maps.

Parameters

(array) IDs of the icon maps to delete.

Return values

(object) Returns an object containing the IDs of the deleted icon maps under the iconmapids property.

Examples

Delete multiple icon maps

Delete two icon maps.

Request:

{
"jsonrpc": "2.0",
"method": "iconmap.delete",
"params": [

"2",
"5"

],
"auth": "3a57200802b24cda67c4e4010b50c065",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": {

"iconmapids": [
"2",
"5"

]
},
"id": 1

}

Source

CIconMap::delete() in frontends/php/api/classes/CIconMap.php.

iconmap.get

Description

integer/array iconmap.get(object parameters)

557

The method allows to retrieve icon maps according to the given parameters.

Parameters

(object) Parameters defining the desired output.

The method supports the following parameters.

Parameter Type Description

iconmapids string/array Return only icon maps with the given IDs.
sysmapids string/array Return only icon maps that are used in the given

maps.
selectMappings query Return used icon mappings in the mappings property.
sortfield string/array Sort the result by the given properties.

Possible values are: iconmapid and name.
countOutput flag These parameters being common for all get methods

are described in detail in the reference commentary.
editable boolean
excludeSearch flag
filter object
limit integer
nodeids string/array
output query
preservekeys flag
search object
searchByAny boolean
searchWildcardsEnabled boolean
sortorder string/array
startSearch flag

Return values

(integer/array) Returns either:

• an array of objects;
• the count of retrieved objects, if the countOutput parameter has been used.

Examples

Retrieve an icon map

Retrieve all data about icon map ”3”.

Request:

{
"jsonrpc": "2.0",
"method": "iconmap.get",
"params": {

"iconmapids": "3",
"output": "extend",
"selectMappings": "extend"

},
"auth": "038e1d7b1735c6a5436ee9eae095879e",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": [

{
"mappings": [

{
"iconmappingid": "3",

558

"iconmapid": "3",
"iconid": "6",
"inventory_link": "1",
"expression": "server",
"sortorder": "0"

},
{

"iconmappingid": "4",
"iconmapid": "3",
"iconid": "10",
"inventory_link": "1",
"expression": "switch",
"sortorder": "1"

}
],
"iconmapid": "3",
"name": "Host type icons",
"default_iconid": "2"

}
],
"id": 1

}

See also

• Icon mapping

Source

CIconMap::get() in frontends/php/api/classes/CIconMap.php.

iconmap.isreadable

Description

boolean iconmap.isreadable(array iconMapIds)

This method checks if the given icon maps are available for reading.

Parameters

(array) IDs of the icon maps to check.

Return values

(boolean) Returns true if the given icon maps are available for reading.

Examples

Check multiple icon maps

Check if the two icon maps are readable.

Request:

{
"jsonrpc": "2.0",
"method": "iconmap.isreadable",
"params": [

"4", "6"
],
"auth": "038e1d7b1735c6a5436ee9eae095879e",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": true,

559

"id": 1
}

See also

• iconmap.iswritable

Source

CIconMap::isReadable() in frontends/php/api/classes/CIconMap.php.

iconmap.iswritable

Description

boolean iconmap.iswritable(array iconMapIds)

This method checks if the given icon maps are available for writing.

Parameters

(array) IDs of the icon maps to check.

Return values

(boolean) Returns true if the given icon maps are available for writing.

Examples

Check multiple icon maps

Check if the two icon maps are writable.

Request:

{
"jsonrpc": "2.0",
"method": "iconmap.iswritable",
"params": [

"4", "6"
],
"auth": "038e1d7b1735c6a5436ee9eae095879e",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": true,
"id": 1

}

See also

• iconmap.isreadable

Source

CIconMap::isWritable() in frontends/php/api/classes/CIconMap.php.

iconmap.update

Description

object iconmap.update(object/array iconMaps)

This method allows to update existing icon maps.

Parameters

(object/array) Icon map properties to be updated.

560

The iconmapid property must be defined for each icon map, all other properties are optional. Only the passed properties will be
updated, all others will remain unchanged.

Additionally to the standard icon map properties, the method accepts the following parameters.

Parameter Type Description

mappings array Icon mappings to replace the existing icon mappings.

Return values

(object) Returns an object containing the IDs of the updated icon maps under the iconmapids property.

Examples

Rename icon map

Rename an icon map to ”OS icons”.

Request:

{
"jsonrpc": "2.0",
"method": "iconmap.update",
"params": {

"iconmapid": "1",
"name": "OS icons"

},
"auth": "038e1d7b1735c6a5436ee9eae095879e",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": {

"iconmapids": [
"1"

]
},
"id": 1

}

See also

• Icon mapping

Source

CIconMap::update() in frontends/php/api/classes/CIconMap.php.

Image

This class is designed to work with images.

Object references:

• Image

Available methods:

• image.create - create new images
• image.delete - delete images
• image.exists - check if an image exists
• image.get - retrieve images
• image.getobjects - retrieve images by filters
• image.update - update images

561

> Image object

The following objects are directly related to the image API.

Image

The image object has the following properties.

Property Type Description

imageid string (readonly) ID of the image.
name
(required)

string Name of the image.

imagetype integer Type of image.

Possible values:
1 - (default) icon;
2 - background image.

image.create

Description

object image.create(object/array images)

This method allows to create new images.

Parameters

(object/array) Images to create.

Additionally to the standard image properties, the method accepts the following parameters.

Parameter Type Description

image
(required)

string Base64 encoded image. The maximum size of the
encoded image is 1 MB.

Return values

(object) Returns an object containing the IDs of the created images under the imageids property. The order of the returned
IDs matches the order of the passed images.

Examples

Create an image

Create a cloud icon.

Request:

{
"jsonrpc": "2.0",
"method": "image.create",
"params": {

"imagetype": 1,
"name": "Cloud_(24)",
"image": "iVBORw0KGgoAAAANSUhEUgAAABgAAAANCAYAAACzbK7QAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAACmAAAApgBNtNH3wAAABl0RVh0U29mdHdhcmUAd3d3Lmlua3NjYXBlLm9yZ5vuPBoAAAIcSURBVDjLrZLbSxRRHMdPKiEiRQ89CD0s+N5j9BIMEf4Hg/jWexD2ZEXQbC9tWUFZimtLhswuZiVujK1UJmYXW9PaCUdtb83enL3P7s6ss5f5dc7EUsmqkPuFH3M4/Ob7+V0OAgC0UyDENFEU03rh1uNOs/lFG75o2i2/rkd9Y3Tgyj3HiaezbukdH9A/rP4E9vWi0u+Y4fuGnMf3DRgYc3Z/84YrQSkD3mgKhFAC+KAEK74Y2Lj3MjPoOokQ3Xyx/1GHeXCifbfO6lRPH/wi+AvZQhGSsgKxdB5CCRkCGPbDgMXBMbukTc4vK5/WRHizsq7fZl2LFuvE4T0BZDTXHtgv4TNUqlUolsqQL2qQwbDEXzBBTIJ7I4y/cfAENmHZF4XrY9Mc+X9HAFmoyXS2ddy1IOg6/KNyBcM0DFP/wFZFCcOy4N9Mw0YkCTOfhdL5AfZQXQBFn2t/ODXHC8FYVcoWjNEQ03qqwTJ5FdI44jg/msoB2Zd5ZKq3q6evA1FUS60bYyyj3AJf3V72HiLZJQxTtRLk1C2IYEg4mTNg63hPd1mOJd7Ict911OMNlWEf0nFxpCt16zcshTuLpGSwDDuPIfv0xzNyQYVGicC0cgUUDLM6Xp02lvvW/V2EBssnxlSGmWsxljw0znV9XfPLjTCW84r+cn7Jc8c2eWrbM6Wbe6/aTJbhJ/TNkWc9/xXW592Xb9iPkKnUfH8BKdLgFy0lDyQAAAAASUVORK5CYII="

},
"auth": "038e1d7b1735c6a5436ee9eae095879e",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": {

562

"imageids": [
"188"

]
},
"id": 1

}

Source

CImage::create() in frontends/php/api/classes/CImage.php.

image.delete

Description

object image.delete(array imageIds)

This method allows to delete images.

Parameters

(array) IDs of the images to delete.

Return values

(object) Returns an object containing the IDs of the deleted images under the imageids property.

Examples

Delete multiple images

Delete two images.

Request:

{
"jsonrpc": "2.0",
"method": "image.delete",
"params": [

"188",
"192"

],
"auth": "3a57200802b24cda67c4e4010b50c065",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": {

"imageids": [
"188",
"192"

]
},
"id": 1

}

Source

CImage::delete() in frontends/php/api/classes/CImage.php.

image.exists

Description

boolean image.exists(object filter)

This method checks if at least one image that matches the given filter criteria exists.

563

Parameters

(object) Criteria to search by.

The following parameters are supported as search criteria.

Parameter Type Description

node string Name of the node the images must belong to.

This will override the nodeids parameter.
nodeids string/array IDs of the nodes the images must belong to.
imageid string/array IDs of images.
imagetype integer/array Types of images.

Refer to the image ”imagetype” property for a list of
supported types.

name string/array Names of images.

Return values

(boolean) Returns true if at least one image that matches the given filter criteria exists.

Examples

Check image by name

Check if an image called ”Cloud_(96)” exists.

Request:

{
"jsonrpc": "2.0",
"method": "image.exists",
"params": {

"name": "Cloud_(96)"
},
"auth": "3a57200802b24cda67c4e4010b50c065",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": true,
"id": 1

}

Source

CImage::exists() in frontends/php/api/classes/CImage.php.

image.get

Description

integer/array image.get(object parameters)

The method allows to retrieve images according to the given parameters.

Parameters

(object) Parameters defining the desired output.

The method supports the following parameters.

Parameter Type Description

imageids string/array Return only images with the given IDs.

564

Parameter Type Description

sysmapids string/array Return images that are used on the given maps.
select_image flag Return the Base64 encoded image in the image

property.
sortfield string/array Sort the result by the given properties.

Possible values are: imageid and name.
countOutput flag These parameters being common for all get methods

are described in detail in the reference commentary.
editable boolean
excludeSearch flag
filter object
limit integer
nodeids string/array
output query
preservekeys flag
search object
searchByAny boolean
searchWildcardsEnabled boolean
sortorder string/array
startSearch flag

Return values

(integer/array) Returns either:

• an array of objects;
• the count of retrieved objects, if the countOutput parameter has been used.

Examples

Retrieve an image

Retrieve all data for image with ID ”2”.

Request:

{
"jsonrpc": "2.0",
"method": "image.get",
"params": {

"output": "extend",
"select_image": true,
"imageids": "2"

},
"auth": "038e1d7b1735c6a5436ee9eae095879e",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": [

{
"imageid": "2",
"imagetype": "1",
"name": "Cloud_(24)",
"image": "iVBORw0KGgoAAAANSUhEUgAAABgAAAANCAYAAACzbK7QAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAACmAAAApgBNtNH3wAAABl0RVh0U29mdHdhcmUAd3d3Lmlua3NjYXBlLm9yZ5vuPBoAAAIcSURBVDjLrZLbSxRRHMdPKiEiRQ89CD0s+N5j9BIMEf4Hg/jWexD2ZEXQbC9tWUFZimtLhswuZiVujK1UJmYXW9PaCUdtb83enL3P7s6ss5f5dc7EUsmqkPuFH3M4/Ob7+V0OAgC0UyDENFEU03rh1uNOs/lFG75o2i2/rkd9Y3Tgyj3HiaezbukdH9A/rP4E9vWi0u+Y4fuGnMf3DRgYc3Z/84YrQSkD3mgKhFAC+KAEK74Y2Lj3MjPoOokQ3Xyx/1GHeXCifbfO6lRPH/wi+AvZQhGSsgKxdB5CCRkCGPbDgMXBMbukTc4vK5/WRHizsq7fZl2LFuvE4T0BZDTXHtgv4TNUqlUolsqQL2qQwbDEXzBBTIJ7I4y/cfAENmHZF4XrY9Mc+X9HAFmoyXS2ddy1IOg6/KNyBcM0DFP/wFZFCcOy4N9Mw0YkCTOfhdL5AfZQXQBFn2t/ODXHC8FYVcoWjNEQ03qqwTJ5FdI44jg/msoB2Zd5ZKq3q6evA1FUS60bYyyj3AJf3V72HiLZJQxTtRLk1C2IYEg4mTNg63hPd1mOJd7Ict911OMNlWEf0nFxpCt16zcshTuLpGSwDDuPIfv0xzNyQYVGicC0cgUUDLM6Xp02lvvW/V2EBssnxlSGmWsxljw0znV9XfPLjTCW84r+cn7Jc8c2eWrbM6Wbe6/aTJbhJ/TNkWc9/xXW592Xb9iPkKnUfH8BKdLgFy0lDyQAAAAASUVORK5CYII="

}
],
"id": 1

}

See also

• image.getobjects

565

Source

CImage::get() in frontends/php/api/classes/CImage.php.

image.getobjects

Description

array image.getobjects(object filter)

This method allows to retrieve images that match the given filter criteria.

Parameters

(object) Criteria to search by.

Additionally to the standard standard image properties the following parameters are supported as search criteria.

Parameter Type Description

node string Name of the node the images must belong to.

This will override the nodeids parameter.
nodeids string/array IDs of the nodes the images must belong to.

Return values

(array) Returns an array of objects with all properties.

Examples

Retrieve image by name

Retrieve image called ”Cloud_(24)”.

Request:

{
"jsonrpc": "2.0",
"method": "image.getobjects",
"params": {

"name": "Cloud_(24)"
},
"auth": "3a57200802b24cda67c4e4010b50c065",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": [

{
"imageid": "2",
"imagetype": "1",
"name": "Cloud_(24)"

}
],
"id": 1

}

See also

• image.get

Source

CImage::getObject() in frontends/php/api/classes/CImage.php.

566

image.update

Description

object image.update(object/array images)

This method allows to update existing images.

Parameters

(object/array) Image properties to be updated.

The imageid property must be defined for each image, all other properties are optional. Only the passed properties will be
updated, all others will remain unchanged.

Additionally to the standard image properties, the method accepts the following parameters.

Parameter Type Description

image string Base64 encoded image. The maximum size of the
encoded image is 1 MB.

Return values

(object) Returns an object containing the IDs of the updated images under the imageids property.

Examples

Rename image

Rename image to ”Cloud icon”.

Request:

{
"jsonrpc": "2.0",
"method": "image.update",
"params": {

"imageid": "2",
"name": "Cloud icon"

},
"auth": "038e1d7b1735c6a5436ee9eae095879e",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": {

"imageids": [
"2"

]
},
"id": 1

}

Source

CImage::update() in frontends/php/api/classes/CImage.php.

Item

This class is designed to work with items.

Object references:

• Item

567

Available methods:

• item.create - creating new items
• item.delete - deleting items
• item.exists - checking if items exists
• item.get - retrieving items
• item.getobjects - retrieving items by filters
• item.isreadable - checking if items are readable
• item.iswritable - checking if items are writable
• item.update - updating items

> Item object

The following objects are directly related to the item API.

Item

Note:
Web items cannot be directly created, updated or deleted via the Zabbix API.

The item object has the following properties.

Property Type Description

itemid string (readonly) ID of the item.
delay
(required)

integer Update interval of the item in seconds.

hostid
(required)

string ID of the host or template that the item belongs to.

interfaceid
(required)

string ID of the item’s host interface.

Not required for template items. Optional for Zabbix
agent (active), Zabbix internal, Zabbix trapper, Zabbix
aggregate, database monitor and calculated items.

key_
(required)

string Item key.

name
(required)

string Name of the item.

type
(required)

integer Type of the item.

Possible values:
0 - Zabbix agent;
1 - SNMPv1 agent;
2 - Zabbix trapper;
3 - simple check;
4 - SNMPv2 agent;
5 - Zabbix internal;
6 - SNMPv3 agent;
7 - Zabbix agent (active);
8 - Zabbix aggregate;
9 - web item;
10 - external check;
11 - database monitor;
12 - IPMI agent;
13 - SSH agent;
14 - TELNET agent;
15 - calculated;
16 - JMX agent;
17 - SNMP trap.

568

Property Type Description

value_type
(required)

integer Type of information of the item.

Possible values:
0 - numeric float;
1 - character;
2 - log;
3 - numeric unsigned;
4 - text.

authtype integer SSH authentication method. Used only by SSH agent
items.

Possible values:
0 - (default) password;
1 - public key.

data_type integer Data type of the item.

Possible values:
0 - (default) decimal;
1 - octal;
2 - hexadecimal;
3 - boolean.

delay_flex string Flexible intervals as a serialized string.

Each serialized flexible interval consists of an update
interval and a time period separated by a forward slash.
Multiple intervals are separated by a colon.

delta integer Value that will be stored.

Possible values:
0 - (default) as is;
1 - Delta, speed per second;
2 - Delta, simple change.

description string Description of the item.
error string (readonly) Error text if there are problems updating the

item.
flags integer (readonly) Origin of the item.

Possible values:
0 - a plain item;
4 - a discovered item.

formula integer/float Custom multiplier.

Default: 1.
history integer Number of days to keep item’s history data.

Default: 90.
inventory_link integer ID of the host inventory field that is populated by the

item.

Refer to the host inventory page for a list of supported
host inventory fields and their IDs.

Default: 0.
ipmi_sensor string IPMI sensor. Used only by IPMI items.
lastclock timestamp (readonly) Time when the item was last updated.

This property will only return a value for the period
configured in ZBX_HISTORY_PERIOD.

569

Property Type Description

lastns integer (readonly) Nanoseconds when the item was last
updated.

This property will only return a value for the period
configured in ZBX_HISTORY_PERIOD.

lastvalue string (readonly) Last value of the item.

This property will only return a value for the period
configured in ZBX_HISTORY_PERIOD.

logtimefmt string Format of the time in log entries. Used only by log items.
mtime timestamp Time when the monitored log file was last updated. Used

only by log items.
multiplier integer Whether to use a custom multiplier.
params string Additional parameters depending on the type of the

item:
- executed script for SSH and Telnet items;
- SQL query for database monitor items;
- formula for calculated items.

password string Password for authentication. Used by simple check, SSH,
Telnet, database monitor and JMX items.

port string Port monitored by the item. Used only by SNMP items.
prevvalue string (readonly) Previous value of the item.

This property will only return a value for the period
configured in ZBX_HISTORY_PERIOD.

privatekey string Name of the private key file.
publickey string Name of the public key file.
snmp_community string SNMP community. Used only by SNMPv1 and SNMPv2

items.
snmp_oid string SNMP OID.
snmpv3_authpassphrase string SNMPv3 auth passphrase. Used only by SNMPv3 items.
snmpv3_authprotocol integer SNMPv3 authentication protocol. Used only by SNMPv3

items.

Possible values:
0 - (default) MD5;
1 - SHA.

snmpv3_contextname string SNMPv3 context name. Used only by SNMPv3 items.
snmpv3_privpassphrase string SNMPv3 priv passphrase. Used only by SNMPv3 items.
snmpv3_privprotocol integer SNMPv3 privacy protocol. Used only by SNMPv3 items.

Possible values:
0 - (default) DES;
1 - AES.

snmpv3_securitylevel integer SNMPv3 security level. Used only by SNMPv3 items.

Possible values:
0 - noAuthNoPriv;
1 - authNoPriv;
2 - authPriv.

snmpv3_securityname string SNMPv3 security name. Used only by SNMPv3 items.
state integer (readonly) State of the item.

Possible values:
0 - (default) normal;
1 - not supported.

status integer Status of the item.

Possible values:
0 - (default) enabled item;
1 - disabled item.

570

Property Type Description

templateid string (readonly) ID of the parent template item.

Hint: Use the hostid property to specify the template
that the item belongs to.

trapper_hosts string Allowed hosts. Used only by trapper items.
trends integer Number of days to keep item’s trends data.

Default: 365.
units string Value units.
username string Username for authentication. Used by simple check,

SSH, Telnet, database monitor and JMX items.

Required by SSH and Telnet items.
valuemapid string ID of the associated value map.

item.create

Description

object item.create(object/array items)

This method allows to create new items.

Note:
Web items cannot be created via the Zabbix API.

Parameters

(object/array) Items to create.

Additionally to the standard item properties, the method accepts the following parameters.

Parameter Type Description

applications array IDs of the applications to add the item to.

Return values

(object) Returns an object containing the IDs of the created items under the itemids property. The order of the returned IDs
matches the order of the passed items.

Examples

Creating an item

Create a numeric Zabbix agent item to monitor free disk space on host with ID ”30074” and add it to two applications.

Request:

{
"jsonrpc": "2.0",
"method": "item.create",
"params": {

"name": "Free disk space on $1",
"key_": "vfs.fs.size[/home/joe/,free]",
"hostid": "30074",
"type": 0,
"value_type": 3,
"interfaceid": "30084",
"applications": [

"609",
"610"

],
"delay": 30

571

},
"auth": "038e1d7b1735c6a5436ee9eae095879e",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": {

"itemids": [
"24758"

]
},
"id": 1

}

Creating a host inventory item

Create a Zabbix agent item to populate the host’s ”OS” inventory field.

Request:

{
"jsonrpc": "2.0",
"method": "item.create",
"params": {

"name": "uname",
"key_": "system.uname",
"hostid": "30021",
"type": 0,
"interfaceid": "30007",
"value_type": 1,
"delay": 10,
"inventory_link": 5

},
"auth": "038e1d7b1735c6a5436ee9eae095879e",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": {

"itemids": [
"24759"

]
},
"id": 1

}

Source

CItem::create() in frontends/php/api/classes/CItem.php.

item.delete

Description

object item.delete(array itemIds)

This method allows to delete items.

Note:
Web items cannot be deleted via the Zabbix API.

572

Parameters

(array) IDs of the items to delete.

Return values

(object) Returns an object containing the IDs of the deleted items under the itemids property.

Examples

Deleting multiple items

Delete two items.

Request:

{
"jsonrpc": "2.0",
"method": "item.delete",
"params": [

"22982",
"22986"

],
"auth": "3a57200802b24cda67c4e4010b50c065",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": {

"itemids": [
"22982",
"22986"

]
},
"id": 1

}

Source

CItem::delete() in frontends/php/api/classes/CItem.php.

item.exists

Description

boolean item.exists(object filter)

This method checks if at least one item that matches the given filter criteria exists.

Parameters

(object) Criteria to search by.

The following parameters are supported as search criteria.

Parameter Type Description

key_
(required)

string/array Keys of the items.

host string/array Names of the hosts that the items must belong to.
hostid string/array IDs of the hosts that the items must belong to.
node string Name of the node the items must belong to.

This will override the nodeids parameter.
nodeids string/array IDs of the nodes the items must belong to.

Return values

573

(boolean) Returns true if at least one item that matches the given filter criteria exists.

Examples

Check item by key

Check if an item with key ”vm.memory.size[available]” exists on the host ”Linux Server.”

Request:

{
"jsonrpc": "2.0",
"method": "item.exists",
"params": {

"host": "Linux Server",
"key_": "vm.memory.size[available]"

},
"auth": "3a57200802b24cda67c4e4010b50c065",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": true,
"id": 1

}

See also

• item.isreadable
• item.iswritable

Source

CItem::exists() in frontends/php/api/classes/CItem.php.

item.get

Description

integer/array item.get(object parameters)

The method allows to retrieve items according to the given parameters.

Parameters

(object) Parameters defining the desired output.

The method supports the following parameters.

Parameter Type Description

itemids string/array Return only items with the given IDs.
groupids string/array Return only items that belong to the hosts from the

given groups.
templateids string/array Return only items that belong to the given templates.
hostids string/array Return only items that belong to the given hosts.
proxyids string/array Return only items that are monitored by the given

proxies.
interfaceids string/array Return only items that use the given host interfaces.
graphids string/array Return only items that are used in the given graphs.
triggerids string/array Return only items that are used in the given triggers.
applicationids string/array Return only items that belong to the given

applications.
webitems flag Include web items in the result.
inherited boolean If set to true return only items inherited from a

template.
templated boolean If set to true return only items that belong to

templates.

574

Parameter Type Description

monitored boolean If set to true return only enabled items that belong to
monitored hosts.

group string Return only items that belong to a group with the
given name.

host string Return only items that belong to a host with the given
name.

application string Return only items that belong to an application with
the given name.

with_triggers boolean If set to true return only items that are used in
triggers.

selectHosts query Returns the host that the item belongs to as an array
in the hosts property.

selectInterfaces query Returns the host interface used by the item as an
array in the interfaces property.

selectTriggers query Return triggers that the item is used in in the
triggers property.

Supports count.
selectGraphs query Return graphs that contain the item in the graphs

property.

Supports count.
selectApplications query Return the applications that the item belongs to in the

applications property.
selectDiscoveryRule query Return the LLD rule that created the item in the

discoveryRule property.
selectItemDiscovery query Return the item discovery object in the

itemDiscovery property.

The item discovery objects links the item to an item
prototype and has the following properties:
itemdiscoveryid - (string) ID of the item
discovery;
itemid - (string) ID of the discovered item;
parent_itemid - (string) ID of the item prototype
from which the item has been created;
key_ - (string) key of the item prototype;
lastcheck - (timestamp) time when the item was
last discovered;
ts_delete - (timestamp) time when an item that
is no longer discovered will be deleted.

filter object Return only those results that exactly match the given
filter.

Accepts an array, where the keys are property names,
and the values are either a single value or an array of
values to match against.

Supports additional filters:
host - technical name of the host that the item
belongs to.

limitSelects integer Limits the number of records returned by subselects.

Applies to the following subselects:
selectGraphs - results will be sorted by name;
selectTriggers - results will be sorted by
description.

sortfield string/array Sort the result by the given properties.

Possible values are: itemid, name, key_, delay,
history, trends, type and status.

575

Parameter Type Description

countOutput flag These parameters being common for all get methods
are described in detail in the reference commentary
page.

editable boolean
excludeSearch flag
limit integer
nodeids string/array
output query
preservekeys flag
search object
searchByAny boolean
searchWildcardsEnabled boolean
sortorder string/array
startSearch flag

Return values

(integer/array) Returns either:

• an array of objects;
• the count of retrieved objects, if the countOutput parameter has been used.

Examples

Finding items by key

Retrieve all items from host with ID ”10084” that have the word ”system” in the key and sort them by name.

Request:

{
"jsonrpc": "2.0",
"method": "item.get",
"params": {

"output": "extend",
"hostids": "10084",
"search": {

"key_": "system"
},
"sortfield": "name"

},
"auth": "038e1d7b1735c6a5436ee9eae095879e",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": [

{
"itemid": "23298",
"type": "0",
"snmp_community": "",
"snmp_oid": "",
"hostid": "10084",
"name": "Context switches per second",
"key_": "system.cpu.switches",
"delay": "60",
"history": "7",
"trends": "365",
"lastvalue": "2552",
"lastclock": "1351090998",
"prevvalue": "2641",
"state": "0",

576

"status": "0",
"value_type": "3",
"trapper_hosts": "",
"units": "sps",
"multiplier": "0",
"delta": "1",
"snmpv3_securityname": "",
"snmpv3_securitylevel": "0",
"snmpv3_authpassphrase": "",
"snmpv3_privpassphrase": "",
"formula": "1",
"error": "",
"lastlogsize": "0",
"logtimefmt": "",
"templateid": "22680",
"valuemapid": "0",
"delay_flex": "",
"params": "",
"ipmi_sensor": "",
"data_type": "0",
"authtype": "0",
"username": "",
"password": "",
"publickey": "",
"privatekey": "",
"mtime": "0",
"lastns": "564054253",
"flags": "0",
"filter": "",
"interfaceid": "1",
"port": "",
"description": "",
"inventory_link": "0",
"lifetime": "0"

},
{

"itemid": "23299",
"type": "0",
"snmp_community": "",
"snmp_oid": "",
"hostid": "10084",
"name": "CPU $2 time",
"key_": "system.cpu.util[,idle]",
"delay": "60",
"history": "7",
"trends": "365",
"lastvalue": "86.031879",
"lastclock": "1351090999",
"prevvalue": "85.306944",
"state": "0",
"status": "0",
"value_type": "0",
"trapper_hosts": "",
"units": "%",
"multiplier": "0",
"delta": "0",
"snmpv3_securityname": "",
"snmpv3_securitylevel": "0",
"snmpv3_authpassphrase": "",
"snmpv3_privpassphrase": "",
"formula": "1",
"error": "",

577

"lastlogsize": "0",
"logtimefmt": "",
"templateid": "17354",
"valuemapid": "0",
"delay_flex": "",
"params": "",
"ipmi_sensor": "",
"data_type": "0",
"authtype": "0",
"username": "",
"password": "",
"publickey": "",
"privatekey": "",
"mtime": "0",
"lastns": "564256864",
"flags": "0",
"filter": "",
"interfaceid": "1",
"port": "",
"description": "The time the CPU has spent doing nothing.",
"inventory_link": "0",
"lifetime": "0"

},
{

"itemid": "23300",
"type": "0",
"snmp_community": "",
"snmp_oid": "",
"hostid": "10084",
"name": "CPU $2 time",
"key_": "system.cpu.util[,interrupt]",
"delay": "60",
"history": "7",
"trends": "365",
"lastvalue": "0.008389",
"lastclock": "1351091000",
"prevvalue": "0.000000",
"state": "0",
"status": "0",
"value_type": "0",
"trapper_hosts": "",
"units": "%",
"multiplier": "0",
"delta": "0",
"snmpv3_securityname": "",
"snmpv3_securitylevel": "0",
"snmpv3_authpassphrase": "",
"snmpv3_privpassphrase": "",
"formula": "1",
"error": "",
"lastlogsize": "0",
"logtimefmt": "",
"templateid": "22671",
"valuemapid": "0",
"delay_flex": "",
"params": "",
"ipmi_sensor": "",
"data_type": "0",
"authtype": "0",
"username": "",
"password": "",
"publickey": "",

578

"privatekey": "",
"mtime": "0",
"lastns": "564661387",
"flags": "0",
"filter": "",
"interfaceid": "1",
"port": "",
"description": "The amount of time the CPU has been servicing hardware interrupts.",
"inventory_link": "0",
"lifetime": "0"

}
],
"id": 1

}

See also

• item.getobjects
• Application
• Discovery rule
• Graph
• Host
• Host interface
• Trigger

Source

CItem::get() in frontends/php/api/classes/CItem.php.

item.getobjects

Description

array item.getobjects(object filter)

This method allows to retrieve items that match the given filter criteria.

Parameters

(object) Criteria to search by.

Additionally to the standard standard item properties the following parameters are supported as search criteria.

Parameter Type Description

host string/array Technical name of the host that the item belongs to.
node string Name of the node the items must belong to.

This will override the nodeids parameter.
nodeids string/array ID of the node the items must belong to.

Return values

(array) Returns an array of objects with all properties.

Examples

Retrieving items from a host

Retrieve all items from the host ”Zabbix server.”

Request:

{
"jsonrpc": "2.0",
"method": "item.getobjects",
"params": {

"host": "Zabbix server"
},

579

"auth": "3a57200802b24cda67c4e4010b50c065",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": [

{
"itemid": "23327",
"type": "0",
"snmp_community": "",
"snmp_oid": "",
"hostid": "10084",
"name": "Host name of zabbix_agentd running",
"key_": "agent.hostname",
"delay": "3600",
"history": "7",
"trends": "365",
"lastvalue": "trapper-host",
"lastclock": "1351088927",
"prevvalue": "0",
"state": "0",
"status": "0",
"value_type": "1",
"trapper_hosts": "",
"units": "",
"multiplier": "0",
"delta": "0",
"snmpv3_securityname": "",
"snmpv3_securitylevel": "0",
"snmpv3_authpassphrase": "",
"snmpv3_privpassphrase": "",
"formula": "1",
"error": "",
"lastlogsize": "0",
"logtimefmt": "",
"templateid": "23319",
"valuemapid": "0",
"delay_flex": "",
"params": "",
"ipmi_sensor": "",
"data_type": "0",
"authtype": "0",
"username": "",
"password": "",
"publickey": "",
"privatekey": "",
"mtime": "0",
"lastns": "40510111",
"flags": "0",
"filter": "",
"interfaceid": "1",
"port": "",
"description": "",
"inventory_link": "0",
"lifetime": "30"

},
{

"itemid": "23287",
"type": "0",
"snmp_community": "",

580

"snmp_oid": "",
"hostid": "10084",
"name": "Agent ping",
"key_": "agent.ping",
"delay": "60",
"history": "7",
"trends": "365",
"lastvalue": "1",
"lastclock": "1351090987",
"prevvalue": "1",
"state": "0",
"status": "0",
"value_type": "3",
"trapper_hosts": "",
"units": "",
"multiplier": "0",
"delta": "0",
"snmpv3_securityname": "",
"snmpv3_securitylevel": "0",
"snmpv3_authpassphrase": "",
"snmpv3_privpassphrase": "",
"formula": "1",
"error": "",
"lastlogsize": "0",
"logtimefmt": "",
"templateid": "10020",
"valuemapid": "10",
"delay_flex": "",
"params": "",
"ipmi_sensor": "",
"data_type": "0",
"authtype": "0",
"username": "",
"password": "",
"publickey": "",
"privatekey": "",
"mtime": "0",
"lastns": "560794191",
"flags": "0",
"filter": "",
"interfaceid": "1",
"port": "",
"description": "The agent always returns 1 for this item. It could be used in combination with nodata() for availability check.",
"inventory_link": "0",
"lifetime": "0"

},
{

"itemid": "23288",
"type": "0",
"snmp_community": "",
"snmp_oid": "",
"hostid": "10084",
"name": "Version of zabbix_agent(d) running",
"key_": "agent.version",
"delay": "3600",
"history": "7",
"trends": "365",
"lastvalue": "2.0.0",
"lastclock": "1351088888",
"prevvalue": "0",
"state": "0",
"status": "0",

581

"value_type": "1",
"trapper_hosts": "",
"units": "",
"multiplier": "0",
"delta": "0",
"snmpv3_securityname": "",
"snmpv3_securitylevel": "0",
"snmpv3_authpassphrase": "",
"snmpv3_privpassphrase": "",
"formula": "1",
"error": "",
"lastlogsize": "0",
"logtimefmt": "",
"templateid": "10059",
"valuemapid": "0",
"delay_flex": "",
"params": "",
"ipmi_sensor": "",
"data_type": "0",
"authtype": "0",
"username": "",
"password": "",
"publickey": "",
"privatekey": "",
"mtime": "0",
"lastns": "8826267",
"flags": "0",
"filter": "",
"interfaceid": "1",
"port": "",
"description": "",
"inventory_link": "0",
"lifetime": "0"

}
],
"id": 1

}

See also

• item.get

Source

CItem::getObject() in frontends/php/api/classes/CItem.php.

item.isreadable

Description

boolean item.isreadable(array itemIds)

This method checks if the given items are available for reading.

Parameters

(array) IDs of the items to check.

Return values

(boolean) Returns true if the given items are available for reading.

Examples

Check multiple items

Check if the two items are readable.

Request:

582

{
"jsonrpc": "2.0",
"method": "item.isreadable",
"params": [

"23298",
"23323"

],
"auth": "038e1d7b1735c6a5436ee9eae095879e",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": true,
"id": 1

}

See also

• item.exists
• item.iswritable

Source

CItem::isReadable() in frontends/php/api/classes/CItem.php.

item.iswritable

Description

boolean item.iswritable(array itemIds)

This method checks if the given items are available for writing.

Parameters

(array) IDs of the items to check.

Return values

(boolean) Returns true if the given items are available for writing.

Examples

Check multiple items

Check if the two items are writable.

Request:

{
"jsonrpc": "2.0",
"method": "item.iswritable",
"params": [

"23298",
"23323"

],
"auth": "038e1d7b1735c6a5436ee9eae095879e",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": true,
"id": 1

}

583

See also

• item.isreadable
• item.exists

Source

CItem::isWritable() in frontends/php/api/classes/CItem.php.

item.update

Description

object item.update(object/array items)

This method allows to update existing items.

Note:
Web items cannot be updated via the Zabbix API.

Parameters

(object/array) Item properties to be updated.

The itemid property must be defined for each item, all other properties are optional. Only the passed properties will be updated,
all others will remain unchanged.

Additionally to the standard item properties, the method accepts the following parameters.

Parameter Type Description

applications array IDs of the applications to replace the current
applications.

Return values

(object) Returns an object containing the IDs of the updated items under the itemids property.

Examples

Enabling an item

Enable an item, that is, set its status to ”0”.

Request:

{
"jsonrpc": "2.0",
"method": "item.update",
"params": {

"itemid": "10092",
"status": 0

},
"auth": "700ca65537074ec963db7efabda78259",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": {

"itemids": [
"10092"

]
},
"id": 1

}

584

Source

CItem::update() in frontends/php/api/classes/CItem.php.

Item prototype

This class is designed to work with item prototypes.

Object references:

• Item prototype

Available methods:

• itemprototype.create - creating new item prototypes
• itemprototype.delete - deleting item prototypes
• itemprototype.exists - checking if item prototypes exist
• itemprototype.get - retrieving item prototypes
• itemprototype.isreadable - checking if item prototypes are readable
• itemprototype.iswritable - checking if item prototypes are writable
• itemprototype.update - updating item prototypes

> Item prototype object

The following objects are directly related to the itemprototype API.

Item prototype

The item prototype object has the following properties.

Property Type Description

itemid string (readonly) ID of the item prototype.
delay
(required)

integer Update interval of the item prototype in seconds.

hostid
(required)

string ID of the host that the item prototype belongs to.

interfaceid
(required)

string ID of the item prototype’s host interface. Used only for
host item prototypes.

Optional for Zabbix agent (active), Zabbix internal,
Zabbix trapper, Zabbix aggregate, database monitor
and calculated item prototypes.

key_
(required)

string Item prototype key.

name
(required)

string Name of the item prototype.

585

Property Type Description

type
(required)

integer Type of the item prototype.

Possible values:
0 - Zabbix agent;
1 - SNMPv1 agent;
2 - Zabbix trapper;
3 - simple check;
4 - SNMPv2 agent;
5 - Zabbix internal;
6 - SNMPv3 agent;
7 - Zabbix agent (active);
8 - Zabbix aggregate;
10 - external check;
11 - database monitor;
12 - IPMI agent;
13 - SSH agent;
14 - TELNET agent;
15 - calculated;
16 - JMX agent;
17 - SNMP trap.

value_type
(required)

integer Type of information of the item prototype.

Possible values:
0 - numeric float;
1 - character;
2 - log;
3 - numeric unsigned;
4 - text.

authtype integer SSH authentication method. Used only by SSH agent
item prototypes.

Possible values:
0 - (default) password;
1 - public key.

data_type integer Data type of the item prototype.

Possible values:
0 - (default) decimal;
1 - octal;
2 - hexadecimal;
3 - boolean.

delay_flex string Flexible intervals as a serialized string.

Each serialized flexible interval consists of an update
interval and a time period separated by a forward slash.
Multiple intervals are separated by a colon.

delta integer Value that will be stored.

Possible values:
0 - (default) as is;
1 - Delta, speed per second;
2 - Delta, simple change.

description string Description of the item prototype.
formula integer/float Custom multiplier.

Default: 1.
history integer Number of days to keep item prototype’s history data.

Default: 90.
ipmi_sensor string IPMI sensor. Used only by IPMI item prototypes.
logtimefmt string Format of the time in log entries. Used only by log item

prototypes.

586

Property Type Description

multiplier integer Whether to use a custom multiplier.
params string Additional parameters depending on the type of the item

prototype:
- executed script for SSH and Telnet item prototypes;
- SQL query for database monitor item prototypes;
- formula for calculated item prototypes.

password string Password for authentication. Used by simple check, SSH,
Telnet, database monitor and JMX item prototypes.

port string Port monitored by the item prototype. Used only by
SNMP items prototype.

privatekey string Name of the private key file.
publickey string Name of the public key file.
snmp_community string SNMP community.

Used only by SNMPv1 and SNMPv2 item prototypes.
snmp_oid string SNMP OID.
snmpv3_authpassphrase string SNMPv3 auth passphrase. Used only by SNMPv3 item

prototypes.
snmpv3_authprotocol integer SNMPv3 authentication protocol. Used only by SNMPv3

items.

Possible values:
0 - (default) MD5;
1 - SHA.

snmpv3_contextname string SNMPv3 context name. Used only by SNMPv3 item
prototypes.

snmpv3_privpassphrase string SNMPv3 priv passphrase. Used only by SNMPv3 item
prototypes.

snmpv3_privprotocol integer SNMPv3 privacy protocol. Used only by SNMPv3 items.

Possible values:
0 - (default) DES;
1 - AES.

snmpv3_securitylevel integer SNMPv3 security level. Used only by SNMPv3 item
prototypes.

Possible values:
0 - noAuthNoPriv;
1 - authNoPriv;
2 - authPriv.

snmpv3_securityname string SNMPv3 security name. Used only by SNMPv3 item
prototypes.

status integer Status of the item prototype.

Possible values:
0 - (default) enabled item prototype;
1 - disabled item prototype;
3 - unsupported item prototype.

templateid string (readonly) ID of the parent template item prototype.
trapper_hosts string Allowed hosts. Used only by trapper item prototypes.
trends integer Number of days to keep item prototype’s trends data.

Default: 365.
units string Value units.
username string Username for authentication. Used by simple check,

SSH, Telnet, database monitor and JMX item prototypes.

Required by SSH and Telnet item prototypes.
valuemapid string ID of the associated value map.

587

itemprototype.create

Description

object itemprototype.create(object/array itemPrototypes)

This method allows to create new item prototypes.

Parameters

(object/array) Item prototype to create.

Additionally to the standard item prototype properties, the method accepts the following parameters.

Parameter Type Description

ruleid
(required)

string ID of the LLD rule that the item belongs to.

applications array IDs of applications to be assigned to the discovered
items.

Return values

(object) Returns an object containing the IDs of the created item prototypes under the itemids property. The order of the
returned IDs matches the order of the passed item prototypes.

Examples

Creating an item prototype

Create an item prototype to monitor free disc space on a discovered file system. Discovered items should be numeric Zabbix agent
items updated every 30 seconds.

Request:

{
"jsonrpc": "2.0",
"method": "itemprototype.create",
"params": {

"name": "Free disk space on $1",
"key_": "vfs.fs.size[{#FSNAME},free]",
"hostid": "10197",
"ruleid": "27665",
"type": 0,
"value_type": 3,
"interfaceid": "112",
"delay": 30

},
"auth": "038e1d7b1735c6a5436ee9eae095879e",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": {

"itemids": [
"27666"

]
},
"id": 1

}

Source

CItemPrototype::create() in frontends/php/api/classes/CItemPrototype.php.

588

itemprototype.delete

Description

object itemprototype.delete(array itemPrototypeIds)

This method allows to delete item prototypes.

Parameters

(array) IDs of the item prototypes to delete.

Return values

(object) Returns an object containing the IDs of the deleted item prototypes under the prototypeids property.

Examples

Deleting multiple item prototypes

Delete two item prototypes.

Request:

{
"jsonrpc": "2.0",
"method": "itemprototype.delete",
"params": [

"27352",
"27356"

],
"auth": "3a57200802b24cda67c4e4010b50c065",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": {

"prototypeids": [
"27352",
"27356"

]
},
"id": 1

}

Source

CItemPrototype::delete() in frontends/php/api/classes/CItemPrototype.php.

itemprototype.exists

Description

boolean itemprototype.exists(object filter)

This method checks if at least one item prototype that matches the given filter criteria exists.

Parameters

(object) Criteria to search by.

The following parameters are supported as search criteria.

Parameter Type Description

key_
(required)

string/array Keys of the item prototypes.

host string/array Names of the hosts that the item prototypes must
belong to.

589

Parameter Type Description

hostid string/array IDs of the hosts that the item prototypes must belong
to.

node string Name of the node the item prototypes must belong to.

This will override the nodeids parameter.
nodeids string/array IDs of the nodes the item prototypes must belong to.

Return values

(boolean) Returns true if at least one item prototype that matches the given filter criteria exists.

Examples

Checking if an item prototype exists on a host

Check if item prototype with key ”net.if.in[{#IFNAME}]” exists on host ”Zabbix server”.

Request:

{
"jsonrpc": "2.0",
"method": "itemprototype.exists",
"params": {

"host": "Zabbix server",
"key_": "net.if.in[{#IFNAME}]"

},
"auth": "3a57200802b24cda67c4e4010b50c065",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": true,
"id": 1

}

See also

• itemprototype.isreadable
• itemprototype.iswritable

Source

CItemPrototype::exists() in frontends/php/api/classes/CItemPrototype.php.

itemprototype.get

Description

integer/array itemprototype.get(object parameters)

The method allows to retrieve item prototypes according to the given parameters.

Parameters

(object) Parameters defining the desired output.

The method supports the following parameters.

Parameter Type Description

discoveryids string/array Return only item prototypes that belong to the given
LLD rules.

graphids string/array Return only item prototypes that are used in the given
graph prototypes.

hostids string/array Return only item prototypes that belong to the given
hosts.

590

Parameter Type Description

inherited boolean If set to true return only item prototypes inherited
from a template.

itemids string/array Return only item prototypes with the given IDs.
monitored boolean If set to true return only enabled item prototypes

that belong to monitored hosts.
templated boolean If set to true return only item prototypes that belong

to templates.
templateids string/array Return only item prototypes that belong to the given

templates.
triggerids string/array Return only item prototypes that are used in the given

trigger prototypes.
selectApplications query Return applications that the item prototype belongs to

in the applications property.
selectDiscoveryRule query Return the low-level discovery rule that the graph

prototype belongs to in the discoveryRule property.
selectGraphs query Return graph prototypes that the item prototype is

used in in the graphs property.

Supports count.
selectHosts query Returns the host that the item prototype belongs to as

an array in the hosts property.
selectTriggers query Return trigger prototypes that the item prototype is

used in in the triggers property.

Supports count.
filter object Return only those results that exactly match the given

filter.

Accepts an array, where the keys are property names,
and the values are either a single value or an array of
values to match against.

Supports additional filters:
host - technical name of the host that the item
prototype belongs to.

limitSelects integer Limits the number of records returned by subselects.

Applies to the following subselects:
selectGraphs - results will be sorted by name;
selectTriggers - results will be sorted by
description.

sortfield string/array Sort the result by the given properties.

Possible values are: itemid, name, key_, delay,
type and status.

countOutput flag These parameters being common for all get methods
are described in detail in the reference commentary.

editable boolean
excludeSearch flag
limit integer
nodeids string/array
output query
preservekeys flag
search object
searchByAny boolean
searchWildcardsEnabled boolean
sortorder string/array
startSearch flag

Return values

591

(integer/array) Returns either:

• an array of objects;
• the count of retrieved objects, if the countOutput parameter has been used.

Examples

Retrieving item prototypes from an LLD rule

Retrieve all item prototypes from an LLD rule.

Request:

{
"jsonrpc": "2.0",
"method": "itemprototype.get",
"params": {

"output": "extend",
"discoveryids": "27426"

},
"auth": "038e1d7b1735c6a5436ee9eae095879e",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": [

{
"itemid": "27427",
"type": "0",
"snmp_community": "",
"snmp_oid": "",
"hostid": "10202",
"name": "Incoming network traffic on $1 23",
"key_": "2net.if.in[{#IFNAME}]",
"delay": "60",
"history": "7",
"trends": "365",
"status": "0",
"value_type": "3",
"trapper_hosts": "",
"units": "bps",
"multiplier": "1",
"delta": "1",
"snmpv3_securityname": "",
"snmpv3_securitylevel": "0",
"snmpv3_authpassphrase": "",
"snmpv3_privpassphrase": "",
"formula": "8",
"logtimefmt": "",
"templateid": "23881",
"valuemapid": "0",
"delay_flex": "",
"params": "",
"ipmi_sensor": "",
"data_type": "0",
"authtype": "0",
"username": "",
"password": "",
"publickey": "",
"privatekey": "",
"mtime": "0",
"filter": "",
"interfaceid": "119",
"port": "",

592

"description": "",
"snmpv3_authprotocol": "0",
"snmpv3_privprotocol": "0"

},
{

"itemid": "27428",
"type": "0",
"snmp_community": "",
"snmp_oid": "",
"hostid": "10202",
"name": "Incoming network traffic on $1",
"key_": "net.if.in[{#IFNAME}]",
"delay": "60",
"history": "7",
"trends": "365",
"status": "0",
"value_type": "3",
"trapper_hosts": "",
"units": "bps",
"multiplier": "1",
"delta": "1",
"snmpv3_securityname": "",
"snmpv3_securitylevel": "0",
"snmpv3_authpassphrase": "",
"snmpv3_privpassphrase": "",
"formula": "8",
"logtimefmt": "",
"templateid": "22446",
"valuemapid": "0",
"delay_flex": "",
"params": "",
"ipmi_sensor": "",
"data_type": "0",
"authtype": "0",
"username": "",
"password": "",
"publickey": "",
"privatekey": "",
"mtime": "0",
"filter": "",
"interfaceid": "119",
"port": "",
"description": "",
"snmpv3_authprotocol": "0",
"snmpv3_privprotocol": "0"

}
],
"id": 1

}

See also

• Application
• Host
• Graph prototype
• Trigger prototype

Source

CItemPrototype::get() in frontends/php/api/classes/CItemPrototype.php.

itemprototype.isreadable

Description

593

boolean itemprototype.isreadable(array itemPrototypeIds)

This method checks if the given item prototypes are available for reading.

Parameters

(array) IDs of the item prototypes to check.

Return values

(boolean) Returns true if the given item prototypes are available for reading.

Examples

Check multiple item prototypes

Check if the two item prototypes are readable.

Request:

{
"jsonrpc": "2.0",
"method": "itemprototype.isreadable",
"params": [

"27352",
"27356"

],
"auth": "038e1d7b1735c6a5436ee9eae095879e",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": true,
"id": 1

}

See also

• itemprototype.exists
• itemprototype.iswritable

Source

CItemPrototype::isReadable() in frontends/php/api/classes/CItemPrototype.php.

itemprototype.iswritable

Description

boolean itemprototype.iswritable(array itemPrototypeIds)

This method checks if the given item prototypes are available for writing.

Parameters

(array) IDs of the item prototypes to check.

Return values

(boolean) Returns true if the given item prototypes are available for writing.

Examples

Check multiple item prototypes

Check if the two item prototypes are writable.

Request:

{
"jsonrpc": "2.0",
"method": "itemprototype.iswritable",

594

"params": [
"27352",
"27356"

],
"auth": "038e1d7b1735c6a5436ee9eae095879e",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": true,
"id": 1

}

See also

• itemprototype.isreadable
• itemprototype.exists

Source

CItemPrototype::isWritable() in frontends/php/api/classes/CItemPrototype.php.

itemprototype.update

Description

object itemprototype.update(object/array itemPrototypes)

This method allows to update existing item prototypes.

Parameters

(object/array) Item prototype properties to be updated.

The itemid property must be defined for each item prototype, all other properties are optional. Only the passed properties will
be updated, all others will remain unchanged.

Additionally to the standard item prototype properties, the method accepts the following parameters.

Parameter Type Description

applications array IDs of the applications to replace the current
applications.

Return values

(object) Returns an object containing the IDs of the updated item prototypes under the itemids property.

Examples

Changing the interface of an item prototype

Change the host interface that will be used by discovered items.

Request:

{
"jsonrpc": "2.0",
"method": "itemprototype.update",
"params": {

"itemid": "27428",
"interfaceid": "132"

},
"auth": "038e1d7b1735c6a5436ee9eae095879e",
"id": 1

}

Response:

595

{
"jsonrpc": "2.0",
"result": {

"itemids": [
"27428"

]
},
"id": 1

}

Source

CItemPrototype::update() in frontends/php/api/classes/CItemPrototype.php.

IT service

This class is designed to work with IT services.

Object references:

• IT service
• Service time
• Service dependency
• Service alarm

Available methods:

• service.adddependencies - adding dependencies between IT services
• service.addtimes - adding service times
• service.create - creating new IT services
• service.delete - deleting IT services
• service.deletedependencies - deleting dependencies between IT services
• service.deletetimes - deleting service times
• service.get - retrieving IT services
• service.getsla - retrieving availability information about IT services
• service.isreadable - checking if IT services are readable
• service.iswritable - checking if IT services are writable
• service.update - updating IT services

> IT Service object

The following objects are directly related to the service API.

IT Service

The IT service object has the following properties.

Property Type Description

serviceid string (readonly) ID of the IT service.
algorithm
(required)

integer Algorithm used to calculate the state of the IT service.

Possible values:
0 - do not calculate;
1 - problem, if at least one child has a problem;
2 - problem, if all children have problems.

name
(required)

string Name of the IT service.

showsla
(required)

integer Whether SLA should be calculated.

Possible values:
0 - do not calculate;
1 - calculate.

596

Property Type Description

sortorder
(required)

integer Position of the IT service used for sorting.

goodsla float Minimum acceptable SLA value. If the SLA drops lower,
the IT service is considered to be in problem state.

Default: 99.9.
status integer (readonly) Whether the IT service is in OK or problem

state.

If the IT service is in problem state, status is equal
either to:
- the priority of the linked trigger if it is set to 2,
”Warning” or higher (priorities 0, ”Not classified” and 1,
”Information” are ignored);
- the highest status of a child IT service in problem state.

If the IT service is in OK state, status is equal to 0.
triggerid string Trigger associated with the IT service. Can only be set

for IT services that don’t have children.

Default: 0

Service time

The service time object defines periods, when an IT service is scheduled to be up or down. It has the following properties.

Property Type Description

timeid string (readonly) ID of the service time.
serviceid
(required)

string ID of the IT service.

Cannot be updated.
ts_from
(required)

integer Time when the service time comes into effect.

For onetime downtimes ts_from must be set as a Unix
timestamp, for other types - as a specific time in a week,
in seconds, for example, 90000 for Tue, 2:00 AM.

ts_to
(required)

integer Time when the service time ends.

For onetime uptimes ts_to must be set as a Unix
timestamp, for other types - as a specific time in a week,
in seconds, for example, 90000 for Tue, 2:00 AM.

type
(required)

integer Service time type.

Possible values:
0 - planned uptime, repeated every week;
1 - planned downtime, repeated every week;
2 - one-time downtime.

note string Additional information about the service time.

Service dependency

The service dependency object represents a dependency between IT services. It has the following properties.

Property Type Description

linkid string (readonly) ID of the service dependency.
servicedownid
(required)

string ID of the IT service, that a service depends on, that is,
the child service. An IT service can have multiple
children.

597

Property Type Description

serviceupid
(required)

string ID of the IT service, that is dependent on a service, that
is, the parent service. An IT service can have multiple
parents forming a directed graph.

soft
(required)

integer Type of dependency between IT services.

Possible values:
0 - hard dependency;
1 - soft dependency.

An IT service can have only one hard-dependent parent.
This attribute has no effect on status or SLA calculation
and is only used to create a core IT service tree.
Additional parents can be added as soft dependencies
forming a graph.

An IT service can not be deleted if it has hard-dependent
children.

Service alarm

Note:
Service alarms cannot be directly created, updated or deleted via the Zabbix API.

The service alarm objects represents an IT service’s state change. It has the following properties.

Property Type Description

servicealarmid string ID of the service alarm.
serviceid string ID of the IT service.
clock timestamp Time when the IT service state change has happened.
value integer Status of the IT service.

Refer the the IT service status property for a list of
possible values.

service.adddependencies

Description

object service.adddependencies(object/array serviceDependencies)

This method allows to create dependencies between IT services.

Parameters

(object/array) Service dependencies to create.

Each service dependency has the following parameters.

Parameter Type Description

serviceid string ID of the IT service that depends on a service, that is,
the parent service.

dependsOnServiceid string ID of the IT service that a service depends on, that is,
the child service.

soft string Type of dependency.

Refer to the service dependency object page for more
information on dependency types.

Return values

598

(object) Returns an object containing the IDs of the affected parent IT services under the serviceids property.

Examples

Creating a hard dependency

Make IT service ”2” a hard-dependent child of service ”3”.

Request:

{
"jsonrpc": "2.0",
"method": "service.adddependencies",
"params": {

"serviceid": "3",
"dependsOnServiceid": "2",
"soft": 0

},
"auth": "038e1d7b1735c6a5436ee9eae095879e",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": {

"serviceids": [
"3"

]
},
"id": 1

}

See also

• service.update

Source

CService::addDependencies() in frontends/php/api/classes/CService.php.

service.addtimes

Description

object service.addtimes(object/array serviceTimes)

This method allows to create new service times.

Parameters

(object/array) Service times to create.

The method accepts service times with the standard service time properties.

Return values

(object) Returns an object containing the IDs of the affected IT services under the serviceids property.

Examples

Adding a scheduled downtime

Add a downtime for IT service ”4” scheduled weekly from Monday 22:00 till Tuesday 10:00.

Request:

{
"jsonrpc": "2.0",
"method": "service.addtimes",
"params": {

"serviceid": "4",

599

"type": 1,
"ts_from": 165600,
"ts_to": 201600

},
"auth": "038e1d7b1735c6a5436ee9eae095879e",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": {

"serviceids": [
"4"

]
},
"id": 1

}

See also

• service.update

Source

CService::addTimes() in frontends/php/api/classes/CService.php.

service.create

Description

object service.create(object/array itServices)

This method allows to create new IT services.

Parameters

(object/array) IT services to create.

Additionally to the standard IT service properties, the method accepts the following parameters.

Parameter Type Description

dependencies array Service dependencies.

Each service dependency has the following
parameters:
- dependsOnServiceid - (string) ID of an IT service
the service depends on, that is, the child IT service.
- soft - (integer) type of service dependency; refer to
the service dependency object page for more
information on dependency types.

parentid string ID of a hard-linked parent IT service.
times array Service times to be created for the IT service.

Return values

(object) Returns an object containing the IDs of the created IT services under the serviceids property. The order of the
returned IDs matches the order of the passed IT services.

Examples

Creating an IT service

Create an IT service that will be switched to problem state, if at least one child has a problem. SLA calculation will be on and the
minimum acceptable SLA is 99.99%.

Request:

600

{
"jsonrpc": "2.0",
"method": "service.create",
"params": {

"name": "Server 1",
"algorithm": 1,
"showsla": 1,
"goodsla": 99.99,
"sortorder": 1

},
"auth": "038e1d7b1735c6a5436ee9eae095879e",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": {

"serviceids": [
"5"

]
},
"id": 1

}

Source

CService::create() in frontends/php/api/classes/CService.php.

service.delete

Description

object service.delete(array itServiceIds)

This method allows to delete IT services.

IT services with hard-dependent child services cannot be deleted.

Parameters

(array) IDs of the IT services to delete.

Return values

(object) Returns an object containing the IDs of the deleted IT services under the serviceids property.

Examples

Deleting multiple IT services

Delete two IT services.

Request:

{
"jsonrpc": "2.0",
"method": "service.delete",
"params": [

"4",
"5"

],
"auth": "3a57200802b24cda67c4e4010b50c065",
"id": 1

}

Response:

601

{
"jsonrpc": "2.0",
"result": {

"serviceids": [
"4",
"5"

]
},
"id": 1

}

Source

CService::delete() in frontends/php/api/classes/CService.php.

service.deletedependencies

Description

object service.deletedependencies(string/array serviceIds)

This method allows to delete all dependencies from IT services.

Parameters

(string/array) IDs of the IT services to delete all dependencies from.

Return values

(object) Returns an object containing the IDs of the affected IT services under the serviceids property.

Examples

Deleting dependencies from an IT service

Delete all dependencies from IT service ”2”.

Request:

{
"jsonrpc": "2.0",
"method": "service.deletedependencies",
"params": [

"2"
],
"auth": "3a57200802b24cda67c4e4010b50c065",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": {

"serviceids": [
"2"

]
},
"id": 1

}

See also

• service.update

Source

CService::delete() in frontends/php/api/classes/CService.php.

602

service.deletetimes

Description

object service.deletetimes(string/array serviceIds)

This method allows to delete all service times from IT services.

Parameters

(string/array) IDs of the IT services to delete all service times from.

Return values

(object) Returns an object containing the IDs of the affected IT services under the serviceids property.

Examples

Deleting service times from an IT service

Delete all service times from IT service ”2”.

Request:

{
"jsonrpc": "2.0",
"method": "service.deletetimes",
"params": [

"2"
],
"auth": "3a57200802b24cda67c4e4010b50c065",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": {

"serviceids": [
"2"

]
},
"id": 1

}

See also

• service.update

Source

CService::delete() in frontends/php/api/classes/CService.php.

service.get

Description

integer/array service.get(object parameters)

The method allows to retrieve IT services according to the given parameters.

Parameters

(object) Parameters defining the desired output.

The method supports the following parameters.

Parameter Type Description

serviceids string/array Return only IT services with the given IDs.
parentids string/array Return only IT services with the given hard-dependent

parent IT services.

603

Parameter Type Description

childids string/array Return only IT services that are hard-dependent on
the given child IT services.

selectParent query Return the hard-dependent parent IT service in the
parent property.

selectDependencies query Return child service dependencies in the
dependencies property.

selectParentDependencies query Return parent service dependencies in the
parentDependencies property.

selectTimes query Return service times in the times property.
selectAlarms query Return service alarms in the alarms property.
selectTrigger query Return the associated trigger in the trigger

property.
sortfield string/array Sort the result by the given properties.

Possible values are: name and sortorder.
countOutput flag These parameters being common for all get methods

are described in detail in the reference commentary.
editable boolean
excludeSearch flag
filter object
limit integer
nodeids string/array
output query
preservekeys flag
search object
searchByAny boolean
searchWildcardsEnabled boolean
sortorder string/array
startSearch flag

Return values

(integer/array) Returns either:

• an array of objects;
• the count of retrieved objects, if the countOutput parameter has been used.

Examples

Retrieving all IT services

Retrieve all data about all IT services and their dependencies.

Request:

{
"jsonrpc": "2.0",
"method": "service.get",
"params": {

"output": "extend",
"selectDependencies": "extend"

},
"auth": "038e1d7b1735c6a5436ee9eae095879e",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": [

{
"serviceid": "2",
"name": "Server 1",
"status": "0",

604

"algorithm": "1",
"triggerid": "0",
"showsla": "1",
"goodsla": "99.9000",
"sortorder": "0",
"dependencies": []

},
{

"serviceid": "3",
"name": "Data center 1",
"status": "0",
"algorithm": "1",
"triggerid": "0",
"showsla": "1",
"goodsla": "99.9000",
"sortorder": "0",
"dependencies": [

{
"linkid": "11",
"serviceupid": "3",
"servicedownid": "2",
"soft": "0",
"sortorder": "0",
"serviceid": "2"

},
{

"linkid": "10",
"serviceupid": "3",
"servicedownid": "5",
"soft": "0",
"sortorder": "1",
"serviceid": "5"

}
]

},
{

"serviceid": "5",
"name": "Server 2",
"status": "0",
"algorithm": "1",
"triggerid": "0",
"showsla": "1",
"goodsla": "99.9900",
"sortorder": "1",
"dependencies": []

}
],
"id": 1

}

Source

CService::get() in frontends/php/api/classes/CService.php.

service.getsla

Description

object service.getsla(object parameters)

This method allows to calculate availability information about IT services.

Parameters

(object) Parameters containing the IDs of the IT services and time intervals to calculate SLA.

605

Parameter Type Description

serviceids string/array IDs of IT services to return availability information for.
intervals array Time intervals to return service layer availability

information about.

Each time interval must have the following
parameters:
- from - (timestamp) interval start time;
- to - (timestamp) interval end time.

Return values

(object) Returns the following availability information about each IT service under the corresponding service ID.

Property Type Description

status integer Current status of the IT service.

Refer to the IT service object page for more information
on service statuses.

problems array Triggers that are currently in problem state and are
linked either to the IT service or one of its descendants.

sla array SLA data about each time period.

Each SLA object has the following properties:
- from - (timestamp) interval start time;
- to - (timestamp) interval end time;
- sla - (float) SLA for the given time interval;
- okTime - (integer) time the service was in OK state, in
seconds;
- problemTime - (integer) time the service was in
problem state, in seconds;
- downtimeTime - (integer) time the service was in
scheduled downtime, in seconds.

Examples

Retrieving availability information for an IT service

Retrieve availability information about a service during a week.

Request:

{
"jsonrpc": "2.0",
"method": "service.getsla",
"params": {

"serviceids": "2",
"intervals": [

{
"from": 1352452201,
"to": 1353057001

}
]

},
"auth": "038e1d7b1735c6a5436ee9eae095879e",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": {

606

"2": {
"status": "3",
"problems": {

"13904": {
"triggerid": "13904",
"expression": "{13359}=0",
"description": "Service unavailable",
"url": "",
"status": "0",
"value": "1",
"priority": "3",
"lastchange": "1352967420",
"comments": "",
"error": "",
"templateid": "0",
"type": "0",
"value_flags": "0",
"flags": "0"

}
},
"sla": [

{
"from": 1352452201,
"to": 1353057001,
"sla": 97.046296296296,
"okTime": 586936,
"problemTime": 17864,
"downtimeTime": 0

}
]

}
},
"id": 1

}

See also

• Trigger

Source

CService::getSla() in frontends/php/api/classes/CService.php.

service.isreadable

Description

boolean service.isreadable(array serviceIds)

This method checks if the given IT services are available for reading.

Parameters

(array) IDs of the IT services to check.

Return values

(boolean) Returns true if the given IT services are available for reading.

Examples

Check multiple IT services

Check if the two IT services are readable.

Request:

{
"jsonrpc": "2.0",

607

"method": "service.isreadable",
"params": [

"3", "4"
],
"auth": "038e1d7b1735c6a5436ee9eae095879e",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": true,
"id": 1

}

See also

• service.iswritable

Source

CService::isReadable() in frontends/php/api/classes/CService.php.

service.iswritable

Description

boolean service.iswritable(array serviceIds)

This method checks if the given IT services are available for writing.

Parameters

(array) IDs of the IT services to check.

Return values

(boolean) Returns true if the given IT services are available for writing.

Examples

Check multiple IT services

Check if the two IT services are writable.

Request:

{
"jsonrpc": "2.0",
"method": "service.iswritable",
"params": [

"3", "4"
],
"auth": "038e1d7b1735c6a5436ee9eae095879e",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": true,
"id": 1

}

See also

• service.isreadable

Source

CService::isWritable() in frontends/php/api/classes/CService.php.

608

service.update

Description

object service.update(object/array itServices)

This method allows to update existing IT services.

Parameters

(object/array) IT service properties to be updated.

The serviceid property must be defined for each IT service, all other properties are optional. Only the passed properties will be
updated, all others will remain unchanged.

Additionally to the standard IT service properties, the method accepts the following parameters.

Parameter Type Description

dependencies array Service dependencies to replace the current service
dependencies.

Each service dependency has the following
parameters:
- dependsOnServiceid - (string) ID of an IT service
the service depends on, that is, the child IT service.
- soft - (integer) type of service dependency; refer to
the service dependency object page for more
information on dependency types.

parentid string ID of a hard-linked parent IT service.
times array Service times to replace the current service times.

Return values

(object) Returns an object containing the IDs of the updated IT services under the serviceids property.

Examples

Setting the parent of an IT service

Make IT service ”3” the hard-linked parent of service ”5”.

Request:

{
"jsonrpc": "2.0",
"method": "service.update",
"params": {

"serviceid": "5",
"parentid": "3"

},
"auth": "038e1d7b1735c6a5436ee9eae095879e",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": {

"serviceids": [
"5"

]
},
"id": 1

}

See also

• service.adddependencies

609

• service.addtimes
• service.deletedependencies
• service.deletetimes

Source

CService::update() in frontends/php/api/classes/CService.php.

LLD rule

This class is designed to work with low level discovery rules.

Object references:

• LLD rule

Available methods:

• discoveryrule.copy - copying LLD rules
• discoveryrule.create - creating new LLD rules
• discoveryrule.delete - deleting LLD rules
• discoveryrule.exists - checking if LLD rules exist
• discoveryrule.get - retrieving LLD rules
• discoveryrule.isreadable - checking if LLD rules are readable
• discoveryrule.iswritable - checking if LLD rules are writable
• discoveryrule.update - updating LLD rules

> LLD rule object

The following objects are directly related to the discoveryrule API.

LLD rule

The low-level discovery rule object has the following properties.

Property Type Description

itemid string (readonly) ID of the LLD rule.
delay
(required)

integer Update interval of the LLD rule in seconds.

hostid
(required)

string ID of the host that the LLD rule belongs to.

interfaceid
(required)

string ID of the LLD rule’s host interface. Used only for host
LLD rules.

Optional for Zabbix agent (active), Zabbix internal,
Zabbix trapper and database monitor LLD rules.

key_
(required)

string LLD rule key.

name
(required)

string Name of the LLD rule.

610

Property Type Description

type
(required)

integer Type of the LLD rule.

Possible values:
0 - Zabbix agent;
1 - SNMPv1 agent;
2 - Zabbix trapper;
3 - simple check;
4 - SNMPv2 agent;
5 - Zabbix internal;
6 - SNMPv3 agent;
7 - Zabbix agent (active);
10 - external check;
11 - database monitor;
12 - IPMI agent;
13 - SSH agent;
14 - TELNET agent;
16 - JMX agent.

authtype integer SSH authentication method. Used only by SSH agent
LLD rules.

Possible values:
0 - (default) password;
1 - public key.

delay_flex string Flexible intervals as a serialized string.

Each serialized flexible interval consists of an update
interval and a time period separated by a forward slash.
Multiple intervals are separated by a colon.

description string Description of the LLD rule.
error string (readonly) Error text if there are problems updating the

LLD rule.
filter string LLD rule filter containing the macro to filter by and the

regexp to be used for filtering separated by a colon. For
example {#IFNAME}:@Network interfaces for discovery.

ipmi_sensor string IPMI sensor. Used only by IPMI LLD rules.
lifetime integer Time period after which items that are no longer

discovered will be deleted, in days.

Default: 30.
params string Additional parameters depending on the type of the LLD

rule:
- executed script for SSH and Telnet LLD rules;
- SQL query for database monitor LLD rules;
- formula for calculated LLD rules.

password string Password for authentication. Used by simple check, SSH,
Telnet, database monitor and JMX LLD rules.

port string Port used by the LLD rule. Used only by SNMP LLD rules.
privatekey string Name of the private key file.
publickey string Name of the public key file.
snmp_community string SNMP community.

Required for SNMPv1 and SNMPv2 LLD rules.
snmp_oid string SNMP OID.
snmpv3_authpassphrase string SNMPv3 auth passphrase. Used only by SNMPv3 LLD

rules.
snmpv3_authprotocol integer SNMPv3 authentication protocol. Used only by SNMPv3

LLD rules.

Possible values:
0 - (default) MD5;
1 - SHA.

611

Property Type Description

snmpv3_contextname string SNMPv3 context name. Used only by SNMPv3 checks.
snmpv3_privpassphrase string SNMPv3 priv passphrase. Used only by SNMPv3 LLD

rules.
snmpv3_privprotocol integer SNMPv3 privacy protocol. Used only by SNMPv3 LLD

rules.

Possible values:
0 - (default) DES;
1 - AES.

snmpv3_securitylevel integer SNMPv3 security level. Used only by SNMPv3 LLD rules.

Possible values:
0 - noAuthNoPriv;
1 - authNoPriv;
2 - authPriv.

snmpv3_securityname string SNMPv3 security name. Used only by SNMPv3 LLD rules.
state integer (readonly) State of the LLD rule.

Possible values:
0 - (default) normal;
1 - not supported.

status integer Status of the LLD rule.

Possible values:
0 - (default) enabled LLD rule;
1 - disabled LLD rule.

templateid string (readonly) ID of the parent template LLD rule.
trapper_hosts string Allowed hosts. Used only by trapper LLD rules.
username string Username for authentication. Used by simple check,

SSH, Telnet, database monitor and JMX LLD rules.

Required by SSH and Telnet LLD rules.

discoveryrule.copy

Description

object discoveryrule.copy(object parameters)

This method allows to copy LLD rules with all of the prototypes to the given hosts.

Parameters

(object) Parameters defining the LLD rules to copy and the target hosts.

Parameter Type Description

discoveryids array IDs of the LLD rules to be copied.
hostids array IDs of the hosts to copy the LLD rules to.

Return values

(boolean) Returns true if the copying was successful.

Examples

Copy an LLD rule to multiple hosts

Copy an LLD rule to two hosts.

Request:

{
"jsonrpc": "2.0",

612

"method": "discoveryrule.copy",
"params": {

"discoveryids": [
"27426"

],
"hostids": [

"10196",
"10197"

]
},
"auth": "038e1d7b1735c6a5436ee9eae095879e",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": true,
"id": 1

}

Source

CDiscoveryrule::copy() in frontends/php/api/classes/CDiscoveryRule.php.

discoveryrule.create

Description

object discoveryrule.create(object/array lldRules)

This method allows to create new LLD rules.

Parameters

(object/array) LLD rules to create.

The method accepts LLD rules with the standard LLD rule properties.

Return values

(object) Returns an object containing the IDs of the created LLD rules under the itemids property. The order of the returned
IDs matches the order of the passed LLD rules.

Examples

Creating an LLD rule

Create a Zabbix agent LLD rule to discover mounted file systems. Discovered items will be updated every 30 seconds.

Request:

{
"jsonrpc": "2.0",
"method": "discoveryrule.create",
"params": {

"name": "Mounted filesystem discovery",
"key_": "vfs.fs.discovery",
"hostid": "10197",
"type": "0",
"interfaceid": "112",
"delay": 30

},
"auth": "038e1d7b1735c6a5436ee9eae095879e",
"id": 1

}

Response:

613

{
"jsonrpc": "2.0",
"result": {

"itemids": [
"27665"

]
},
"id": 1

}

Source

CDiscoveryRule::create() in frontends/php/api/classes/CDiscoveryRule.php.

discoveryrule.delete

Description

object discoveryrule.delete(array lldRuleIds)

This method allows to delete LLD rules.

Parameters

(array) IDs of the LLD rules to delete.

Return values

(object) Returns an object containing the IDs of the deleted LLD rules under the itemids property.

Examples

Deleting multiple LLD rules

Delete two LLD rules.

Request:

{
"jsonrpc": "2.0",
"method": "discoveryrule.delete",
"params": [

"27665",
"27668"

],
"auth": "3a57200802b24cda67c4e4010b50c065",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": {

"ruleids": [
"27665",
"27668"

]
},
"id": 1

}

Source

CDiscoveryRule::delete() in frontends/php/api/classes/CDiscoveryRule.php.

discoveryrule.exists

Description

614

boolean discoveryrule.exists(object filter)

This method checks if at least one LLD rule that matches the given filter criteria exists.

Parameters

(object) Criteria to search by.

The following parameters are supported as search criteria.

Parameter Type Description

key_
(required)

string/array Keys of the LLD rules.

host string/array Names of the hosts that the LLD rules must belong to.
hostid string/array IDs of the hosts that the LLD rules must belong to.
node string Name of the node the LLD rules must belong to.

This will override the nodeids parameter.
nodeids string/array IDs of the nodes the LLD rules must belong to.

Return values

(boolean) Returns true if at least one LLD rule that matches the given filter criteria exists.

Examples

Checking if an LLD rule exists on a host

Check if the LLD rule with the key ”vfs.fs.discovery” exists on host ”Zabbix server”.

Request:

{
"jsonrpc": "2.0",
"method": "discoveryrule.exists",
"params": {

"host": "Zabbix server",
"key_": "vfs.fs.discovery"

},
"auth": "3a57200802b24cda67c4e4010b50c065",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": true,
"id": 1

}

See also

• discoveryrule.isreadable
• discoveryrule.iswritable

Source

CDiscoveryRule::exists() in frontends/php/api/classes/CDiscoveryRule.php.

discoveryrule.get

Description

integer/array discoveryrule.get(object parameters)

The method allows to retrieve LLD rules according to the given parameters.

Parameters

(object) Parameters defining the desired output.

615

The method supports the following parameters.

Parameter Type Description

itemids string/array Return only LLD rules with the given IDs.
hostids string/array Return only LLD rules that belong to the given hosts.
inherited boolean If set to true return only LLD rules inherited from a

template.
interfaceids string/array Return only LLD rules use the given host interfaces.
monitored boolean If set to true return only enabled LLD rules that

belong to monitored hosts.
templated boolean If set to true return only LLD rules that belong to

templates.
templateids string/array Return only LLD rules that belong to the given

templates.
selectHosts query Returns the host that the LLD rule belongs to as an

array in the hosts property.
selectGraphs query Returns graph prototypes that belong to the LLD rule

in the graphs property.

Supports count.
selectHostPrototypes query Returns host prototypes that belong to the LLD rule in

the hostPrototypes property.

Supports count.
selectItems query Returns item prototypes that belong to the LLD rule in

the items property.

Supports count.
selectTriggers query Returns trigger prototypes that belong to the LLD rule

in the triggers property.

Supports count.
filter object Return only those results that exactly match the given

filter.

Accepts an array, where the keys are property names,
and the values are either a single value or an array of
values to match against.

Supports additional filters:
host - technical name of the host that the LLD rule
belongs to.

limitSelects integer Limits the number of records returned by subselects.

Applies to the following subselects:
selctItems;
selectGraphs;
selectTriggers.

sortfield string/array Sort the result by the given properties.

Possible values are: itemid, name, key_, delay,
type and status.

countOutput flag These parameters being common for all get methods
are described in detail in the reference commentary.

editable boolean
excludeSearch flag
limit integer
nodeids string/array
output query
preservekeys flag
search object
searchByAny boolean

616

Parameter Type Description

searchWildcardsEnabled boolean
sortorder string/array
startSearch flag

Return values

(integer/array) Returns either:

• an array of objects;
• the count of retrieved objects, if the countOutput parameter has been used.

Examples

Retrieving discovery rules from a host

Retrieve all discovery rules from host ”10202”.

Request:

{
"jsonrpc": "2.0",
"method": "discoveryrule.get",
"params": {

"output": "extend",
"hostids": "10202"

},
"auth": "038e1d7b1735c6a5436ee9eae095879e",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": [

{
"itemid": "27425",
"type": "0",
"snmp_community": "",
"snmp_oid": "",
"hostid": "10202",
"name": "Network interface discovery",
"key_": "net.if.discovery",
"delay": "3600",
"state": "0",
"status": "0",
"trapper_hosts": "",
"snmpv3_securityname": "",
"snmpv3_securitylevel": "0",
"snmpv3_authpassphrase": "",
"snmpv3_privpassphrase": "",
"error": "",
"templateid": "22444",
"delay_flex": "",
"params": "",
"ipmi_sensor": "",
"authtype": "0",
"username": "",
"password": "",
"publickey": "",
"privatekey": "",
"filter": "{#IFNAME}:@Network interfaces for discovery",
"interfaceid": "119",
"port": "",
"description": "Discovery of network interfaces as defined in global regular expression \"Network interfaces for discovery\".",

617

"lifetime": "30",
"snmpv3_authprotocol": "0",
"snmpv3_privprotocol": "0"

},
{

"itemid": "27426",
"type": "0",
"snmp_community": "",
"snmp_oid": "",
"hostid": "10202",
"name": "Mounted filesystem discovery",
"key_": "vfs.fs.discovery",
"delay": "3600",
"state": "0",
"status": "0",
"trapper_hosts": "",
"snmpv3_securityname": "",
"snmpv3_securitylevel": "0",
"snmpv3_authpassphrase": "",
"snmpv3_privpassphrase": "",
"error": "",
"templateid": "22450",
"delay_flex": "",
"params": "",
"ipmi_sensor": "",
"authtype": "0",
"username": "",
"password": "",
"publickey": "",
"privatekey": "",
"filter": "{#FSTYPE}:@File systems for discovery",
"interfaceid": "119",
"port": "",
"description": "Discovery of file systems of different types as defined in global regular expression \"File systems for discovery\".",
"lifetime": "30",
"snmpv3_authprotocol": "0",
"snmpv3_privprotocol": "0"

}
],
"id": 2

}

See also

• Host
• Item prototype
• Graph prototype
• Trigger prototype

Source

CDiscoveryRule::get() in frontends/php/api/classes/CDiscoveryRule.php.

discoveryrule.isreadable

Description

boolean discoveryrule.isreadable(array lldRuleIds)

This method checks if the given LLD rules are available for reading.

Parameters

(array) IDs of the LLD rules to check.

Return values

618

(boolean) Returns true if the given LLD rules are available for reading.

Examples

Check multiple LLD rules

Check if the two LLD rules are readable.

Request:

{
"jsonrpc": "2.0",
"method": "discoveryrule.isreadable",
"params": [

"27425",
"27429"

],
"auth": "038e1d7b1735c6a5436ee9eae095879e",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": true,
"id": 1

}

See also

• discoveryrule.exists
• discoveryrule.iswritable

Source

CDiscoveryRule::isReadable() in frontends/php/api/classes/CDiscoveryRule.php.

discoveryrule.iswritable

Description

boolean discoveryrule.iswritable(array lldRuleIds)

This method checks if the given LLD rules are available for writing.

Parameters

(array) IDs of the LLD rules to check.

Return values

(boolean) Returns true if the given LLD rules are available for writing.

Examples

Check multiple LLD rules

Check if the two LLD rules are writable.

Request:

{
"jsonrpc": "2.0",
"method": "discoveryrule.iswritable",
"params": [

"27425",
"27429"

],
"auth": "038e1d7b1735c6a5436ee9eae095879e",
"id": 1

}

619

Response:

{
"jsonrpc": "2.0",
"result": true,
"id": 1

}

See also

• discoveryrule.isreadable
• discoveryrule.exists

Source

CDiscoveryRule::isWritable() in frontends/php/api/classes/CDiscoveryRule.php.

discoveryrule.update

Description

object discoveryrule.update(object/array lldRules)

This method allows to update existing LLD rules.

Parameters

(object/array) LLD rule properties to be updated.

The itemid property must be defined for each LLD rule, all other properties are optional. Only the passed properties will be
updated, all others will remain unchanged.

Return values

(object) Returns an object containing the IDs of the updated LLD rules under the itemids property.

Examples

Adding a filter to an LLD rule

Add a filter so that the contents of the {#FSTYPE} macro would match the @File systems for discovery regexp.

Request:

{
"jsonrpc": "2.0",
"method": "discoveryrule.update",
"params": {

"itemid": "22450",
"filter": "{#FSTYPE}:@File systems for discovery"

},
"auth": "038e1d7b1735c6a5436ee9eae095879e",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": {

"itemids": [
"22450"

]
},
"id": 1

}

Source

CDiscoveryRule::update() in frontends/php/api/classes/CDiscoveryRule.php.

620

Maintenance

This class is designed to work with maintenances.

Object references:

• Maintenance
• Time period

Available methods:

• maintenance.create - creating new maintenances
• maintenance.delete - deleting maintenances
• maintenance.exists - checking if a maintenance exists
• maintenance.get - retrieving maintenances
• maintenance.update - updating maintenances

> Maintenance object

The following objects are directly related to the maintenance API.

Maintenance

The maintenance object has the following properties.

Property Type Description

maintenanceid string (readonly) ID of the maintenance.
name
(required)

string Name of the maintenance.

active_since timestamp Time when the maintenance becomes active.

Default: current time.
active_till timestamp Time when the maintenance stops being active.

Default: the next day.
description string Description of the maintenance.
maintenance_type integer Type of maintenance.

Possible values:
0 - (default) with data collection;
1 - without data collection.

Time period

The time period object is used to define periods when the maintenance must come into effect. It has the following properties.

Property Type Description

timeperiodid string (readonly) ID of the maintenance.
day integer Day of the month when the maintenance must come

into effect.

Required only for monthly time periods.

621

Property Type Description

dayofweek integer Days of the week when the maintenance must come into
effect.

Days are stored in binary form with each bit representing
the corresponding day. For example, 4 equals 100 in
binary and means, that maintenance will be enabled on
Wednesday.

Used for weekly and monthly time periods. Required
only for weekly time periods.

every integer For daily and weekly periods every defines day or week
intervals at which the maintenance must come into
effect.

For monthly periods every defines the week of the
month when the maintenance must come into effect.
Possible values:
1 - first week;
2 - second week;
3 - third week;
4 - fourth week;
5 - last week.

month integer Months when the maintenance must come into effect.

Months are stored in binary form with each bit
representing the corresponding month. For example, 5
equals 101 in binary and means, that maintenance will
be enabled in January and March.

Required only for monthly time periods.
period integer Duration of the maintenance period in seconds.

Default: 3600.
start_date timestamp Date when the maintenance period must come into

effect.

Required only for one time periods.

Default: current date.
start_time integer Time of day when the maintenance starts in seconds.

Required for daily, weekly and monthly periods.
timeperiod_type integer Type of time period.

Possible values:
0 - (default) one time only;
2 - daily;
3 - weekly;
4 - monthly.

maintenance.create

Description

object maintenance.create(object/array maintenances)

This method allows to create new maintenances.

Parameters

(object/array) Maintenances to create.

Additionally to the standard maintenance properties, the method accepts the following parameters.

622

Parameter Type Description

groupids
(required)

array IDs of the host groups that will undergo maintenance.

hostids
(required)

array IDs of the hosts that will undergo maintenance.

timeperiods
(required)

array Maintenance time periods.

Attention:
At least one host or host group must be defined for each maintenance.

Return values

(object) Returns an object containing the IDs of the created maintenances under the maintenanceids property. The order of
the returned IDs matches the order of the passed maintenances.

Examples

Creating a maintenance

Create a maintenance with data collection for host group ”2”. It must be active from 22.01.2013 till 22.01.2014, come in effect
each Sunday at 18:00 and last for one hour.

Request:

{
"jsonrpc": "2.0",
"method": "maintenance.create",
"params": {

"name": "Sunday maintenance",
"active_since": 1358844540,
"active_till": 1390466940,
"groupids": [

"2"
],
"timeperiods": [

{
"timeperiod_type": 3,
"every": 1,
"dayofweek": 64,
"start_time": 64800,
"period": 3600

}
]

},
"auth": "038e1d7b1735c6a5436ee9eae095879e",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": {

"maintenanceids": [
"3"

]
},
"id": 1

}

See also

• Time period

Source

623

CMaintenance::create() in frontends/php/api/classes/CMaintenance.php.

maintenance.delete

Description

object maintenance.delete(array maintenanceIds)

This method allows to delete maintenances.

Parameters

(array) IDs of the maintenances to delete.

Return values

(object) Returns an object containing the IDs of the deleted maintenances under the maintenanceids property.

Examples

Deleting multiple maintenances

Delete two maintenanaces.

Request:

{
"jsonrpc": "2.0",
"method": "maintenance.delete",
"params": [

"3",
"1"

],
"auth": "3a57200802b24cda67c4e4010b50c065",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": {

"maintenanceids": [
"3",
"1"

]
},
"id": 1

}

Source

CMaintenance::delete() in frontends/php/api/classes/CMaintenance.php.

maintenance.exists

Description

boolean maintenance.exists(object filter)

This method checks if at least one maintenance that matches the given filter criteria exists.

Parameters

(object) Criteria to search by.

The following parameters are supported as search criteria.

Parameter Type Description

maintenanceid string/array IDs of the maintenances

624

Parameter Type Description

name string/array Names of the maintenances

Return values

(boolean) Returns true if at least one maintenance that matches the given filter criteria exists.

Examples

Checking maintenance by name

Check if maintenance with the name ”Sunday maintenance” already exists.

Request:

{
"jsonrpc": "2.0",
"method": "maintenance.exists",
"params": {

"name": "Sunday maintenance"
},
"auth": "3a57200802b24cda67c4e4010b50c065",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": true,
"id": 1

}

Source

CMaintenance::exists() in frontends/php/api/classes/CMaintenance.php.

maintenance.get

Description

integer/array maintenance.get(object parameters)

The method allows to retrieve maintenances according to the given parameters.

Parameters

(object) Parameters defining the desired output.

The method supports the following parameters.

Parameter Type Description

groupids string/array Return only maintenances that are assigned to the
given host groups.

hostids string/array Return only maintenances that are assigned to the
given hosts.

maintenanceids string/array Return only maintenances with the given IDs.
selectGroups query Return host groups assigned to the maintenance in

the groups property.
selectHosts query Return hosts assigned to the maintenance in the

hosts property.
selectTimeperiods query Return the maintenance’s time periods in the

timeperiods property.
sortfield string/array Sort the result by the given properties.

Possible values are: maintenanceid, name and
maintenance_type.

625

Parameter Type Description

countOutput flag These parameters being common for all get methods
are described in detail in the reference commentary.

editable boolean
excludeSearch flag
filter object
limit integer
nodeids string/array
output query
preservekeys flag
search object
searchByAny boolean
searchWildcardsEnabled boolean
sortorder string/array
startSearch flag

Return values

(integer/array) Returns either:

• an array of objects;
• the count of retrieved objects, if the countOutput parameter has been used.

Examples

Retrieving maintenances

Retrieve all configured maintenances, and the data about the assigned host groups, hosts and defined time periods.

Request:

{
"jsonrpc": "2.0",
"method": "maintenance.get",
"params": {

"output": "extend",
"selectGroups": "extend",
"selectTimeperiods": "extend"

},
"auth": "038e1d7b1735c6a5436ee9eae095879e",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": [

{
"maintenanceid": "3",
"name": "Sunday maintenance",
"maintenance_type": "0",
"description": "",
"active_since": "1358844540",
"active_till": "1390466940",
"groups": [

{
"groupid": "4",
"name": "Zabbix servers",
"internal": "0"

}
],
"timeperiods": [

{
"timeperiodid": "4",
"timeperiod_type": "3",

626

"every": "1",
"month": "0",
"dayofweek": "1",
"day": "0",
"start_time": "64800",
"period": "3600",
"start_date": "2147483647"

}
]

}
],
"id": 1

}

See also

• Host
• Host group
• Time period

Source

CMaintenance::get() in frontends/php/api/classes/CMaintenance.php.

maintenance.update

Description

object maintenance.update(object/array maintenances)

This method allows to update existing maintenances.

Parameters

(object/array) Maintenance properties to be updated.

The maintenanceid property must be defined for each maintenance, all other properties are optional. Only the passed properties
will be updated, all others will remain unchanged.

Attention:
At this time, partial maintenance update is not supported, all parameters are mandatory. See ZBX-6167 for current status.

Additionally to the standard maintenance properties, the method accepts the following parameters.

Parameter Type Description

groupids array IDs of the host groups to replace the current groups.
hostids array IDs of the hosts to replace the current hosts.
timeperiods array Maintenance time periods to replace the current periods.

Attention:
At least one host or host group must be defined for each maintenance.

Return values

(object) Returns an object containing the IDs of the updated maintenances under the maintenanceids property.

Examples

Assigning different hosts

Replace the hosts currently assigned to maintenance ”3” with two different ones.

Request:

627

https://support.zabbix.com/browse/ZBX-6167

{
"jsonrpc": "2.0",
"method": "maintenance.update",
"params": {

"maintenanceid": "3",
"hostids": [

"10085",
"10084"

]
},
"auth": "038e1d7b1735c6a5436ee9eae095879e",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": {

"maintenanceids": [
"3"

]
},
"id": 1

}

See also

• Time period

Source

CMaintenance::update() in frontends/php/api/classes/CMaintenance.php.

Map

This class is designed to work with maps.

Object references:

• Map
• Map element
• Map link
• Map URL

Available methods:

• map.create - create new maps
• map.delete - delete maps
• map.exists - check if a map exists
• map.get - retrieve maps
• map.getobjects - retrieve maps by filters
• map.isreadable - check if maps are readable
• map.iswritable - check if maps are writable
• map.update - update maps

> Map object

The following objects are directly related to the map API.

Map

The map object has the following properties.

628

Property Type Description

sysmapid string (readonly) ID of the map.
height
(required)

integer Height of the map in pixels.

name
(required)

string Name of the map.

width
(required)

integer Width of the map in pixels.

backgroundid string ID of the image used as the background for the map.
expand_macros integer Whether to expand macros in labels when configuring

the map.

Possible values:
0 - (default) do not expand macros;
1 - expand macros.

expandproblem integer Whether the the problem trigger will be displayed for
elements with a single problem.

Possible values:
0 - always display the number of problems;
1 - (default) display the problem trigger if there’s only
one problem.

grid_align integer Whether to enable grid aligning.

Possible values:
0 - disable grid aligning;
1 - (default) enable grid aligning.

grid_show integer Whether to show the grid on the map.

Possible values:
0 - do not show the grid;
1 - (default) show the grid.

grid_size integer Size of the map grid in pixels.

Supported values: 20, 40, 50, 75 and 100.

Default: 50.
highlight integer Whether icon highlighting is enabled.

Possible values:
0 - highlighting disabled;
1 - (default) highlighting enabled.

iconmapid string ID of the icon map used on the map.
label_format integer Whether to enable advanced labels.

Possible values:
0 - (default) disable advanced labels;
1 - enable advanced labels.

label_location integer Location of the map element label.

Possible values:
0 - (default) bottom;
1 - left;
2 - right;
3 - top.

label_string_host string Custom label for host elements.

Required for maps with custom host label type.
label_string_hostgroup string Custom label for host group elements.

Required for maps with custom host group label type.

629

Property Type Description

label_string_image string Custom label for image elements.

Required for maps with custom image label type.
label_string_map string Custom label for map elements.

Required for maps with custom map label type.
label_string_trigger string Custom label for trigger elements.

Required for maps with custom trigger label type.
label_type integer Map element label type.

Possible values:
0 - label;
1 - IP address;
2 - (default) element name;
3 - status only;
4 - nothing.

label_type_host integer Label type for host elements.

Possible values:
0 - label;
1 - IP address;
2 - (default) element name;
3 - status only;
4 - nothing;
5 - custom.

label_type_hostgroup integer Label type for host group elements.

Possible values:
0 - label;
2 - (default) element name;
3 - status only;
4 - nothing;
5 - custom.

label_type_image integer Label type for host group elements.

Possible values:
0 - label;
2 - (default) element name;
4 - nothing;
5 - custom.

label_type_map integer Label type for map elements.

Possible values:
0 - label;
2 - (default) element name;
3 - status only;
4 - nothing;
5 - custom.

label_type_trigger integer Label type for trigger elements.

Possible values:
0 - label;
2 - (default) element name;
3 - status only;
4 - nothing;
5 - custom.

630

Property Type Description

markelements integer Whether to highlight map elements that have recently
changed their status.

Possible values:
0 - (default) do not highlight elements;
1 - highlight elements.

severity_min integer Minimum severity of the triggers that will be displayed
on the map.

Refer to the trigger ”severity” property for a list of
supported trigger severities.

show_unack integer How problems should be displayed.

Possible values:
0 - (default) display the count of all problems;
1 - display only the count of unacknowledged problems;
2 - display the count of acknowledged and
unacknowledged problems separately.

Map element

The map element object defines an object displayed on a map. It has the following properties.

Property Type Description

selementid string (readonly) ID of the map element.
elementid
(required)

string ID of the object that the map element represents.

Required for host, host group, trigger and map type
elements.

elementtype
(required)

integer Type of map element.

Possible values:
0 - host;
1 - map;
2 - trigger;
3 - host group;
4 - image.

iconid_off
(required)

string ID of the image used to display the element in default
state.

areatype integer How separate host group hosts should be displayed.

Possible values:
0 - (default) the host group element will take up the
whole map;
1 - the host group element will have a fixed size.

elementsubtype integer How a host group element should be displayed on a map.

Possible values:
0 - (default) display the host group as a single element;
1 - display each host in the group separately.

height integer Height of the fixed size host group element in pixels.

Default: 200.
iconid_disabled string ID of the image used to display disabled map elements.

Unused for image elements.
iconid_maintenance string ID of the image used to display map elements in

maintenance. Unused for image elements.
iconid_on string ID of the image used to display map elements with

problems. Unused for image elements.
label string Label of the element.

631

Property Type Description

label_location integer Location of the map element label.

Possible values:
-1 - (default) default location;
0 - bottom;
1 - left;
2 - right;
3 - top.

sysmapid string (readonly) ID of the map that the element belongs to.
urls array Map element URLs.

The map element URL object is described in detail below.
use_iconmap integer Whether icon mapping must be used for host elements.

Possible values:
0 - do not use icon mapping;
1 - (default) use icon mapping.

viewtype integer Host group element placing algorithm.

Possible values:
0 - (default) grid.

width integer Width of the fixed size host group element in pixels.

Default: 200.
x integer X-coordinates of the element in pixels.

Default: 0.
y integer Y-coordinates of the element in pixels.

Default: 0.

Map element URL

The map element URL object defines a clickable link that will be available for a specific map element. It has the following properties:

Property Type Description

sysmapelementurlid string (readonly) ID of the map element URL.
name
(required)

string Link caption.

url
(required)

string Link URL.

selementid string ID of the map element that the URL belongs to.

Map link

The map link object defines a link between two map elements. It has the following properties.

Property Type Description

linkid string (readonly) ID of the map link.
selementid1
(required)

string ID of the first map element linked on one end.

selementid2
(required)

string ID of the first map element linked on the other end.

color string Line color as a hexadecimal color code.

Default: 000000.

632

Property Type Description

drawtype integer Link line draw style.

Possible values:
0 - (default) line;
2 - bold line;
3 - dotted line;
4 - dashed line.

label string Link label.
linktriggers array Map link triggers to use as link status indicators.

The map link trigger object is described in detail below.
sysmapid string ID of the map the link belongs to.

Map link trigger

The map link trigger object defines a map link status indicator based on the state of a trigger. It has the following properties:

Property Type Description

linktriggerid string (readonly) ID of the map link trigger.
triggerid
(reqiuired)

string ID of the trigger used as a link indicator.

color string Indicator color as a hexadecimal color code.

Default: DD0000.
drawtype integer Indicator draw style.

Possible values:
0 - (default) line;
2 - bold line;
3 - dotted line;
4 - dashed line.

linkid string ID of the map link that the link trigger belongs to.

Map URL

The map URL object defines a clickable link that will be available for all elements of a specific type on the map. It has the following
properties:

Property Type Description

sysmapurlid string (readonly) ID of the map URL.
name
(required)

string Link caption.

url
(required)

string Link URL.

elementtype integer Type of map element for which the URL will be available.

Refer to the map element ”type” property for a list of
supported types.

Default: 0.
sysmapid string ID of the map that the URL belongs to.

map.create

Description

object map.create(object/array maps)

This method allows to create new maps.

633

Parameters

(object/array) Maps to create.

Additionally to the standard map properties, the method accepts the following parameters.

Parameter Type Description

links array Map links to be created on the map.
selements array Map elements to be created on the map.
urls array Map URLs to be created on the map.

Note:
To create map links you’ll need to set a map elements selementid to an arbitrary value and then use this value to
reference this element in the links selementid1 or selementid2 properties. When the element is created, this value
will be replaced with the correct ID generated by Zabbix. See example.

Return values

(object) Returns an object containing the IDs of the created maps under the sysmapids property. The order of the returned IDs
matches the order of the passed maps.

Examples

Create an empty map

Create a map with no elements.

Request:

{
"jsonrpc": "2.0",
"method": "map.create",
"params": {

"name": "Map",
"width": 600,
"height": 600

},
"auth": "038e1d7b1735c6a5436ee9eae095879e",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": {

"sysmapids": [
"8"

]
},
"id": 1

}

Create a host map

Create a map with two host elements and a link between them. Note the use of temporary ”selementid1” and ”selementid2”
values in the map link object to refer to map elements.

Request:

{
"jsonrpc": "2.0",
"method": "map.create",
"params": {

"name": "Host map",
"width": 600,
"height": 600,
"selements": [

634

{
"elementid": "1033",
"selementid": "1",
"elementtype": 0,
"iconid_off": "2"

},
{

"elementid": "1037",
"selementid": "2",
"elementtype": 0,
"iconid_off": "2"

}
],
"links": [

{
"selementid1": "1",
"selementid2": "2"

}
]

},
"auth": "038e1d7b1735c6a5436ee9eae095879e",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": {

"sysmapids": [
"9"

]
},
"id": 1

}

See also

• Map element
• Map link
• Map URL

Source

CMap::create() in frontends/php/api/classes/CMap.php.

map.delete

Description

object map.delete(array mapIds)

This method allows to delete maps.

Parameters

(array) IDs of the maps to delete.

Return values

(object) Returns an object containing the IDs of the deleted maps under the sysmapids property.

Examples

Delete multiple maps

Delete two maps.

Request:

635

{
"jsonrpc": "2.0",
"method": "map.delete",
"params": [

"12",
"34"

],
"auth": "3a57200802b24cda67c4e4010b50c065",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": {

"sysmapids": [
"12",
"34"

]
},
"id": 1

}

Source

CMap::delete() in frontends/php/api/classes/CMap.php.

map.exists

Description

boolean map.exists(object filter)

This method checks if at least one map that matches the given filter criteria exists.

Parameters

(object) Criteria to search by.

The following parameters are supported as search criteria.

Parameter Type Description

name string/array Names of the maps.
node string Name of the node the maps must belong to.

This will override the nodeids parameter.
nodeids string/array IDs of the nodes the maps must belong to.
sysmapid string/array IDs of the maps.

Return values

(boolean) Returns true if at least one map that matches the given filter criteria exists.

Examples

Check a map by name

Check if map ”Local network” exists.

Request:

{
"jsonrpc": "2.0",
"method": "map.exists",
"params": {

"name": "Local network"
},

636

"auth": "3a57200802b24cda67c4e4010b50c065",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": true,
"id": 1

}

See also

• map.isreadable
• map.iswritable

Source

CMap::exists() in frontends/php/api/classes/CMap.php.

map.get

Description

integer/array map.get(object parameters)

The method allows to retrieve maps according to the given parameters.

Parameters

(object) Parameters defining the desired output.

The method supports the following parameters.

Parameter Type Description

sysmapids string/array Return only maps with the given IDs.
expandUrls flag Adds global map URLs to the corresponding map

elements and expands macros in all map element
URLs.

selectIconMap query Returns the icon map used on the map in the
iconmap property.

selectLinks query Returns map links between elements in the links
property.

selectSelements query Returns the map elements from the map in the
selements property.

selectUrls query Returns the map URLs in the urls property.
sortfield string/array Sort the result by the given properties.

Possible values are: name, width and height.
countOutput flag These parameters being common for all get methods

are described in detail in the reference commentary.
editable boolean
excludeSearch flag
filter object
limit integer
nodeids string/array
output query
preservekeys flag
search object
searchByAny boolean
searchWildcardsEnabled boolean
sortorder string/array
startSearch flag

Return values

637

(integer/array) Returns either:

• an array of objects;
• the count of retrieved objects, if the countOutput parameter has been used.

Examples

Retrieve a map

Retrieve all data about map ”3”.

Request:

{
"jsonrpc": "2.0",
"method": "map.get",
"params": {

"output": "extend",
"selectSelements": "extend",
"selectLinks": "extend",
"sysmapids": "3"

},
"auth": "038e1d7b1735c6a5436ee9eae095879e",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": [

{
"selements": [

{
"selementid": "10",
"sysmapid": "3",
"elementid": "0",
"elementtype": "4",
"iconid_off": "1",
"iconid_on": "0",
"label": "Zabbix server",
"label_location": "3",
"x": "11",
"y": "141",
"iconid_disabled": "0",
"iconid_maintenance": "0",
"elementsubtype": "0",
"areatype": "0",
"width": "200",
"height": "200",
"viewtype": "0",
"use_iconmap": "1",
"urls": []

},
{

"selementid": "11",
"sysmapid": "3",
"elementid": "0",
"elementtype": "4",
"iconid_off": "1",
"iconid_on": "0",
"label": "Web server",
"label_location": "3",
"x": "211",
"y": "191",
"iconid_disabled": "0",
"iconid_maintenance": "0",

638

"elementsubtype": "0",
"areatype": "0",
"width": "200",
"height": "200",
"viewtype": "0",
"use_iconmap": "1",
"urls": []

}
],
"links": [

{
"linkid": "23",
"sysmapid": "3",
"selementid1": "10",
"selementid2": "11",
"drawtype": "0",
"color": "00CC00",
"label": "",
"linktriggers": []

}
],
"sysmapid": "3",
"name": "Local nerwork",
"width": "400",
"height": "400",
"backgroundid": "0",
"label_type": "2",
"label_location": "3",
"highlight": "1",
"expandproblem": "1",
"markelements": "0",
"show_unack": "0",
"grid_size": "50",
"grid_show": "1",
"grid_align": "1",
"label_format": "0",
"label_type_host": "2",
"label_type_hostgroup": "2",
"label_type_trigger": "2",
"label_type_map": "2",
"label_type_image": "2",
"label_string_host": "",
"label_string_hostgroup": "",
"label_string_trigger": "",
"label_string_map": "",
"label_string_image": "",
"iconmapid": "0",
"expand_macros": "0",
"severity_min": "0"

}
],
"id": 1

}

See also

• map.getobjects
• Icon map
• Map element
• Map link
• Map URL

Source

639

CMap::get() in frontends/php/api/classes/CMap.php.

map.getobjects

Description

array map.getobjects(object filter)

This method allows to retrieve maps that match the given filter criteria.

Parameters

(object) Criteria to search by.

Additionally to the standard standard map properties the following parameters are supported as search criteria.

Parameter Type Description

node string Name of the node the maps must belong to.

This will override the nodeids parameter.
nodeids string/array IDs of the nodes the maps must belong to.

Return values

(array) Returns an array of objects with all properties.

Examples

Retrieve a map by name

Retrieve a map called ”Local network”.

Request:

{
"jsonrpc": "2.0",
"method": "map.getobjects",
"params": {

"name": "Local nerwork"
},
"auth": "3a57200802b24cda67c4e4010b50c065",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": [

{
"urls": [],
"sysmapid": "3",
"name": "Local nerwork",
"width": "400",
"height": "400",
"backgroundid": "0",
"label_type": "2",
"label_location": "3",
"highlight": "1",
"expandproblem": "1",
"markelements": "0",
"show_unack": "0",
"grid_size": "50",
"grid_show": "1",
"grid_align": "1",
"label_format": "0",
"label_type_host": "2",

640

"label_type_hostgroup": "2",
"label_type_trigger": "2",
"label_type_map": "2",
"label_type_image": "2",
"label_string_host": "",
"label_string_hostgroup": "",
"label_string_trigger": "",
"label_string_map": "",
"label_string_image": "",
"iconmapid": "0",
"expand_macros": "0",
"severity_min": "0"

}
],
"id": 1

}

See also

• map.get

Source

CMap::getObject() in frontends/php/api/classes/CMap.php.

map.isreadable

Description

boolean map.isreadable(array sysmapIds)

This method checks if the given maps are available for reading.

Parameters

(array) IDs of the maps to check.

Return values

(boolean) Returns true if the given maps are available for reading.

Examples

Check multiple maps

Check if the two maps are readable.

Request:

{
"jsonrpc": "2.0",
"method": "map.isreadable",
"params": [

"32", "6"
],
"auth": "038e1d7b1735c6a5436ee9eae095879e",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": true,
"id": 1

}

See also

• map.exists
• map.iswritable

641

Source

CMap::isReadable() in frontends/php/api/classes/CMap.php.

map.iswritable

Description

boolean map.iswritable(array sysmapIds)

This method checks if the given maps are available for writing.

Parameters

(array) IDs of the maps to check.

Return values

(boolean) Returns true if the given maps are available for writing.

Examples

Check multiple maps

Check if the two maps are writable.

Request:

{
"jsonrpc": "2.0",
"method": "map.iswritable",
"params": [

"32", "7"
],
"auth": "038e1d7b1735c6a5436ee9eae095879e",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": true,
"id": 1

}

See also

• map.isreadable
• map.exists

Source

CMap::isWritable() in frontends/php/api/classes/CMap.php.

map.update

Description

object map.update(object/array maps)

This method allows to update existing maps.

Parameters

(object/array) Map properties to be updated.

The mapid property must be defined for each map, all other properties are optional. Only the passed properties will be updated,
all others will remain unchanged.

Additionally to the standard map properties, the method accepts the following parameters.

642

Parameter Type Description

links array Map liks to replace the existing links.
selements array Map elements to replace the existing elements.
urls array Map URLs to replace the existing URLs.

Note:
To create map links between new map elements you’ll need to set an elements selementid to an arbitrary value and
then use this value to reference this element in the links selementid1 or selementid2 properties. When the element
is created, this value will be replaced with the correct ID generated by Zabbix. See example for map.create.

Return values

(object) Returns an object containing the IDs of the updated maps under the sysmapids property.

Examples

Resize a map

Change the size of the map to 1200x1200 pixels.

Request:

{
"jsonrpc": "2.0",
"method": "map.update",
"params": {

"sysmapid": "8",
"width": 1200,
"height": 1200

},
"auth": "038e1d7b1735c6a5436ee9eae095879e",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": {

"sysmapids": [
"8"

]
},
"id": 1

}

See also

• Map element
• Map link
• Map URL

Source

CMap::update() in frontends/php/api/classes/CMap.php.

Media

This class is designed to work with media.

Object references:

• Media

Available methods:

643

• usermedia.get - retrieving media

Methods to configure media via the user API:

• user.addmedia - creating media
• user.updatemedia - updating media
• user.deletemedia - deleting media

> Media object

The following objects are directly related to the usermedia API.

Media

Note:
Media are created, updated and deleted via the the user API.

The media object defines how a media type should be used for a user. It has the following properties.

Property Type Description

mediaid string (readonly) ID of the media.
active
(required)

integer Whether the media is enabled.

Possible values:
0 - enabled;
1 - disabled.

mediatypeid
(required)

string ID of the media type used by the media.

period
(required)

string Time when the notifications can be sent as a time period.

sendto
(required)

string Address, user name or other identifier of the recipient.

severity
(required)

integer Trigger severities to send notifications about.

Severities are stored in binary form with each bit
representing the corresponding severity. For example,
12 equals 1100 in binary and means, that notifications
will be sent from triggers with severities warning and
average.

Refer to the trigger object page for a list of supported
trigger severities.

userid
(required)

string ID of the user that uses the media.

usermedia.get

Description

integer/array usermedia.get(object parameters)

The method allows to retrieve media according to the given parameters.

Parameters

(object) Parameters defining the desired output.

The method supports the following parameters.

Parameter Type Description

mediaids string/array Return only media with the given IDs.
usrgrpids string/array Return only media that are used by users in the given

user groups.

644

Parameter Type Description

userids string/array Return only media that are used by the given users.
mediatypeids string/array Return only media that use the given media types.
sortfield string/array Sort the result by the given properties.

Possible values are: mediaid, userid and
mediatypeid.

countOutput flag These parameters being common for all get methods
are described in detail in the reference commentary.

editable boolean
excludeSearch flag
filter object
limit integer
nodeids string/array
output query
preservekeys flag
search object
searchByAny boolean
searchWildcardsEnabled boolean
sortorder string/array
startSearch flag

Return values

(integer/array) Returns either:

• an array of objects;
• the count of retrieved objects, if the countOutput parameter has been used.

Examples

Retrieving media by user

Retrieve all media for the given user.

Request:

{
"jsonrpc": "2.0",
"method": "usermedia.get",
"params": {

"output": "extend",
"userids": "1"

},
"auth": "038e1d7b1735c6a5436ee9eae095879e",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": [

{
"mediaid": "8",
"userid": "1",
"mediatypeid": "3",
"sendto": "+3711231233",
"active": "0",
"severity": "48",
"period": "1-5,09:00-18:00"

},
{

"mediaid": "9",
"userid": "1",
"mediatypeid": "1",

645

"sendto": "john@company.com",
"active": "0",
"severity": "63",
"period": "1-7,00:00-24:00"

}
],
"id": 1

}

Source

CUserMedia::get() in frontends/php/api/classes/CUserMedia.php.

Media type

This class is designed to work with media types.

Object references:

• Media type

Available methods:

• mediatype.create - creating new media types
• mediatype.delete - deleting media types
• mediatype.get - retrieving media types
• mediatype.update - updating media types

> Media type object

The following objects are directly related to the mediatype API.

Media type

The media type object has the following properties.

Property Type Description

mediatypeid string (readonly) ID of the media type.
description
(required)

string Name of the media type.

type
(required)

integer Transport used by the media type.

Possible values:
0 - email;
1 - script;
2 - SMS;
3 - Jabber;
100 - Ez Texting.

exec_path string For script media types exec_path contains the name of
the executed script.

For Ez Texting exec_path contains the message text
limit.
Possible text limit values:
0 - USA (160 characters);
1 - Canada (136 characters).

Required for script and Ez Texting media types.
gsm_modem string Serial device name of the GSM modem.

Required for SMS media types.

646

Property Type Description

passwd string Authentication password.

Required for Jabber and Ez Texting media types.
smtp_email string Email address from which notifications will be sent.

Required for email media types.
smtp_helo string SMTP HELO.

Required for email media types.
smtp_server string SMTP server.

Required for email media types.
status integer Whether the media type is enabled.

Possible values:
0 - (default) enabled;
1 - disabled.

username string Username or Jabber identifier.

Required for Jabber and Ez Texting media types.

mediatype.create

Description

object mediatype.create(object/array mediaTypes)

This method allows to create new media types.

Parameters

(object/array) Media types to create.

The method accepts media types with the standard media type properties.

Return values

(object) Returns an object containing the IDs of the created media types under the mediatypeids property. The order of the
returned IDs matches the order of the passed media types.

Examples

Creating a media type

Create a new e-mail media type.

Request:

{
"jsonrpc": "2.0",
"method": "mediatype.create",
"params": {

"description": "E-mail",
"type": 0,
"smtp_server": "rootmail@company.com",
"smtp_helo": "company.com",
"smtp_email": "zabbix@company.com"

},
"auth": "038e1d7b1735c6a5436ee9eae095879e",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": {

647

"mediatypeids": [
"7"

]
},
"id": 1

}

Source

CMediaType::create() in frontends/php/api/classes/CMediaType.php.

mediatype.delete

Description

object mediatype.delete(array mediaTypeIds)

This method allows to delete media types.

Parameters

(array) IDs of the media types to delete.

Return values

(object) Returns an object containing the IDs of the deleted media types under the mediatypeids property.

Examples

Deleting multiple media types

Delete two media types.

Request:

{
"jsonrpc": "2.0",
"method": "mediatype.delete",
"params": [

"3",
"5"

],
"auth": "3a57200802b24cda67c4e4010b50c065",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": {

"mediatypeids": [
"3",
"5"

]
},
"id": 1

}

Source

CMediaType::delete() in frontends/php/api/classes/CMediaType.php.

mediatype.get

Description

integer/array mediatype.get(object parameters)

The method allows to retrieve media types according to the given parameters.

648

Parameters

(object) Parameters defining the desired output.

The method supports the following parameters.

Parameter Type Description

mediatypeids string/array Return only media types with the given IDs.
mediaids string/array Return only media types used by the given media.
userids string/array Return only media types used by the given users.
selectUsers query Return the users that use the media type in the

users property.
sortfield string/array Sort the result by the given properties.

Possible values are: mediatypeid.
countOutput flag These parameters being common for all get methods

are described in detail in the reference commentary.
editable boolean
excludeSearch flag
filter object
limit integer
nodeids string/array
output query
preservekeys flag
search object
searchByAny boolean
searchWildcardsEnabled boolean
sortorder string/array
startSearch flag

Return values

(integer/array) Returns either:

• an array of objects;
• the count of retrieved objects, if the countOutput parameter has been used.

Examples

Retrieving media types

Retrieve all configured media types.

Request:

{
"jsonrpc": "2.0",
"method": "mediatype.get",
"params": {

"output": "extend"
},
"auth": "038e1d7b1735c6a5436ee9eae095879e",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": [

{
"mediatypeid": "1",
"type": "0",
"description": "Email",
"smtp_server": "mail.company.com",
"smtp_helo": "company.com",
"smtp_email": "zabbix@company.com",

649

"exec_path": "",
"gsm_modem": "",
"username": "",
"passwd": "",
"status": "0"

},
{

"mediatypeid": "2",
"type": "3",
"description": "Jabber",
"smtp_server": "",
"smtp_helo": "",
"smtp_email": "",
"exec_path": "",
"gsm_modem": "",
"username": "jabber@company.com",
"passwd": "zabbix",
"status": "0"

},
{

"mediatypeid": "3",
"type": "2",
"description": "SMS",
"smtp_server": "",
"smtp_helo": "",
"smtp_email": "",
"exec_path": "",
"gsm_modem": "/dev/ttyS0",
"username": "",
"passwd": "",
"status": "0"

}
],
"id": 1

}

See also

• User

Source

CMediaType::get() in frontends/php/api/classes/CMediaType.php.

mediatype.update

Description

object mediatype.update(object/array mediaTypes)

This method allows to update existing media types.

Parameters

(object/array) Media type properties to be updated.

The mediatypeid property must be defined for each media type, all other properties are optional. Only the passed properties will
be updated, all others will remain unchanged.

Return values

(object) Returns an object containing the IDs of the updated media types under the mediatypeids property.

Examples

Enabling a media type

Enable a media type, that is, set its status to 0.

650

Request:

{
"jsonrpc": "2.0",
"method": "mediatype.update",
"params": {

"mediatypeid": "6",
"status": 0

},
"auth": "038e1d7b1735c6a5436ee9eae095879e",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": {

"mediatypeids": [
"6"

]
},
"id": 1

}

Source

CMediaType::update() in frontends/php/api/classes/CMediaType.php.

Proxy

This class is designed to work with proxies.

Object references:

• Proxy
• Proxy interface

Available methods:

• proxy.create - create new proxies
• proxy.delete - delete proxies
• proxy.get - retrieve proxies
• proxy.isreadable - check if a proxy is readable
• proxy.iswritable - check if a proxy is writable
• proxy.update - update proxies

> Proxy object

The following objects are directly related to the proxy API.

Proxy

The proxy object has the following properties.

Property Type Description

proxyid string (readonly) ID of the proxy.
host
(required)

string Name of the proxy.

status
(required)

integer Type of proxy.

Possible values:
5 - active proxy;
6 - passive proxy.

651

Property Type Description

lastaccess timestamp (readonly) Time when the proxy last connected to the
server.

Proxy interface

The proxy interface object defines the interface used to connect to a passive proxy. It has the following properties.

Property Type Description

interfaceid string (readonly) ID of the interface.
dns
(required)

string DNS name to connect to.

Can be empty if connections are made via IP address.
ip
(required)

string IP address to connect to.

Can be empty if connections are made via DNS names.
port
(required)

string Port number to connect to.

useip
(required)

integer Whether the connection should be made via IP address.

Possible values are:
0 - connect using DNS name;
1 - connect using IP address.

hostid string (readonly) ID of the proxy the interface belongs to.

proxy.create

Description

object proxy.create(object/array proxies)

This method allows to create new proxies.

Parameters

(object/array) Proxies to create.

Additionally to the standard proxy properties, the method accepts the following parameters.

Parameter Type Description

hosts array Hosts to be monitored by the proxy. If a host is
already monitored by a different proxy, it will be
reassigned to the current proxy.

The hosts must have the hostid property defined.
interface object Host interface to be created for the passive proxy.

Required for passive proxies.
interfaces
(deprecated)

array Host interface to be created for the passive proxy
passed as an array.

Return values

(object) Returns an object containing the IDs of the created proxies under the proxyids property. The order of the returned
IDs matches the order of the passed proxies.

Examples

Create an active proxy

Create an action proxy ”Active proxy” and assign a host to be monitored by it.

Request:

652

{
"jsonrpc": "2.0",
"method": "proxy.create",
"params": {

"host": "Active proxy",
"status": "5",
"hosts": [

{
"hostid": "10279"

}
]

},
"auth": "ab9638041ec6922cb14b07982b268f47",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": {

"proxyids": [
"10280"

]
},
"id": 1

}

Create a passive proxy

Create a passive proxy ”Passive proxy” and assign two hosts to be monitored by it.

Request:

{
"jsonrpc": "2.0",
"method": "proxy.create",
"params": {

"host": "Passive proxy",
"status": "6",
"interface": {

"ip": "127.0.0.1",
"dns": "",
"useip": "1",
"port": "10051"

},
"hosts": [

{
"hostid": "10192"

},
{

"hostid": "10139"
}

]
},
"auth": "ab9638041ec6922cb14b07982b268f47",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": {

"proxyids": [
"10284"

653

]
},
"id": 1

}

See also

• Host
• Proxy interface

Source

CProxy::create() in frontends/php/api/classes/CProxy.php.

proxy.delete

Description

object proxy.delete(array proxies)

This method allows to delete proxies.

Parameters

(array) IDs of proxies to delete.

Warning:
The method can also accept an array of proxy objects with the proxyid property defined. This format is deprecated.

Return values

(object) Returns an object containing the IDs of the deleted proxies under the proxyids property.

Examples

Delete multiple proxies

Delete two proxies.

Request:

{
"jsonrpc": "2.0",
"method": "proxy.delete",
"params": [

"10286",
"10285"

],
"auth": "3a57200802b24cda67c4e4010b50c065",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": {

"proxyids": [
"10286",
"10285"

]
},
"id": 1

}

Source

CProxy::delete() in frontends/php/api/classes/CProxy.php.

654

proxy.get

Description

integer/array proxy.get(object parameters)

The method allows to retrieve proxies according to the given parameters.

Parameters

(object) Parameters defining the desired output.

The method supports the following parameters.

Parameter Type Description

proxyids string/array Return only proxies with the given IDs.
selectHosts query Return hosts monitored by the proxy in the hosts

property.
selectInterface query Return the proxy interface used by a passive proxy in

the interface property.
sortfield string/array Sort the result by the given properties.

Possible values are: hostid, host and status.
countOutput flag These parameters being common for all get methods

are described in detail in the reference commentary.
editable boolean
excludeSearch flag
filter object
limit integer
nodeids string/array
output query
preservekeys flag
search object
searchByAny boolean
searchWildcardsEnabled boolean
sortorder string/array
startSearch flag
selectInterfaces
(deprecated)

query Return the proxy interface used by a passive proxy as
an array in the interfaces property.

Return values

(integer/array) Returns either:

• an array of objects;
• the count of retrieved objects, if the countOutput parameter has been used.

Examples

Retrieve all proxies

Retrieve all configured proxies and their interfaces.

Request:

{
"jsonrpc": "2.0",
"method": "proxy.get",
"params": {

"output": "extend",
"selectInterface": "extend"

},
"auth": "038e1d7b1735c6a5436ee9eae095879e",
"id": 1

}

Response:

655

{
"jsonrpc": "2.0",
"result": [

{
"host": "Active proxy",
"status": "5",
"lastaccess": "0",
"proxyid": "30091",
"interface": []

},
{

"host": "Passive proxy",
"status": "6",
"proxyid": "30092",
"lastaccess": "0",
"interface": {

"interfaceid": "30109",
"hostid": "30092",
"useip": "1",
"ip": "127.0.0.1",
"dns": "",
"port": "10051"

]
}

],
"id": 1

}

See also

• Host
• Proxy interface

Source

CProxy::get() in frontends/php/api/classes/CProxy.php.

proxy.isreadable

Description

boolean proxy.isreadable(array proxyIds)

This method checks if the given proxies are available for reading.

Parameters

(array) IDs of the proxies to check.

Return values

(boolean) Returns true if the given proxies are available for reading.

Examples

Check multiple proxies

Check if the two proxies are readable.

Request:

{
"jsonrpc": "2.0",
"method": "proxy.isreadable",
"params": [

"30091",
"30092"

],
"auth": "038e1d7b1735c6a5436ee9eae095879e",

656

"id": 1
}

Response:

{
"jsonrpc": "2.0",
"result": true,
"id": 1

}

See also

• proxy.iswritable

Source

CProxy::isReadable() in frontends/php/api/classes/CProxy.php.

proxy.iswritable

Description

boolean proxy.iswritable(array proxyIds)

This method checks if the given proxies are available for writing.

Parameters

(array) IDs of the proxies to check.

Return values

(boolean) Returns true if the given proxies are available for writing.

Examples

Check multiple proxies

Check if the two proxies are writable.

Request:

{
"jsonrpc": "2.0",
"method": "proxy.iswritable",
"params": [

"30091",
"30092"

],
"auth": "038e1d7b1735c6a5436ee9eae095879e",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": true,
"id": 1

}

See also

• proxy.isreadable

Source

CProxy::isWritable() in frontends/php/api/classes/CProxy.php.

657

proxy.update

Description

object proxy.update(object/array proxies)

This method allows to update existing proxies.

Parameters

(object/array) Proxy properties to be updated.

The proxyid property must be defined for each proxy, all other properties are optional. Only the passed properties will be updated,
all others will remain unchanged.

Additionally to the standard proxy properties, the method accepts the following parameters.

Parameter Type Description

hosts array Hosts to be monitored by the proxy. If a host is
already monitored by a different proxy, it will be
reassigned to the current proxy.

The hosts must have the hostid property defined.
interface object Host interface to replace the existing interface for the

passive proxy.
interfaces
(deprecated)

array Host interface to be created for the passive proxy
passed as an array.

Return values

(object) Returns an object containing the IDs of the updated proxies under the proxyids property.

Examples

Change hosts monitored by a proxy

Update the proxy to monitor the two given hosts.

Request:

{
"jsonrpc": "2.0",
"method": "proxy.update",
"params": {

"proxyid": "10293",
"hosts": [

"10294",
"10295"

]
},
"auth": "038e1d7b1735c6a5436ee9eae095879e",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": {

"proxyids": [
"10293"

]
},
"id": 1

}

Change proxy status

Change the proxy to an active proxy and rename it to ”Active proxy”.

658

Request:

{
"jsonrpc": "2.0",
"method": "proxy.update",
"params": {

"proxyid": "10293",
"host": "Active proxy",
"status": "5"

},
"auth": "038e1d7b1735c6a5436ee9eae095879e",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": {

"proxyids": [
"10293"

]
},
"id": 1

}

See also

• Host
• Proxy interface

Source

CProxy::update() in frontends/php/api/classes/CProxy.php.

Screen

This class is designed to work with screen.

Object references:

• Screen

Available methods:

• screen.create - creating new screen
• screen.delete - deleting screens
• screen.exists - checking if a screen exists
• screen.get - retrieving screens
• screen.update - updating screens

> Screen object

The following objects are directly related to the screen API.

Screen

The screen object has the following properties.

Property Type Description

screenid string (readonly) ID of the screen.
name
(required)

string Name of the screen.

hsize integer Width of the screen.
Default: 1

659

Property Type Description

vsize integer Height of the screen.
Default: 1

screen.create

Description

object screen.create(object/array screens)

This method allows to create new screens.

Parameters

(object/array) Screens to create.

Additionally to the standard screen properties, the method accepts the following parameters.

Parameter Type Description

screenitems array Screen items to be created for the screen.

Return values

(object) Returns an object containing the IDs of the created screens under the screenids property. The order of the returned
IDs matches the order of the passed screens.

Examples

Creating a screen

Create a screen named ”Graphs” with 2 rows and 3 columns and add a graph to the upper-left cell.

Request:

{
"jsonrpc": "2.0",
"method": "screen.create",
"params": {

"name": "Graphs",
"hsize": 3,
"vsize": 2,
"screenitems": [

{
"resourcetype": 0,
"resourceid": "612",
"rowspan": 0,
"colspan": 0,
"x": 0,
"y": 0

}
]

},
"auth": "038e1d7b1735c6a5436ee9eae095879e",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": {

"screenids": [
"26"

]
},

660

"id": 1
}

See also

• Screen item

Source

CScreen::create() in frontends/php/api/classes/CScreen.php.

screen.delete

Description

object screen.delete(array screenIds)

This method allows to delete screens.

Parameters

(array) IDs of the screens to delete.

Return values

(object) Returns an object containing the IDs of the deleted screens under the screenids property.

Examples

Deleting multiple screens

Delete two screens.

Request:

{
"jsonrpc": "2.0",
"method": "screen.delete",
"params": [

"25",
"26"

],
"auth": "3a57200802b24cda67c4e4010b50c065",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": {

"screenids": [
"25",
"26"

]
},
"id": 1

}

Source

CScreen::delete() in frontends/php/api/classes/CScreen.php.

screen.exists

Description

boolean screen.exists(object filter)

This method checks if at least one screen that matches the given filter criteria exists.

Parameters

661

(object) Criteria to search by.

The following parameters are supported as search criteria.

Parameter Type Description

name string/array Names of the screens.
node string Name of the node the screens must belong to.

This will override the nodeids parameter.
nodeids string/array IDs of the nodes the screens must belong to.
screenid string/array IDs of the screens.

Return values

(boolean) Returns true if at least one screen that matches the given filter criteria exists.

Examples

Checking a screen by name

Check if a screen named ”Graphs” already exists.

Request:

{
"jsonrpc": "2.0",
"method": "screen.exists",
"params": {

"name": "Graphs"
},
"auth": "3a57200802b24cda67c4e4010b50c065",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": true,
"id": 1

}

Source

CScreen::exists() in frontends/php/api/classes/CScreen.php.

screen.get

Description

integer/array screen.get(object parameters)

The method allows to retrieve screens according to the given parameters.

Parameters

(object) Parameters defining the desired output.

The method supports the following parameters.

Parameter Type Description

screenids string/array Return only screens with the given IDs.
screenitemids string/array Return only screen that contain the given screen

items.
selectScreenItems query Return the screen items that are used in the screen.
sortfield string/array Sort the result by the given properties.

Possible values are: screenid and name.

662

Parameter Type Description

countOutput flag These parameters being common for all get methods
are described in detail in the reference commentary
page.

editable boolean
excludeSearch flag
filter object
limit integer
nodeids string/array
output query
preservekeys flag
search object
searchByAny boolean
searchWildcardsEnabled boolean
sortorder string/array
startSearch flag

Return values

(integer/array) Returns either:

• an array of objects;
• the count of retrieved objects, if the countOutput parameter has been used.

Examples

Retrieving a screen by ID

Retrieve all data about screen ”26” and its screen items.

Request:

{
"jsonrpc": "2.0",
"method": "screen.get",
"params": {

"output": "extend",
"selectScreenItems": "extend",
"screenids": "26"

},
"auth": "038e1d7b1735c6a5436ee9eae095879e",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": [

{
"screenitems": [

{
"screenitemid": "67",
"screenid": "26",
"resourcetype": "0",
"resourceid": "612",
"width": "320",
"height": "200",
"x": "0",
"y": "0",
"colspan": "0",
"rowspan": "0",
"elements": "25",
"valign": "0",
"halign": "0",
"style": "0",

663

"url": "",
"dynamic": "0",
"sort_triggers": "0"

}
],
"screenid": "26",
"name": "CPU Graphs",
"hsize": "3",
"vsize": "2",
"templateid": "0"

}
],
"id": 1

}

See also

• Screen item

Source

CScreen::get() in frontends/php/api/classes/CScreen.php.

screen.update

Description

object screen.update(object/array screens)

This method allows to update existing screens.

Parameters

(object/array) Screen properties to be updated.

The screenid property must be defined for each screen, all other properties are optional. Only the passed properties will be
updated, all others will remain unchanged.

Additionally to the standard screen properties, the method accepts the following parameters.

Parameter Type Description

screenitems array Screen items to replace existing screen items.

Screen items are updated by coordinates, so each
screen item must have the x and y properties defined.

Return values

(object) Returns an object containing the IDs of the updated screens under the screenids property.

Examples

Renaming a screen

Rename a screen to ”CPU Graphs”.

Request:

{
"jsonrpc": "2.0",
"method": "screen.update",
"params": {

"screenid": "26",
"name": "CPU Graphs"

},
"auth": "038e1d7b1735c6a5436ee9eae095879e",
"id": 1

}

664

Response:

{
"jsonrpc": "2.0",
"result": {

"screenids": [
"26"

]
},
"id": 1

}

See also

• Screen item
• screenitem.create
• screenitem.update
• screenitem.updatebyposition

Source

CScreen::update() in frontends/php/api/classes/CScreen.php.

Screen item

This class is designed to work with screen items.

Object references:

• Screen item

Available methods:

• screenitem.create - creating new screen items
• screenitem.delete - deleting screen items
• screenitem.get - retrieving screen items
• screenitem.isreadable - checking if screen items are readable
• screenitem.iswritable - checking if screen items are writable
• screenitem.update - updating screen items
• screenitem.updatebyposition - updating screen items in a specific screen cell

> Screen item object

The following objects are directly related to the screenitem API.

Screen item

The screen item object defines an element displayed on a screen. It has the following properties.

Property Type Description

screenitemid string (readonly) ID of the screen item.
colspan integer Number of columns the screen item will span across.

665

Property Type Description

resourcetype
(required)

integer Type of screen item.

Possible values:
0 - graph;
1 - simple graph;
2 - map;
3 - plain text;
4 - hosts info;
5 - triggers info;
6 - server info;
7 - clock;
8 - screen;
9 - triggers overview
10 - data overview;
11 - URL;
12 - history of actions;
13 - history of events;
14 - latest host group issues;
15 - system status;
16 - latest host issues.

rowspan integer Number or rows the screen item will span across.
screenid
(required)

string ID of the screen that the item belongs to.

dynamic integer Whether the screen item is dynamic.

Possible values:
0 - (default) not dynamic;
1 - dynamic.

elements integer Number of lines to display on the screen item.

Default: 25.
halign integer Specifies how the screen item must be aligned

horizontally in the cell.

Possible values:
0 - (default) center;
1 - left;
2 - right.

height integer Height of the screen item in pixels.

Default: 200.
resourceid string ID of the object displayed on the screen item.

Depending on the type of a screen item, the
resourceid property can reference different objects.

Required for data overview, graph, map, plain text,
screen, simple graph and trigger overview screen items.
Unused by local and server time clocks, history of
actions, history of events, hosts info, server info, system
status and URL screen items.

666

Property Type Description

sort_triggers integer Order in which actions or triggers must be sorted.

Possible values for history of actions screen elements:
3 - time, ascending;
4 - time, descending;
5 - type, ascending;
6 - type, descending;
7 - status, ascending;
8 - status, descending;
9 - retries left, ascending;
10 - retries left, descending;
11 - recipient, ascending;
12 - recipient, descending.

Possible values for latest host group issues and latest
host issues screen items:
0 - (default) last change, descending;
1 - severity, descending;
2 - host, ascending.

style integer Screen item display option.

Possible values for data overview and triggers overview
screen items:
0 - (default) display hosts on the left side;
1 - display hosts on the top.

Possible values for hosts info and triggers info screen
elements:
0 - (default) horizontal layout;
1 - vertical layout.

Possible values for clock screen items:
0 - (default) local time;
1 - server time;
2 - host time.

Possible values for plain text screen items:
0 - (default) display values as plain text;
1 - display values as HTML.

url string URL of the webpage to be displayed in the screen item.
Used by URL screen items.

valign integer Specifies how the screen item must be aligned vertically
in the cell.

Possible values:
0 - (default) middle;
1 - top;
2 - bottom.

width integer Width of the screen item in pixels.

Default: 320.
x integer X-coordinates of the screen item on the screen, from left

to right.

Default: 0.
y integer Y-coordinates of the screen item on the screen, from top

to bottom.

Default: 0.

667

screenitem.create

Description

object screenitem.create(object/array screenItems)

This method allows to create new screen items.

Parameters

(object/array) Screen items to create.

The method accepts screen items with the standard screen item properties.

Return values

(object) Returns an object containing the IDs of the created screen items under the screenitemids property. The order of the
returned IDs matches the order of the passed screen items.

Examples

Creating a screen item

Create a screen item displaying a graph in the left-upper cell of the screen.

Request:

{
"jsonrpc": "2.0",
"method": "screenitem.create",
"params": {

"screenid": 16,
"resourcetype": 0,
"resourceid": 612,
"rowspan": 0,
"colspan": 0,
"x": 0,
"y": 0

},
"auth": "038e1d7b1735c6a5436ee9eae095879e",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": {

"screenitemids": [
"65"

]
},
"id": 1

}

See also

• screen.update

Source

CScreenItem::create() in frontends/php/api/classes/CScreenItem.php.

screenitem.delete

Description

object screenitem.delete(array screenItemIds)

This method allows to delete screen items.

Parameters

668

(array) IDs of the screen items to delete.

Return values

(object) Returns an object containing the IDs of the deleted screen items under the screenitemids property.

Examples

Deleting multiple screen items

Delete two screen items.

Request:

{
"jsonrpc": "2.0",
"method": "screenitem.delete",
"params": [

"65",
"63"

],
"auth": "3a57200802b24cda67c4e4010b50c065",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": {

"screenitemids": [
"65",
"63"

]
},
"id": 1

}

See also

• screen.update

Source

CScreenItem::delete() in frontends/php/api/classes/CScreenItem.php.

screenitem.get

Description

integer/array screenitem.get(object parameters)

The method allows to retrieve screen items according to the given parameters.

Parameters

(object) Parameters defining the desired output.

The method supports the following parameters.

Parameter Type Description

screenitemids string/array Return only screen items with the given IDs.
screenids string/array Return only screen items that belong to the given

screen.
sortfield string/array Sort the result by the given properties.

Possible values are: screenitemid and screenid.
countOutput flag These parameters being common for all get methods

are described in detail in the reference commentary
page page.

669

Parameter Type Description

editable boolean
excludeSearch flag
filter object
limit integer
nodeids string/array
output query
preservekeys flag
search object
searchByAny boolean
searchWildcardsEnabled boolean
sortorder string/array
startSearch flag

Return values

(integer/array) Returns either:

• an array of objects;
• the count of retrieved objects, if the countOutput parameter has been used.

Examples

Retrieving screen items from screen

Retrieve all screen items from the given screen.

Request:

{
"jsonrpc": "2.0",
"method": "screenitem.get",
"params": {

"output": "extend",
"screenids": "3"

},
"auth": "038e1d7b1735c6a5436ee9eae095879e",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": [

{
"screenitemid": "20",
"screenid": "3",
"resourcetype": "0",
"resourceid": "433",
"width": "500",
"height": "120",
"x": "0",
"y": "0",
"colspan": "1",
"rowspan": "1",
"elements": "0",
"valign": "1",
"halign": "0",
"style": "0",
"url": "",
"dynamic": "0",
"sort_triggers": "0"

},
{

"screenitemid": "21",

670

"screenid": "3",
"resourcetype": "0",
"resourceid": "387",
"width": "500",
"height": "100",
"x": "0",
"y": "1",
"colspan": "1",
"rowspan": "1",
"elements": "0",
"valign": "1",
"halign": "0",
"style": "0",
"url": "",
"dynamic": "0",
"sort_triggers": "0"

},
{

"screenitemid": "22",
"screenid": "3",
"resourcetype": "1",
"resourceid": "10013",
"width": "500",
"height": "148",
"x": "1",
"y": "0",
"colspan": "1",
"rowspan": "1",
"elements": "0",
"valign": "1",
"halign": "0",
"style": "0",
"url": "",
"dynamic": "0",
"sort_triggers": "0"

},
{

"screenitemid": "23",
"screenid": "3",
"resourcetype": "1",
"resourceid": "22181",
"width": "500",
"height": "184",
"x": "1",
"y": "1",
"colspan": "1",
"rowspan": "1",
"elements": "0",
"valign": "1",
"halign": "0",
"style": "0",
"url": "",
"dynamic": "0",
"sort_triggers": "0"

}
],
"id": 1

}

Source

CScreenItem::get() in frontends/php/api/classes/CScreenItem.php.

671

screenitem.isreadable

Description

boolean screenitem.isreadable(array screenItemIds)

This method checks if the given screen items are available for reading.

Parameters

(array) IDs of the screen items to check.

Return values

(boolean) Returns true if the given screen items are available for reading.

Examples

Check multiple screen items

Check if the two screen items are readable.

Request:

{
"jsonrpc": "2.0",
"method": "screenitem.isreadable",
"params": [

"20",
"21"

],
"auth": "038e1d7b1735c6a5436ee9eae095879e",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": true,
"id": 1

}

See also

• screenitem.iswritable

Source

CScreenItem::isReadable() in frontends/php/api/classes/CScreenItem.php.

screenitem.iswritable

Description

boolean screenitem.iswritable(array screenItemIds)

This method checks if the given screen items are available for writing.

Parameters

(array) IDs of the screen items to check.

Return values

(boolean) Returns true if the given screen items are available for writing.

Examples

Check multiple screen items

Check if the two screen items are writable.

Request:

672

{
"jsonrpc": "2.0",
"method": "screenitem.iswritable",
"params": [

"20",
"21"

],
"auth": "038e1d7b1735c6a5436ee9eae095879e",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": true,
"id": 1

}

See also

• screenitem.isreadable

Source

CScreenItem::isWritable() in frontends/php/api/classes/CScreenItem.php.

screenitem.update

Description

object screenitem.update(object/array screenItems)

This method allows to update existing screen items.

Parameters

(object/array) Screen item properties to be updated.

The screenitemid property must be defined for each screen item, all other properties are optional. Only the passed properties
will be updated, all others will remain unchanged.

Return values

(object) Returns an object containing the IDs of the updated screen items under the screenitemids property.

Examples

Setting the size of the screen item

Set the width of the screen item to 500px and height to 300px.

Request:

{
"jsonrpc": "2.0",
"method": "screenitem.update",
"params": {

"screenitemid": "20",
"width": 500,
"height": 300

},
"auth": "038e1d7b1735c6a5436ee9eae095879e",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": {

673

"screenitemids": [
"20"

]
},
"id": 1

}

See also

• screenitem.updatebyposition

Source

CScreenItem::update() in frontends/php/api/classes/CScreenItem.php.

screenitem.updatebyposition

Description

object screenitem.updatebyposition(array screenItems)

This method allows to update screen items in the given screen cells. If a cell is empty, a new screen item will be created.

Parameters

(array) Screen item properties to be updated.

The x, y and screenid properties must be defined for each screen item, all other properties are optional. Only the passed
properties will be updated, all others will remain unchanged.

Return values

(object) Returns an object containing the IDs of the updated and created screen items under the screenitemids property.

Examples

Changing a screen items resource ID

Change the resource ID for the screen element located in the upper-left cell of the screen.

Request:

{
"jsonrpc": "2.0",
"method": "screenitem.updatebyposition",
"params": [

{
"screenid": "16",
"x": 0,
"y": 0,
"resourceid": "644"

}
],
"auth": "038e1d7b1735c6a5436ee9eae095879e",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": {

"screenitemids": [
"66"

]
},
"id": 1

}

See also

674

• screenitem.update

Source

CScreenItem::update() in frontends/php/api/classes/CScreenItem.php.

Script

This class is designed to work with scripts.

Object references:

• Script

Available methods:

• script.create - create new scripts
• script.delete - delete scripts
• script.execute - run scripts
• script.get - retrieve scripts
• script.getscriptsbyhosts - retrieve scripts for hosts
• script.update - update scripts

> Script object

The following objects are directly related to the script API.

Script

The script object has the following properties.

Property Type Description

scriptid string (readonly) ID of the script.
command
(required)

string Command to run.

name
(required)

string Name of the script.

confirmation string Confirmation pop up text. The pop up will appear when
trying to run the script from the Zabbix frontend.

description string Description of the script.
execute_on integer Where to run the script.

Possible values:
0 - run on Zabbix agent;
1 - (default) run on Zabbix server.

groupid string ID of the host group that the script can be run on. If set
to 0, the script will be available on all host groups.

Default: 0.
host_access integer Host permissions needed to run the script.

Possible values:
2 - (default) read;
3 - write.

type integer Script type.

Possible values:
0 - (default) script;
1 - IPMI.

usrgrpid string ID of the user group that will be allowed to run the script.
If set to 0, the script will be available for all user groups.

Default: 0.

675

script.create

Description

object script.create(object/array scripts)

This method allows to create new scripts.

Parameters

(object/array) Scripts to create.

The method accepts scripts with the standard script properties.

Return values

(object) Returns an object containing the IDs of the created scripts under the scriptids property. The order of the returned
IDs matches the order of the passed scripts.

Examples

Create a script

Create a script that will reboot a server. The script will require write access to the host and will display a configuration message
before running in the frontend.

Request:

{
"jsonrpc": "2.0",
"method": "script.create",
"params": {

"name": "Reboot server",
"command": "reboot server 1",
"host_access": 3,
"confirmation": "Are you sure you would like to reboot the server?"

},
"auth": "038e1d7b1735c6a5436ee9eae095879e",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": {

"scriptids": [
"3"

]
},
"id": 1

}

Source

CScript::create() in frontends/php/api/classes/CScript.php.

script.delete

Description

object script.delete(array scriptIds)

This method allows to delete scripts.

Parameters

(array) IDs of the scripts to delete.

Return values

(object) Returns an object containing the IDs of the deleted scripts under the scriptids property.

676

Examples

Delete multiple scripts

Delete two scripts.

Request:

{
"jsonrpc": "2.0",
"method": "script.delete",
"params": [

"3",
"4"

],
"auth": "3a57200802b24cda67c4e4010b50c065",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": {

"scriptids": [
"3",
"4"

]
},
"id": 1

}

Source

CScript::delete() in frontends/php/api/classes/CScript.php.

script.execute

Description

object script.execute(object parameters)

This method allows to run a script on a host.

Parameters

(object) Parameters containing the ID of the script to run and the ID of the host.

Parameter Type Description

hostid
(required)

string ID of the host to run the script on.

scriptid
(required)

string ID of the script to run.

Return values

(object) Returns the result of script execution.

Property Type Description

response string Whether the script was run successfully.

Possible values: success or failed.
value string Script output.

Examples

677

Run a script

Run a ”ping” script on a host.

Request:

{
"jsonrpc": "2.0",
"method": "script.execute",
"params": {

"scriptid": "1",
"hostid": "30079"

},
"auth": "038e1d7b1735c6a5436ee9eae095879e",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": {

"response": "success",
"value": "PING 127.0.0.1 (127.0.0.1) 56(84) bytes of data.\n64 bytes from 127.0.0.1: icmp_req=1 ttl=64 time=0.074 ms\n64 bytes from 127.0.0.1: icmp_req=2 ttl=64 time=0.030 ms\n64 bytes from 127.0.0.1: icmp_req=3 ttl=64 time=0.030 ms\n\n--- 127.0.0.1 ping statistics ---\n3 packets transmitted, 3 received, 0% packet loss, time 1998ms\nrtt min/avg/max/mdev = 0.030/0.044/0.074/0.022 ms\n"

},
"id": 1

}

Source

CScript::execute() in frontends/php/api/classes/CScript.php.

script.get

Description

integer/array script.get(object parameters)

The method allows to retrieve scripts according to the given parameters.

Parameters

(object) Parameters defining the desired output.

The method supports the following parameters.

Parameter Type Description

groupids string/array Return only scripts that can be run on the given host
groups.

hostids string/array Return only scripts that can be run on the given hosts.
scriptids string/array Return only scripts with the given IDs.
usrgrpids string/array Return only scripts that can be run by users in the

given user groups.
selectGroups query Return host groups that the script can be run on in the

groups property.
selectHosts query Return hosts that the script can be run on in the

hosts property.
sortfield string/array Sort the result by the given properties.

Possible values are: scriptid and name.
countOutput flag These parameters being common for all get methods

are described in detail in the reference commentary.
editable boolean
excludeSearch flag
filter object
limit integer
nodeids string/array

678

Parameter Type Description

output query
preservekeys flag
search object
searchByAny boolean
searchWildcardsEnabled boolean
sortorder string/array
startSearch flag

Return values

(integer/array) Returns either:

• an array of objects;
• the count of retrieved objects, if the countOutput parameter has been used.

Examples

Retrieve all scripts

Retrieve all configured scripts.

Request:

{
"jsonrpc": "2.0",
"method": "script.get",
"params": {

"output": "extend"
},
"auth": "038e1d7b1735c6a5436ee9eae095879e",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": [

{
"scriptid": "1",
"name": "Ping",
"command": "/bin/ping -c 3 {HOST.CONN} 2>&1",
"host_access": "2",
"usrgrpid": "0",
"groupid": "0",
"description": "",
"confirmation": "",
"type": "0",
"execute_on": "1"

},
{

"scriptid": "2",
"name": "Traceroute",
"command": "/usr/bin/traceroute {HOST.CONN} 2>&1",
"host_access": "2",
"usrgrpid": "0",
"groupid": "0",
"description": "",
"confirmation": "",
"type": "0",
"execute_on": "1"

},
{

"scriptid": "3",
"name": "Detect operating system",

679

"command": "sudo /usr/bin/nmap -O {HOST.CONN} 2>&1",
"host_access": "2",
"usrgrpid": "7",
"groupid": "0",
"description": "",
"confirmation": "",
"type": "0",
"execute_on": "1"

}
],
"id": 1

}

See also

• Host
• Host group

Source

CScript::get() in frontends/php/api/classes/CScript.php.

script.getscriptsbyhosts

Description

object script.getscriptsbyhosts(array hostIds)

This method allows to retrieve scripts available on the given hosts.

Parameters

(string/array) IDs of hosts to return scripts for.

Return values

(object) Returns an object with host IDs as properties and arrays of available scripts as values.

Note:
The method will automatically expand macros in the confirmation text.

Examples

Retrieve scripts by host IDs

Retrieve all scripts available on hosts ”30079” and ”30073”.

Request:

{
"jsonrpc": "2.0",
"method": "script.getscriptsbyhosts",
"params": [

"30079",
"30073"

],
"auth": "038e1d7b1735c6a5436ee9eae095879e",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": {

"30079": [
{

"scriptid": "3",
"name": "Detect operating system",

680

"command": "sudo /usr/bin/nmap -O {HOST.CONN} 2>&1",
"host_access": "2",
"usrgrpid": "7",
"groupid": "0",
"description": "",
"confirmation": "",
"type": "0",
"execute_on": "1",
"hostid": "10001"

},
{

"scriptid": "1",
"name": "Ping",
"command": "/bin/ping -c 3 {HOST.CONN} 2>&1",
"host_access": "2",
"usrgrpid": "0",
"groupid": "0",
"description": "",
"confirmation": "",
"type": "0",
"execute_on": "1",
"hostid": "10001"

},
{

"scriptid": "2",
"name": "Traceroute",
"command": "/usr/bin/traceroute {HOST.CONN} 2>&1",
"host_access": "2",
"usrgrpid": "0",
"groupid": "0",
"description": "",
"confirmation": "",
"type": "0",
"execute_on": "1",
"hostid": "10001"

}
],
"30073": [

{
"scriptid": "3",
"name": "Detect operating system",
"command": "sudo /usr/bin/nmap -O {HOST.CONN} 2>&1",
"host_access": "2",
"usrgrpid": "7",
"groupid": "0",
"description": "",
"confirmation": "",
"type": "0",
"execute_on": "1",
"hostid": "10001"

},
{

"scriptid": "1",
"name": "Ping",
"command": "/bin/ping -c 3 {HOST.CONN} 2>&1",
"host_access": "2",
"usrgrpid": "0",
"groupid": "0",
"description": "",
"confirmation": "",
"type": "0",
"execute_on": "1",

681

"hostid": "10001"
},
{

"scriptid": "2",
"name": "Traceroute",
"command": "/usr/bin/traceroute {HOST.CONN} 2>&1",
"host_access": "2",
"usrgrpid": "0",
"groupid": "0",
"description": "",
"confirmation": "",
"type": "0",
"execute_on": "1",
"hostid": "10001"

}
]

},
"id": 1

}

Source

CScript::getScriptsByHosts() in frontends/php/api/classes/CScript.php.

script.update

Description

object script.update(object/array scripts)

This method allows to update existing scripts.

Parameters

(object/array) Script properties to be updated.

The scriptid property must be defined for each script, all other properties are optional. Only the passed properties will be
updated, all others will remain unchanged.

Return values

(object) Returns an object containing the IDs of the updated scripts under the scriptids property.

Examples

Change script command

Change the command of the script to ”/bin/ping -c 10 {HOST.CONN} 2>&1”.

Request:

{
"jsonrpc": "2.0",
"method": "script.update",
"params": {

"scriptid": "1",
"command": "/bin/ping -c 10 {HOST.CONN} 2>&1"

},
"auth": "038e1d7b1735c6a5436ee9eae095879e",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": {

"scriptids": [
"1"

]

682

},
"id": 1

}

Source

CScript::update() in frontends/php/api/classes/CScript.php.

Template

This class is designed to work with templates.

Object references:

• Template

Available methods:

• template.create - creating new templates
• template.delete - deleting templates
• template.exists - checking if a template exists
• template.get - retrieving templates
• template.isreadable - checking if templates are readable
• template.iswritable - checking if templates are writable
• template.massadd - adding related objects to templates
• template.massremove - removing related objects from templates
• template.massupdate - replacing or removing related objects from templates
• template.update - updating templates

> Template object

The following objects are directly related to the template API.

Template

The template object has the following properties.

Property Type Description

templateid string (readonly) ID of the template.
host
(required)

string Technical name of the template.

name string Visible name of the template.

Default: host property value.

template.create

Description

object template.create(object/array templates)

This method allows to create new templates.

Parameters

(object/array) Templates to create.

Additionally to the standard template properties, the method accepts the following parameters.

683

Parameter Type Description

groups
(required)

object/array Host groups to add the template to.

The host groups must have the groupid property
defined.

templates object/array Templates to be linked to the template.

The templates must have the templateid property
defined.

macros object/array User macros to be created for the template.
hosts object/array Hosts to link the template to.

The hosts must have the hostid property defined.

Return values

(object) Returns an object containing the IDs of the created templates under the templateids property. The order of the
returned IDs matches the order of the passed templates.

Examples

Creating a template

Create a template and link it to two hosts.

Request:

{
"jsonrpc": "2.0",
"method": "template.create",
"params": {

"host": "Linux template",
"groups": {

"groupid": 1
},
"hosts": [

{
"hostid": "10084"

},
{

"hostid": "10090"
}

]
},
"auth": "038e1d7b1735c6a5436ee9eae095879e",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": {

"templateids": [
"10086"

]
},
"id": 1

}

Source

CTemplate::create() in frontends/php/api/classes/CTemplate.php.

template.delete

684

Description

object template.delete(array templateIds)

This method allows to delete templates.

Parameters

(array) IDs of the templates to delete.

Return values

(object) Returns an object containing the IDs of the deleted templates under the templateids property.

Examples

Deleting multiple templates

Delete two templates.

Request:

{
"jsonrpc": "2.0",
"method": "template.delete",
"params": [

"13",
"32"

],
"auth": "038e1d7b1735c6a5436ee9eae095879e",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": {

"templateids": [
"13",
"32"

]
},
"id": 1

}

Source

CTemplate::delete() in frontends/php/api/classes/CTemplate.php.

template.exists

Description

boolean template.exists(object filter)

This method checks if at least one template that matches the given filter criteria exists.

Parameters

(object) Criteria to search by.

The following parameters are supported as search criteria.

Parameter Type Description

host string/array Technical names of the templates.
name string/array Visible names of the templates.
node string Name of the node the templates must belong to.

This will override the nodeids parameter.
nodeids string/array IDs of the node the hosts must belong to.

685

Parameter Type Description

templateid string/array Template IDs.

Return values

(boolean) Returns true if at least one template that matches the given filter criteria exists.

Examples

Check template on a node

Check if a template with the technical name ”Linux template” exists on the node with ID 1.

Request:

{
"jsonrpc": "2.0",
"method": "template.exists",
"params": {

"host": "Linux template",
"nodeids": [

"1"
]

},
"auth": "038e1d7b1735c6a5436ee9eae095879e",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": true,
"id": 1

}

See also

• template.isreadable
• template.iswritable

Source

CTemplate::exists() in frontends/php/api/classes/CTemplate.php.

template.get

Description

integer/array template.get(object parameters)

The method allows to retrieve templates according to the given parameters.

Parameters

(object) Parameters defining the desired output.

The method supports the following parameters.

Parameter Type Description

templateids string/array Return only templates with the given template IDs.
groupids string/array Return only templates that belong to the given host

groups.
parentTemplateids string/array Return only templates that are children of the given

templates.
hostids string/array Return only templates that are linked to the given

hosts.
graphids string/array Return only templates that contain the given graphs.

686

Parameter Type Description

itemids string/array Return only templates that contain the given items.
triggerids string/array Return only templates that contain the given triggers.
with_items flag Return only templates that have items.
with_triggers flag Return only templates that have triggers.
with_graphs flag Return only templates that have graphs.
with_httptests flag Return only templates that have web scenarios.
selectGroups query Return the host groups that the template belongs to in

the groups property.
selectHosts query Return the hosts that are linked to the template in the

hosts property.

Supports count.
selectTemplates query Return the child templates in the templates

property.

Supports count.
selectParentTemplates query Return the parent templates in the

parentTemplates property.

Supports count.
selectHttpTests query Return the web scenarios from the template in the

httpSteps property.

Supports count.
selectItems query Return items from the template in the items property.

Supports count.
selectDiscoveries query Return low-level discoveries from the template in the

discoveries property.

Supports count.
selectTriggers query Return triggers from the template in the triggers

property.

Supports count.
selectGraphs query Return graphs from the template in the graphs

property.

Supports count.
selectApplications query Return applications from the template in the

applications property.

Supports count.
selectMacros query Return the macros from the template in the macros

property..
selectScreens query Return screens from the template in the screens

property.

Supports count.
limitSelects integer Limits the number of records returned by subselects.

Applies to the following subselects:
selectTemplates - results will be sorted by name;
selectHosts - sorted by host;
selectParentTemplates - sorted by host;
selectItems - sorted by name;
selectDiscoveries - sorted by name;
selectTriggers - sorted by description;
selectGraphs - sorted by name;
selectApplications - sorted by name;
selectScreens - sorted by name.

687

Parameter Type Description

sortfield string/array Sort the result by the given properties.

Possible values are: hostid, host, name, status.
countOutput flag These parameters being common for all get methods

are described in detail in the reference commentary.
editable boolean
excludeSearch flag
filter object
limit integer
nodeids string/array
output query
preservekeys flag
search object
searchByAny boolean
searchWildcardsEnabled boolean
sortorder string/array
startSearch flag

Return values

(integer/array) Returns either:

• an array of objects;
• the count of retrieved objects, if the countOutput parameter has been used.

Examples

Retrieving templates by name

Retrieve all data about two templates named ”Template OS Linux” and ”Template OS Windows”.

Request:

{
"jsonrpc": "2.0",
"method": "template.get",
"params": {

"output": "extend",
"filter": {

"host": [
"Template OS Linux",
"Template OS Windows"

]
}

},
"auth": "038e1d7b1735c6a5436ee9eae095879e",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": [

{
"proxy_hostid": "0",
"host": "Template OS Windows",
"status": "3",
"disable_until": "0",
"error": "",
"available": "0",
"errors_from": "0",
"lastaccess": "0",
"ipmi_authtype": "0",
"ipmi_privilege": "2",

688

"ipmi_username": "",
"ipmi_password": "",
"ipmi_disable_until": "0",
"ipmi_available": "0",
"snmp_disable_until": "0",
"snmp_available": "0",
"maintenanceid": "0",
"maintenance_status": "0",
"maintenance_type": "0",
"maintenance_from": "0",
"ipmi_errors_from": "0",
"snmp_errors_from": "0",
"ipmi_error": "",
"snmp_error": "",
"jmx_disable_until": "0",
"jmx_available": "0",
"jmx_errors_from": "0",
"jmx_error": "",
"name": "Template OS Windows",
"flags": "0",
"templateid": "10081"

},
{

"proxy_hostid": "0",
"host": "Template OS Linux",
"status": "3",
"disable_until": "0",
"error": "",
"available": "0",
"errors_from": "0",
"lastaccess": "0",
"ipmi_authtype": "0",
"ipmi_privilege": "2",
"ipmi_username": "",
"ipmi_password": "",
"ipmi_disable_until": "0",
"ipmi_available": "0",
"snmp_disable_until": "0",
"snmp_available": "0",
"maintenanceid": "0",
"maintenance_status": "0",
"maintenance_type": "0",
"maintenance_from": "0",
"ipmi_errors_from": "0",
"snmp_errors_from": "0",
"ipmi_error": "",
"snmp_error": "",
"jmx_disable_until": "0",
"jmx_available": "0",
"jmx_errors_from": "0",
"jmx_error": "",
"name": "Template OS Linux",
"flags": "0",
"templateid": "10001"

}
],
"id": 1

}

See also

• template.getobjects
• Host group

689

• Template
• User macro
• Host interface

Source

CTemplate::get() in frontends/php/api/classes/CTemplate.php.

template.getobjects

Description

array template.getobjects(object filter)

This method allows to retrieve templates that match the given filter criteria.

Parameters

(object) Criteria to search by.

Additionally to the standard standard template properties the following parameters are supported as search criteria.

Parameter Type Description

node string Name of the node the templates must belong to.

This will override the nodeids parameter.
nodeids string/array ID of the node the templates must belong to.

Return values

(array) Returns an array of objects with all properties.

Examples

Retrieving templates by name

Retrieve all data about two templates named “Template OS Linux” and “Template OS Windows”.

Request:

{
"jsonrpc": "2.0",
"method": "template.getobjects",
"params": {

"host": [
"Template OS Linux",
"Template OS Windows"

]
},
"auth": "3a57200802b24cda67c4e4010b50c065",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": [

{
"host": "Template OS Linux",
"name": "Template OS Linux",
"templateid": "10001"

},
{

"host": "Template OS Windows",
"name": "Template OS Windows",
"templateid": "10081"

}

690

],
"id": 1

}

See also

• template.get

Source

CTemplate::getObject() in frontends/php/api/classes/CTemplate.php.

template.isreadable

Description

boolean template.isreadable(array templateIds)

This method checks if the given templates are available for reading.

Parameters

(array) IDs of the templates to check.

Return values

(boolean) Returns true if the given templates are available for reading.

Examples

Check multiple templates

Check if the two templates are readable.

Request:

{
"jsonrpc": "2.0",
"method": "template.isreadable",
"params": [

"10001",
"10081"

],
"auth": "038e1d7b1735c6a5436ee9eae095879e",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": true,
"id": 1

}

See also

• template.exists
• template.iswritable

Source

CTemplate::isReadable() in frontends/php/api/classes/CTemplate.php.

template.iswritable

Description

boolean template.iswritable(array templateIds)

This method checks if the given templates are available for writing.

Parameters

691

(array) IDs of the templates to check.

Return values

(boolean) Returns true if the given templates are available for writing.

Examples

Check multiple templates

Check if the two templates are writable.

Request:

{
"jsonrpc": "2.0",
"method": "template.iswritable",
"params": [

"10001",
"10081"

],
"auth": "038e1d7b1735c6a5436ee9eae095879e",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": true,
"id": 1

}

See also

• template.isreadable
• template.exists

Source

CTemplate::isWritable() in frontends/php/api/classes/CTemplate.php.

template.massadd

Description

object template.massadd(object parameters)

This method allows to simultaneously add multiple related objects to the given templates.

Parameters

(object) Parameters containing the IDs of the templates to update and the objects to add to the templates.

The method accepts the following parameters.

Parameter Type Description

templates
(required)

object/array Templates to be updated.

The templates must have the templateid property
defined.

groups object/array Host groups to add the given templates to.

The host groups must have the groupid property
defined.

hosts object/array Hosts and templates to link the given templates to.

The hosts must have the hostid property defined.
macros object/array User macros to be created for the given templates.

692

Parameter Type Description

templates_link object/array Templates to link to the given templates.

The templates must have the templateid property
defined.

Return values

(object) Returns an object containing the IDs of the updated templates under the templateids property.

Examples

Adding templates to a group

Add two templates to the host group ”2”.

Request:

{
"jsonrpc": "2.0",
"method": "template.massadd",
"params": {

"templates": [
{

"templateid": "10085"
},
{

"templateid": "10086"
}

],
"groups": [

{
"groupid": "2"

}
]

},
"auth": "038e1d7b1735c6a5436ee9eae095879e",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": {

"templateids": [
"10085",
"10086"

]
},
"id": 1

}

Linking a template to hosts

Link template ”10073” to two hosts.

Request:

{
"jsonrpc": "2.0",
"method": "template.massadd",
"params": {

"templates": [
{

"templateid": "10073"
}

693

],
"hosts": [

{
"hostid": "10106"

},
{

"hostid": "10104"
}

]
},
"auth": "038e1d7b1735c6a5436ee9eae095879e",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": {

"templateids": [
"10073"

]
},
"id": 1

}

See also

• template.update
• Host
• Host group
• User macro

Source

CTemplate::massAdd() in frontends/php/api/classes/CTemplate.php.

template.massremove

Description

object template.massremove(object parameters)

This method allows to remove related objects from multiple templates.

Parameters

(object) Parameters containing the IDs of the templates to update and the objects that should be removed.

Parameter Type Description

templateids
(required)

string/array IDs of the templates to be updated.

groupids string/array Host groups to remove the given templates from.
hostids string/array Hosts or templates to unlink the given templates from

(downstream).
macros string/array User macros to delete from the given templates.
templateids_clear string/array Templates to unlink and clear from the given

templates (upstream).
templateids_link string/array Templates to unlink from the given templates

(upstream).

Return values

(object) Returns an object containing the IDs of the updated templates under the templateids property.

Examples

694

Removing templates from a group

Remove two templates from group ”2”.

Request:

{
"jsonrpc": "2.0",
"method": "template.massremove",
"params": {

"templateids": [
"10085",
"10086"

],
"groupids": "2"

},
"auth": "038e1d7b1735c6a5436ee9eae095879e",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": {

"templateids": [
"10085",
"10086"

]
},
"id": 1

}

Unlinking templates from a host

Unlink template ”10085” from two hosts.

Request:

{
"jsonrpc": "2.0",
"method": "template.massremove",
"params": {

"templateids": "10085",
"hostids": [

"10106",
"10104"

]
},
"auth": "038e1d7b1735c6a5436ee9eae095879e",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": {

"templateids": [
"10085"

]
},
"id": 1

}

See also

• template.update
• User macro

695

Source

CTemplate::massRemove() in frontends/php/api/classes/CTemplate.php.

template.massupdate

Description

object template.massupdate(object parameters)

This method allows to simultaneously replace or remove related objects and update properties on multiple templates.

Parameters

(object) Parameters containing the IDs of the templates to update and the properties that should be updated.

Additionally to the standard template properties, the method accepts the following parameters.

Parameter Type Description

templates
(required)

object/array Templates to be updated.

The templates must have the templateid property
defined.

groups object/array Host groups to replace the current host groups the
templates belong to.

The host groups must have the groupid property
defined.

hosts object/array Hosts and templates to replace the ones the
templates are currently linked to.

Both hosts and templates must use the hostid
property to pass an ID.

macros object/array User macros to replace the current user macros on
the given templates.

templates_clear object/array Templates to unlink and clear from the given
templates.

The templates must have the templateid property
defined.

templates_link object/array Templates to replace the currently linked templates.

The templates must have the templateid property
defined.

Return values

(object) Returns an object containing the IDs of the updated templates under the templateids property.

Examples

Replacing host groups

Unlink and clear template ”10091” from the given templates.

Request:

{
"jsonrpc": "2.0",
"method": "template.massupdate",
"params": {

"templates": [
{

"templateid": "10085"
},
{

"templateid": "10086"

696

}
],
"templates_clear": [

{
"templateid": "10091"

}
]

},
"auth": "038e1d7b1735c6a5436ee9eae095879e",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": {

"templateids": [
"10085",
"10086"

]
},
"id": 1

}

See also

• template.update
• template.massadd
• Host group
• User macro

Source

CTemplate::massUpdate() in frontends/php/api/classes/CTemplate.php.

template.update

Description

object template.update(object/array templates)

This method allows to update existing templates.

Parameters

(object/array) Template properties to be updated.

The templateid property must be defined for each template, all other properties are optional. Only the given properties will be
updated, all others will remain unchanged.

Additionally to the standard template properties, the method accepts the following parameters.

Parameter Type Description

groups object/array Host groups to replace the current host groups the
templates belong to.

The host groups must have the groupid property
defined.

hosts object/array Hosts and templates to replace the ones the
templates are currently linked to.

Both hosts and templates must use the hostid
property to pass an ID.

macros object/array User macros to replace the current user macros on
the given templates.

697

Parameter Type Description

templates object/array Templates to replace the currently linked templates.
Templates that are not passed are only unlinked.

The templates must have the templateid property
defined.

templates_clear object/array Templates to unlink and clear from the given
templates.

The templates must have the templateid property
defined.

Return values

(object) Returns an object containing the IDs of the updated templates under the templateids property.

Examples

Renaming a template

Rename the template to ”Template OS Linux”.

Request:

{
"jsonrpc": "2.0",
"method": "template.update",
"params": {

"templateid": "10086",
"name": "Template OS Linux"

},
"auth": "038e1d7b1735c6a5436ee9eae095879e",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": {

"templateids": [
"10086"

]
},
"id": 1

}

Source

CTemplate::update() in frontends/php/api/classes/CTemplate.php.

Template screen

This class is designed to work with template screens.

Object references:

• Template screen

Available methods:

• templatescreen.copy - copy template screens
• templatescreen.create - create new template screens
• templatescreen.delete - delete template screens
• templatescreen.exists - check if a template screen exists
• templatescreen.get - retrieve template screens

698

• templatescreen.isreadable - check if template screens are readable
• templatescreen.iswritable - check if template screens are writable
• templatescreen.update - update template screens

> Template screen object

The following objects are directly related to the templatescreen API.

Template screen

The template screen object has the following properties.

Property Type Description

screenid string (readonly) ID of the template screen.
name
(required)

string Name of the template screen.

templateid
(required)

string ID of the template that the screen belongs to.

hsize integer Width of the template screen.

Default: 1
vsize integer Height of the template screen.

Default: 1

templatescreen.copy

Description

object templatescreen.copy(object parameters)

This method allows to copy template screens to the given templates.

Parameters

(object) Parameters defining the template screens to copy and the target templates.

Parameter Type Description

screenIds
(required)

string/array IDs of template screens to copy.

templateIds
(required)

string/array IDs of templates to copy the screens to.

Return values

(boolean) Returns true if the copying was successful.

Examples

Copy a template screen

Copy template screen ”25” to template ”30085”.

Request:

{
"jsonrpc": "2.0",
"method": "templatescreen.copy",
"params": {

"screenIds": "25",
"templateIds": "30085"

},
"auth": "038e1d7b1735c6a5436ee9eae095879e",
"id": 1

}

699

Response:

{
"jsonrpc": "2.0",
"result": true,
"id": 1

}

Source

CTemplateScreen::copy() in frontends/php/api/classes/CTemplateScreen.php.

templatescreen.create

Description

object templatescreen.create(object/array templateScreens)

This method allows to create new template screens.

Parameters

(object/array) Template screens to create.

Additionally to the standard template screen properties, the method accepts the following parameters.

Parameter Type Description

screenitems array Template screen items to create on the screen.

Return values

(object) Returns an object containing the IDs of the created template screens under the screenids property. The order of the
returned IDs matches the order of the passed template screens.

Examples

Create a template screen

Create a template screen named “Graphs” with 2 rows and 3 columns and add a graph to the upper-left cell.

Request:

{
"jsonrpc": "2.0",
"method": "templatescreen.create",
"params": {

"name": "Graphs",
"templateid": "10047",
"hsize": 3,
"vsize": 2,
"screenitems": [

{
"resourcetype": 0,
"resourceid": "410",
"rowspan": 0,
"colspan": 0,
"x": 0,
"y": 0

}
]

},
"auth": "038e1d7b1735c6a5436ee9eae095879e",
"id": 1

}

Response:

700

{
"jsonrpc": "2.0",
"result": {

"screenids": [
"45"

]
},
"id": 1

}

See also

• Template screen item

Source

CTemplateScreen::create() in frontends/php/api/classes/CTemplateScreen.php.

templatescreen.delete

Description

object templatescreen.delete(array templateScreenIds)

This method allows to delete template screens.

Parameters

(array) IDs of the template screens to delete.

Return values

(object) Returns an object containing the IDs of the deleted template screens under the screenids property.

Examples

Delete multiple template screens

Delete two template screens.

Request:

{
"jsonrpc": "2.0",
"method": "templatescreen.delete",
"params": [

"45",
"46"

],
"auth": "3a57200802b24cda67c4e4010b50c065",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": {

"screenids": [
"45",
"46"

]
},
"id": 1

}

Source

CTemplateScreen::delete() in frontends/php/api/classes/CTemplateScreen.php.

701

templatescreen.exists

Description

boolean templatescreen.exists(object filter)

This method checks if at least one template screen that matches the given filter criteria exists.

Parameters

(object) Criteria to search by.

The following parameters are supported as search criteria.

Parameter Type Description

name string/array Names of the screens.
node string Name of the node the template screens must belong

to.

This will override the nodeids parameter.
nodeids string/array IDs of the nodes the template screens must belong to.
screenid string/array IDs of the screens.
templateids string/array IDs of the templates that the screens belong to

Return values

(boolean) Returns true if at least one template screen that matches the given filter criteria exists.

Examples

Check screen by name

Check if screen ”Zabbix server health” exists on template ”10047”.

Request:

{
"jsonrpc": "2.0",
"method": "templatescreen.exists",
"params": {

"name": "Zabbix server health",
"templateid": "10047"

},
"auth": "3a57200802b24cda67c4e4010b50c065",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": true,
"id": 1

}

See also

• templatescreen.isreadable
• templatescreen.iswritable

Source

CTemplateScreen::exists() in frontends/php/api/classes/CTemplateScreen.php.

templatescreen.get

Description

integer/array templatescreen.get(object parameters)

702

The method allows to retrieve template screens according to the given parameters.

Parameters

(object) Parameters defining the desired output.

The method supports the following parameters.

Parameter Type Description

hostids string/array Return only template screens that belong to the given
hosts.

screenids string/array Return only template screens with the given IDs.
screenitemids string/array Return only template screens that contain the given

screen items.
templateids string/arary Return only template screens that belong to the given

templates.
noInheritance flag Do not return inherited template screens.
selectScreenItems query Return the screen items that are used in the template

screen in the screenitems property.
sortfield string/array Sort the result by the given properties.

Possible values are: screenid and name.
countOutput flag These parameters being common for all get methods

are described in detail in the reference commentary.
editable boolean
excludeSearch flag
filter object
limit integer
nodeids string/array
output query
preservekeys flag
search object
searchByAny boolean
searchWildcardsEnabled boolean
sortorder string/array
startSearch flag

Return values

(integer/array) Returns either:

• an array of objects;
• the count of retrieved objects, if the countOutput parameter has been used.

Examples

Retrieve screens from template

Retrieve all screens from template ”10001” and all of the screen items.

Request:

{
"jsonrpc": "2.0",
"method": "templatescreen.get",
"params": {

"output": "extend",
"selectScreenItems": "extend",
"templateids": "10001"

},
"auth": "038e1d7b1735c6a5436ee9eae095879e",
"id": 1

}

Response:

703

{
"jsonrpc": "2.0",
"result": [

{
"screenid": "3",
"name": "System performance",
"hsize": "2",
"vsize": "2",
"templateid": "10001",
"screenitems": [

{
"screenitemid": "20",
"screenid": "3",
"resourcetype": "0",
"resourceid": "433",
"width": "500",
"height": "120",
"x": "0",
"y": "0",
"colspan": "1",
"rowspan": "1",
"elements": "0",
"valign": "1",
"halign": "0",
"style": "0",
"url": ""

},
{

"screenitemid": "21",
"screenid": "3",
"resourcetype": "0",
"resourceid": "387",
"width": "500",
"height": "100",
"x": "0",
"y": "1",
"colspan": "1",
"rowspan": "1",
"elements": "0",
"valign": "1",
"halign": "0",
"style": "0",
"url": ""

},
{

"screenitemid": "22",
"screenid": "3",
"resourcetype": "1",
"resourceid": "10013",
"width": "500",
"height": "148",
"x": "1",
"y": "0",
"colspan": "1",
"rowspan": "1",
"elements": "0",
"valign": "1",
"halign": "0",
"style": "0",
"url": ""

},
{

704

"screenitemid": "23",
"screenid": "3",
"resourcetype": "1",
"resourceid": "22181",
"width": "500",
"height": "184",
"x": "1",
"y": "1",
"colspan": "1",
"rowspan": "1",
"elements": "0",
"valign": "1",
"halign": "0",
"style": "0",
"url": ""

}
]

}
],
"id": 1

}

See also

• Template screen item

Source

CTemplateScreen::get() in frontends/php/api/classes/CTemplateScreen.php.

templatescreen.isreadable

Description

boolean templatescreen.isreadable(array templateScreenIds)

This method checks if the given template screens are available for reading.

Parameters

(array) IDs of the template screens to check.

Return values

(boolean) Returns true if the given template screens are available for reading.

Examples

Check multiple template screens

Check if the two template screens are readable.

Request:

{
"jsonrpc": "2.0",
"method": "templatescreen.isreadable",
"params": [

"3",
"5"

],
"auth": "038e1d7b1735c6a5436ee9eae095879e",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": true,

705

"id": 1
}

See also

• templatescreen.exists
• templatescreen.iswritable

Source

CTemplateScreen::isReadable() in frontends/php/api/classes/CTemplateScreen.php.

templatescreen.iswritable

Description

boolean templatescreen.iswritable(array templateScreenIds)

This method checks if the given template screens are available for writing.

Parameters

(array) IDs of the template screens to check.

Return values

(boolean) Returns true if the given template screens are available for writing.

Examples

Check multiple template screens

Check if the two template screens are writable.

Request:

{
"jsonrpc": "2.0",
"method": "templatescreen.iswritable",
"params": [

"3",
"5"

],
"auth": "038e1d7b1735c6a5436ee9eae095879e",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": true,
"id": 1

}

See also

• templatescreen.isreadable
• templatescreen.exists

Source

CTemplateScreen::isWritable() in frontends/php/api/classes/CTemplateScreen.php.

templatescreen.update

Description

object templatescreen.update(object/array templateScreens)

This method allows to update existing template screens.

Parameters

706

(object/array) Template screen properties to be updated.

The screenid property must be defined for each template screen, all other properties are optional. Only the passed properties
will be updated, all others will remain unchanged.

Additionally to the standard template screen properties, the method accepts the following parameters.

Parameter Type Description

screenitems array Screen items to replace existing screen items.

Screen items are updated by coordinates, so each
screen item must have the x and y properties defined.

Return values

(object) Returns an object containing the IDs of the updated template screens under the screenids property.

Examples

Rename a template screen

Rename the template screen to ”Performance graphs”.

Request:

{
"jsonrpc": "2.0",
"method": "templatescreen.update",
"params": {

"screenid": "3",
"name": "Performance graphs"

},
"auth": "038e1d7b1735c6a5436ee9eae095879e",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": {

"screenids": [
"3"

]
},
"id": 1

}

Source

CTemplateScreen::update() in frontends/php/api/classes/CTemplateScreen.php.

Template screen item

This class is designed to work with template screen items.

Object references:

• Template screen item

Available methods:

• templatescreenitem.get - retrieve template screen items

707

> Template screen item object

The following objects are directly related to the templatescreenitem API.

Template screen item

The template screen item object defines an element displayed on a template screen. It has the following properties.

Property Type Description

screenitemid string (readonly) ID of the template screen item.
colspan
(required)

integer Number of columns the template screen item will span
across.

resourceid
(required)

string ID of the object from the parent template displayed on
the template screen item. Depending on the type of
screen item, the resourceid property can reference
different objects. Unused by clock and URL template
screen items.

Note: the resourceid property always references an
object used in the parent template object, even if the
screen item itself is inherited on a host or template.

resourcetype
(required)

integer Type of template screen item.

Possible values:
0 - graph;
1 - simple graph;
3 - plain text;
7 - clock;
11 - URL.

rowspan
(required)

integer Number or rows the template screen item will span
across.

screenid
(required)

string ID of the template screen that the item belongs to.

elements integer Number of lines to display on the template screen item.

Default: 25.
halign integer Specifies how the template screen item must be aligned

horizontally in the cell.

Possible values:
0 - (default) center;
1 - left;
2 - right.

height integer Height of the template screen item in pixels.

Default: 200.
style integer Template screen item display option.

Possible values for clock screen items:
0 - (default) local time;
1 - server time;
2 - host time.

Possible values for plain text screen items:
0 - (default) display values as plain text;
1 - display values as HTML.

url string URL of the webpage to be displayed in the template
screen item. Used by URL template screen items.

708

Property Type Description

valign integer Specifies how the template screen item must be aligned
vertically in the cell.

Possible values:
0 - (default) middle;
1 - top;
2 - bottom.

width integer Width of the template screen item in pixels.

Default: 320.
x integer X-coordinates of the template screen item on the screen,

from left to right.

Default: 0.
y integer Y-coordinates of the template screen item on the screen,

from top to bottom.

Default: 0.

templatescreenitem.get

Description

integer/array templatescreenitem.get(object parameters)

The method allows to retrieve template screen items according to the given parameters.

Parameters

(object) Parameters defining the desired output.

The method supports the following parameters.

Parameter Type Description

screenids string/array Return only template screen items that belong to the
given template screens.

screenitemids string/array Return only template screen items with the given IDs.
hostids string/array Returns an additional real_resourceid property for

each template screen item, that belongs to a screen
from the given hosts or templates. The
real_resourceid property contains the ID of object
displayed on the screen.

sortfield string/array Sort the result by the given properties.

Possible values are: screenitemid and screenid.
countOutput flag These parameters being common for all get methods

are described in detail in the reference commentary.
editable boolean
excludeSearch flag
filter object
limit integer
nodeids string/array
output query
preservekeys flag
search object
searchByAny boolean
searchWildcardsEnabled boolean
sortorder string/array
startSearch flag

Return values

709

(integer/array) Returns either:

• an array of objects;
• the count of retrieved objects, if the countOutput parameter has been used.

Examples

Retrieve template screen items for screen

Return all template screen items from template screen ”15”.

Request:

{
"jsonrpc": "2.0",
"method": "templatescreenitem.get",
"params": {

"output": "extend",
"screenids": "15"

},
"auth": "038e1d7b1735c6a5436ee9eae095879e",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": [

{
"screenitemid": "42",
"screenid": "15",
"resourcetype": "0",
"resourceid": "454",
"width": "500",
"height": "200",
"x": "0",
"y": "0",
"colspan": "1",
"rowspan": "1",
"elements": "0",
"valign": "1",
"halign": "0",
"style": "0",
"url": ""

},
{

"screenitemid": "43",
"screenid": "15",
"resourcetype": "0",
"resourceid": "455",
"width": "500",
"height": "270",
"x": "1",
"y": "0",
"colspan": "1",
"rowspan": "1",
"elements": "0",
"valign": "1",
"halign": "0",
"style": "0",
"url": ""

}
],
"id": 1

}

710

Source

CTemplateScreenItem::get() in frontends/php/api/classes/CTemplateScreenItem.php.

Trigger

This class is designed to work with triggers.

Object references:

• Trigger

Available methods:

• trigger.adddependencies - adding new trigger dependencies
• trigger.create - creating new triggers
• trigger.delete - deleting triggers
• trigger.deletedependencies - deleting trigger dependencies
• trigger.exists - checking if a trigger exists
• trigger.get - retrieving triggers
• trigger.getobjects - retrieving triggers by filters
• trigger.isreadable - checking if triggers are readable
• trigger.iswritable - checking if triggers are writable
• trigger.update - updating triggers

> Trigger object

The following objects are directly related to the trigger API.

Trigger

The trigger object has the following properties.

Property Type Description

triggerid string (readonly) ID of the trigger.
description
(required)

string Name of the trigger.

expression
(required)

string Reduced trigger expression.

comments string Additional description of the trigger.
error string (readonly) Error text if there have been any problems

when updating the state of the trigger.
flags integer (readonly) Origin of the trigger.

Possible values are:
0 - (default) a plain trigger;
4 - a discovered trigger.

lastchange timestamp (readonly) Time when the trigger last changed its state.
priority integer Severity of the trigger.

Possible values are:
0 - (default) not classified;
1 - information;
2 - warning;
3 - average;
4 - high;
5 - disaster.

state integer (readonly) State of the trigger.

Possible values:
0 - (default) trigger state is up to date;
1 - current trigger state is unknown.

711

Property Type Description

status integer Whether the trigger is enabled or disabled.

Possible values are:
0 - (default) enabled;
1 - disabled.

templateid string (readonly) ID of the parent template trigger.
type integer Whether the trigger can generate multiple problem

events.

Possible values are:
0 - (default) do not generate multiple events;
1 - generate multiple events.

url string URL associated with the trigger.
value integer (readonly) Whether the trigger is in OK or problem state.

Possible values are:
0 - (default) OK;
1 - problem.

value_flags
(deprecated)

integer Alias of state.

trigger.adddependencies

Description

object trigger.adddependencies(object/array triggerDependencies)

This method allows to create new trigger dependencies.

Parameters

(object/array) Trigger dependencies to create.

Each trigger dependency has the following parameters:

Parameter Type Description

triggerid
(required)

string ID of the dependent trigger.

dependsOnTriggerid
(required)

string ID of the trigger that the trigger depends on.

Return values

(object) Returns an object containing the IDs of the dependent triggers under the triggerids property.

Examples

Add a trigger dependency

Make trigger ”14092” dependent on trigger ”13565.”

Request:

{
"jsonrpc": "2.0",
"method": "trigger.adddependencies",
"params": {

"triggerid": "14092",
"dependsOnTriggerid": "13565"

},
"auth": "038e1d7b1735c6a5436ee9eae095879e",
"id": 1

}

Response:

712

{
"jsonrpc": "2.0",
"result": {

"triggerids": [
"14092"

]
},
"id": 1

}

See also

• trigger.update

Source

CTrigger::addDependencies() in frontends/php/api/classes/CTrigger.php.

trigger.create

Description

object trigger.create(object/array triggers)

This method allows to create new triggers.

Parameters

(object/array) Triggers to create.

Additionally to the standard trigger properties the method accepts the following parameters.

Parameter Type Description

dependencies array Triggers that the trigger is dependent on.

The triggers must have the triggerid property
defined.

Attention:
The trigger expression has to be given in its expanded form.

Return values

(object) Returns an object containing the IDs of the created triggers under the triggerids property. The order of the returned
IDs matches the order of the passed triggers.

Examples

Creating a trigger

Create a trigger with a single trigger dependency.

Request:

{
"jsonrpc": "2.0",
"method": "trigger.create",
"params": {

"description": "Processor load is too high on {HOST.NAME}",
"expression": "{Linux server:system.cpu.load[percpu,avg1].last()}>5",
"dependencies": [

{
"triggerid": "14062"

}
]

},
"auth": "038e1d7b1735c6a5436ee9eae095879e",

713

"id": 1
}

Response:

{
"jsonrpc": "2.0",
"result": {

"triggerids": [
"14102"

]
},
"id": 1

}

Source

CTrigger::create() in frontends/php/api/classes/CTrigger.php.

trigger.delete

Description

object trigger.delete(array triggerIds)

This method allows to delete triggers.

Parameters

(array) IDs of the triggers to delete.

Return values

(object) Returns an object containing the IDs of the deleted triggers under the triggerids property.

Examples

Delete multiple triggers

Delete two triggers.

Request:

{
"jsonrpc": "2.0",
"method": "trigger.delete",
"params": [

"12002",
"12003"

],
"auth": "3a57200802b24cda67c4e4010b50c065",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": {

"triggerids": [
"12002",
"12003"

]
},
"id": 1

}

Source

CTrigger::delete() in frontends/php/api/classes/CTrigger.php.

714

trigger.deletedependencies

Description

object trigger.deletedependencies(string/array triggers)

This method allows to delete all trigger dependencies from the given triggers.

Parameters

(string/array) Triggers to delete the trigger dependencies from.

Return values

(object) Returns an object containing the IDs of the affected triggers under the triggerids property.

Examples

Deleting dependencies from multiple triggers

Delete all dependencies from two triggers.

Request:

{
"jsonrpc": "2.0",
"method": "trigger.deleteDependencies",
"params": [

{
"triggerid": "14544"

},
{

"triggerid": "14545"
}

],
"auth": "038e1d7b1735c6a5436ee9eae095879e",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": {

"triggerids": [
"14544",
"14545"

]
},
"id": 1

}

See also

• trigger.update

Source

CTrigger::deleteDependencies() in frontends/php/api/classes/CTrigger.php.

trigger.exists

Description

boolean trigger.exists(object filter)

This method checks if at least one trigger that matches the given filter criteria exists.

Parameters

(object) Criteria to search by.

The following parameters are supported as search criteria.

715

Parameter Type Description

expression
(required)

string Exploded trigger expression.

host
(required)

string/array Technical names of the hosts the triggers must belong
to.

hostid
(required)

string/array IDs of the hosts the triggers must belong to.

description string/array Names of the triggers.
node string Name of the node the triggers must belong to.

This will override the nodeids parameter.
nodeids string/array IDs of the nodes the triggers must belong to.

Note:
Only one of the three parameters is required: host, hostid or expression.

Return values

(boolean) Returns true if at least one trigger that matches the given filter criteria exists.

Examples

Check a trigger by expression

Check if a trigger with the given expression exists.

Request:

{
"jsonrpc": "2.0",
"method": "trigger.exists",
"params": {

"expression": "{Linux server:vfs.file.cksum[/etc/passwd].diff()}>0"
},
"auth": "3a57200802b24cda67c4e4010b50c065",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": true,
"id": 1

}

See also

• trigger.isreadable
• trigger.iswritable

Source

CTrigger::exists() in frontends/php/api/classes/CTrigger.php.

trigger.get

Description

integer/array trigger.get(object parameters)

The method allows to retrieve triggers according to the given parameters.

Parameters

(object) Parameters defining the desired output.

The method supports the following parameters.

716

Parameter Type Description

triggerids string/array Return only triggers with the given IDs.
groupids string/array Return only triggers that belong to hosts from the

given host groups.
templateids string/array Return only triggers that belong to the given

templates.
hostids string/array Return only triggers that belong to the given hosts.
itemids string/array Return only triggers that contain the given items.
applicationids string/array Return only triggers that contain items from the given

applications.
functions string/array Return only triggers that use the given functions.

Refer to the supported trigger functions page for a list
of supported functions.

group string Return only triggers that belong to hosts from the host
group with the given name.

host string Return only triggers that belong to host with the given
name.

inherited boolean If set to true return only triggers inherited from a
template.

templated boolean If set to true return only triggers that belong to
templates.

monitored flag Return only enabled triggers that belong to monitored
hosts and contain only enabled items.

active flag Return only enabled triggers that belong to monitored
hosts.

maintenance boolean If set to true return only enabled triggers that belong
to hosts in maintenance.

withUnacknowledgedEvents flag Return only triggers that have unacknowledged
events.

withAcknowledgedEvents flag Return only triggers with all events acknowledged.
withLastEventUnacknowledged flag Return only triggers with the last event

unacknowledged.
skipDependent flag Skip triggers in a problem state that are dependent on

other triggers. Note that the other triggers are
ignored if disabled, have disabled items or disabled
item hosts.

lastChangeSince timestamp Return only triggers that have changed their state
after the given time.

lastChangeTill timestamp Return only triggers that have changed their state
before the given time.

only_true flag Return only triggers that have recently been in a
problem state.

min_severity integer Return only triggers with severity greater or equal
than the given severity.

expandData flag Return additional data about the first host in the
trigger expression.

Adds the following properties to each trigger:
hostname - (string) visible name of the host;
host - (string) technical name of the host;
hostid - (string) ID of the host.

expandComment flag Expand macros in the trigger description.
expandDescription flag Expand macros in the name of the trigger.
expandExpression flag Expand functions and macros in the trigger

expression.
selectGroups query Return the host groups that the trigger belongs to in

the groups property.
selectHosts query Return the hosts that the trigger belongs to in the

hosts property.
selectItems query Return items contained by the trigger in the items

property.

717

Parameter Type Description

selectFunctions query Return functions used in the trigger in the functions
property.

The function objects represents the functions used in
the trigger expression and has the following
properties:
functionid - (string) ID of the function;
itemid - (string) ID of the item used in the function;
function - (string) name of the function;
parameter - (string) parameter passed to the
function.

selectDependencies query Return triggers that the trigger depends on in the
dependencies property.

selectDiscoveryRule query Return the low-level discovery rule that created the
trigger.

selectLastEvent query Return the last significant trigger event in the
lastEvent property.

filter object Return only those results that exactly match the given
filter.

Accepts an array, where the keys are property names,
and the values are either a single value or an array of
values to match against.

Supports additional filters:
host - technical name of the host that the trigger
belongs to;
hostid - ID of the host that the trigger belongs to.

limitSelects integer Limits the number of records returned by subselects.

Applies to the following subselects:
selectHosts - results will be sorted by host.

sortfield string/array Sort the result by the given properties.

Possible values are: triggerid, description,
status, priority, lastchange and hostname.

countOutput flag These parameters being common for all get methods
are described in detail in the reference commentary
page.

editable boolean
excludeSearch flag
limit integer
nodeids string/array
output query
preservekeys flag
search object
searchByAny boolean
searchWildcardsEnabled boolean
sortorder string/array
startSearch flag

Return values

(integer/array) Returns either:

• an array of objects;
• the count of retrieved objects, if the countOutput parameter has been used.

Examples

Retrieving data by trigger ID

Retrieve all data and the functions used in trigger ”14062”.

718

Request:

{
"jsonrpc": "2.0",
"method": "trigger.get",
"params": {

"triggerids": "14062",
"output": "extend",
"selectFunctions": "extend"

},
"auth": "038e1d7b1735c6a5436ee9eae095879e",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": [

{
"functions": [

{
"functionid": "13513",
"itemid": "24350",
"function": "diff",
"parameter": "0"

}
],
"triggerid": "14062",
"expression": "{13513}>0",
"description": "/etc/passwd has been changed on {HOST.NAME}",
"url": "",
"status": "0",
"value": "0",
"priority": "2",
"lastchange": "0",
"comments": "",
"error": "",
"templateid": "10016",
"type": "0",
"state": "0",
"flags": "0"

}
],
"id": 1

}

Retrieving triggers in problem state

Retrieve the ID, name and severity of all triggers in problem state and sort them by severity in descending order.

Request:

{
"jsonrpc": "2.0",
"method": "trigger.get",
"params": {

"output": [
"triggerid",
"description",
"priority"

],
"filter": {

"value": 1
},
"sortfield": "priority",

719

"sortorder": "DESC"
},
"auth": "038e1d7b1735c6a5436ee9eae095879e",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": [

{
"triggerid": "13907",
"description": "Zabbix self-monitoring processes < 100% busy",
"priority": "4"

},
{

"triggerid": "13824",
"description": "Zabbix discoverer processes more than 75% busy",
"priority": "3"

}
],
"id": 1

}

See also

• trigger.getobjects
• Discovery rule
• Item
• Host
• Host group

Source

CTrigger::get() in frontends/php/api/classes/CTrigger.php.

trigger.getobjects

Description

array trigger.getobjects(object filter)

This method allows to retrieve triggers that match the given filter criteria.

Parameters

(object) Criteria to search by.

Additionally to the standard standard trigger properties the following parameters are supported as search criteria.

Parameter Type Description

host string/array Technical name of the host that the trigger belongs to.
hostid string/array ID of the host that the trigger belongs to.
node string Name of the node the host group must belong to.

This will override the nodeids parameter.
nodeids string/array ID of the node the host group must belong to.

Return values

(array) Returns an array of objects with all properties.

Examples

Retrieving triggers by name

Retrieve triggers with the name ”/etc/passwd has been changed on {HOST.NAME}” from two hosts.

720

Request:

{
"jsonrpc": "2.0",
"method": "trigger.getobjects",
"params": {

"description": "/etc/passwd has been changed on {HOST.NAME}",
"hostid": [

"30069",
"30049"

]
},
"auth": "3a57200802b24cda67c4e4010b50c065",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": [

{
"triggerid": "13938",
"expression": "{13385}>0",
"description": "/etc/passwd has been changed on {HOST.NAME}",
"url": "",
"status": "0",
"value": "0",
"priority": "2",
"lastchange": "0",
"comments": "",
"error": "Agent is unavailable.",
"templateid": "10016",
"type": "0",
"value_flags": "1",
"flags": "0"

},
{

"triggerid": "14062",
"expression": "{13513}>0",
"description": "/etc/passwd has been changed on {HOST.NAME}",
"url": "",
"status": "0",
"value": "0",
"priority": "2",
"lastchange": "0",
"comments": "",
"error": "",
"templateid": "10016",
"type": "0",
"value_flags": "0",
"flags": "0"

}
],
"id": 1

}

See also

• trigger.get

Source

CTrigger::getObject() in frontends/php/api/classes/CTrigger.php.

721

trigger.isreadable

Description

boolean trigger.isreadable(array triggerIds)

This method checks if the given triggers are available for reading.

Parameters

(array) IDs of the triggers to check.

Return values

(boolean) Returns true if the given triggers are available for reading.

Examples

Check multiple triggers

Check if the two triggers are readable.

Request:

{
"jsonrpc": "2.0",
"method": "trigger.isreadable",
"params": [

"13938",
"14062"

],
"auth": "038e1d7b1735c6a5436ee9eae095879e",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": true,
"id": 1

}

See also

• trigger.exists
• trigger.iswritable

Source

CTrigger::isReadable() in frontends/php/api/classes/CTrigger.php.

trigger.iswritable

Description

boolean trigger.iswritable(array triggerIds)

This method checks if the given triggers are available for writing.

Parameters

(array) IDs of the triggers to check.

Return values

(boolean) Returns true if the given triggers are available for writing.

Examples

Check multiple triggers

Check if the two triggers are writable.

Request:

722

{
"jsonrpc": "2.0",
"method": "trigger.iswritable",
"params": [

"13938",
"14062"

],
"auth": "038e1d7b1735c6a5436ee9eae095879e",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": true,
"id": 1

}

See also

• trigger.isreadable
• trigger.exists

Source

CTrigger::isWritable() in frontends/php/api/classes/CTrigger.php.

trigger.update

Description

object trigger.update(object/array triggers)

This method allows to update existing triggers.

Parameters

(object/array) Trigger properties to be updated.

The triggerid property must be defined for each trigger, all other properties are optional. Only the passed properties will be
updated, all others will remain unchanged.

Additionally to the standard trigger properties the method accepts the following parameters.

Parameter Type Description

dependencies array Triggers that the trigger is dependent on.

The triggers must have the triggerid property
defined.

Attention:
The trigger expression has to be given in its expanded form.

Return values

(object) Returns an object containing the IDs of the updated triggers under the triggerids property.

Examples

Enabling a trigger

Enable a trigger, that is, set its status to 0.

Request:

723

{
"jsonrpc": "2.0",
"method": "trigger.update",
"params": {

"triggerid": "13938",
"status": 0

},
"auth": "038e1d7b1735c6a5436ee9eae095879e",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": {

"triggerids": [
"13938"

]
},
"id": 1

}

See also

• trigger.adddependencies
• trigger.deletedependencies

Source

CTrigger::update() in frontends/php/api/classes/CTrigger.php.

Trigger prototype

This class is designed to work with trigger prototypes.

Object references:

• Trigger prototype

Available methods:

• triggerprototype.create - creating new trigger prototypes
• triggerprototype.delete - deleting trigger prototypes
• triggerprototype.get - retrieving trigger prototypes
• triggerprototype.update - updating trigger prototypes

> Trigger prototype object

The following objects are directly related to the triggerprototype API.

Trigger

The trigger prototype object has the following properties.

Property Type Description

triggerid string (readonly) ID of the trigger prototype.
description
(required)

string Name of the trigger prototype.

expression
(required)

string Reduced trigger expression.

comments string Additional comments to the trigger prototype.

724

Property Type Description

priority integer Severity of the trigger prototype.

Possible values:
0 - (default) not classified;
1 - information;
2 - warning;
3 - average;
4 - high;
5 - disaster.

status integer Whether the trigger prototype is enabled or disabled.

Possible values:
0 - (default) enabled;
1 - disabled.

templateid string (readonly) ID of the parent template trigger prototype.
type integer Whether the trigger prototype can generate multiple

problem events.

Possible values:
0 - (default) do not generate multiple events;
1 - generate multiple events.

url string URL associated with the trigger prototype.

triggerprototype.create

Description

object triggerprototype.create(object/array triggerPrototypes)

This method allows to create new trigger prototypes.

Parameters

(object/array) Trigger prototypes to create.

The method accepts trigger prototypes with the standard trigger prototype properties.

Attention:
The trigger expression has to be given in its expanded form and must contain at least one item prototype.

Return values

(object) Returns an object containing the IDs of the created trigger prototypes under the triggerids property. The order of
the returned IDs matches the order of the passed trigger prototypes.

Examples

Creating a trigger prototype

Create a trigger prototype to detect when a file system has less than 20% free disk space.

Request:

{
"jsonrpc": "2.0",
"method": "triggerprototype.create",
"params": {

"description": "Free disk space is less than 20% on volume {#FSNAME}",
"expression": "{Zabbix server:vfs.fs.size[{#FSNAME},pfree].last()}<20"

},
"auth": "038e1d7b1735c6a5436ee9eae095879e",
"id": 1

}

Response:

725

{
"jsonrpc": "2.0",
"result": {

"triggerids": [
"15331"

]
},
"id": 1

}

Source

CTriggerPrototype::create() in frontends/php/api/classes/CTriggerPrototype.php.

triggerprototype.delete

Description

object triggerprototype.delete(array triggerPrototypeIds)

This method allows to delete trigger prototypes.

Parameters

(array) IDs of the trigger prototypes to delete.

Return values

(object) Returns an object containing the IDs of the deleted trigger prototypes under the triggerids property.

Examples

Deleting multiple trigger prototypes

Delete two trigger prototypes.

Request:

{
"jsonrpc": "2.0",
"method": "triggerprototype.delete",
"params": [

"12002",
"12003"

],
"auth": "3a57200802b24cda67c4e4010b50c065",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": {

"triggerids": [
"12002",
"12003"

]
},
"id": 1

}

Source

CTriggerPrototype::delete() in frontends/php/api/classes/CTriggerPrototype.php.

triggerprototype.get

Description

726

integer/array triggerprototype.get(object parameters)

The method allows to retrieve trigger prototypes according to the given parameters.

Parameters

(object) Parameters defining the desired output.

The method supports the following parameters.

Parameter Type Description

active flag Return only enabled trigger prototypes that belong to
monitored hosts.

applicationids string/array Return only trigger prototypes that contain items from
the given applications.

discoveryids string/array Return only trigger prototypes that belong to the
given LLD rules.

functions string/array Return only triggers that use the given functions.

Refer to the supported trigger functions page for a list
of supported functions.

group string Return only trigger prototypes that belong to hosts
from the host groups with the given name.

groupids string/array Return only trigger prototypes that belong to hosts
from the given host groups.

host string Return only trigger prototypes that belong to hosts
with the given name.

hostids string/array Return only trigger prototypes that belong to the
given hosts.

inherited boolean If set to true return only trigger prototypes inherited
from a template.

maintenance boolean If set to true return only enabled trigger prototypes
that belong to hosts in maintenance.

min_severity integer Return only trigger prototypes with severity greater or
equal than the given severity.

monitored flag Return only enabled trigger prototypes that belong to
monitored hosts and contain only enabled items.

templated boolean If set to true return only trigger prototypes that
belong to templates.

templateids string/array Return only trigger prototypes that belong to the
given templates.

triggerids string/array Return only trigger prototypes with the given IDs.
expandData flag Return additional data about the first host in the

trigger expression.

Adds the following properties to each trigger
prototype:
hostname - (string) visible name of the host;
host - (string) technical name of the host;
hostid - (string) ID of the host.

expandExpression flag Expand functions and macros in the trigger
expression.

selectDiscoveryRule query Return the LLD rule that the trigger prototype belongs
to.

selectFunctions query Return functions used in the trigger prototype in the
functions property.

The function objects represents the functions used in
the trigger expression and has the following
properties:
functionid - (string) ID of the function;
itemid - (string) ID of the item used in the function;
function - (string) name of the function;
parameter - (string) parameter passed to the
function.

727

Parameter Type Description

selectGroups query Return the host groups that the trigger prototype
belongs to in the groups property.

selectHosts query Return the hosts that the trigger prototype belongs to
in the hosts property.

selectItems query Return items and item prototypes used the trigger
prototype in the items property.

filter object Return only those results that exactly match the given
filter.

Accepts an array, where the keys are property names,
and the values are either a single value or an array of
values to match against.

Supports additional filters:
host - technical name of the host that the trigger
prototype belongs to;
hostid - ID of the host that the trigger prototype
belongs to.

limitSelects integer Limits the number of records returned by subselects.

Applies to the following subselects:
selectHosts - results will be sorted by host.

sortfield string/array Sort the result by the given properties.

Possible values are: triggerid, description,
status and priority.

countOutput flag These parameters being common for all get methods
are described in detail in the reference commentary.

editable boolean
excludeSearch flag
limit integer
nodeids string/array
output query
preservekeys flag
search object
searchByAny boolean
searchWildcardsEnabled boolean
sortorder string/array
startSearch flag

Return values

(integer/array) Returns either:

• an array of objects;
• the count of retrieved objects, if the countOutput parameter has been used.

Examples

Retrieve trigger prototypes from an LLD rule

Retrieve all trigger prototypes and their functions from an LLD rule.

Request:

{
"jsonrpc": "2.0",
"method": "triggerprototype.get",
"params": {

"output": "extend",
"selectFunctions": "extend",
"discoveryids": "22450"

},
"auth": "038e1d7b1735c6a5436ee9eae095879e",

728

"id": 1
}

Response:

{
"jsonrpc": "2.0",
"result": [

{
"functions": [

{
"functionid": "12598",
"itemid": "22454",
"function": "last",
"parameter": "0"

}
],
"triggerid": "13272",
"expression": "{12598}<20",
"description": "Free inodes is less than 20% on volume {#FSNAME}",
"url": "",
"status": "0",
"priority": "2",
"comments": "",
"templateid": "0",
"type": "0",
"flags": "2"

},
{

"functions": [
{

"functionid": "13500",
"itemid": "22686",
"function": "last",
"parameter": "0"

}
],
"triggerid": "13266",
"expression": "{13500}<201",
"description": "Free disk space is less than 20% on volume {#FSNAME}",
"url": "",
"status": "0",
"priority": "2",
"comments": "",
"templateid": "0",
"type": "0",
"flags": "2"

}
],
"id": 1

}

See also

• Discovery rule
• Item
• Host
• Host group

Source

CTriggerPrototype::get() in frontends/php/api/classes/CTriggerPrototype.php.

triggerprototype.update

729

Description

object triggerprototype.update(object/array triggerPrototypes)

This method allows to update existing trigger prototypes.

Parameters

(object/array) Trigger prototype properties to be updated.

The triggerid property must be defined for each trigger prototype, all other properties are optional. Only the passed properties
will be updated, all others will remain unchanged.

Attention:
The trigger expression has to be given in its expanded form and must contain at least one item prototype.

Return values

(object) Returns an object containing the IDs of the updated trigger prototypes under the triggerids property.

Examples

Enabling a trigger prototype

Enable a trigger prototype, that is, set its status to 0.

Request:

{
"jsonrpc": "2.0",
"method": "triggerprototype.update",
"params": {

"triggerid": "13938",
"status": 0

},
"auth": "038e1d7b1735c6a5436ee9eae095879e",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": {

"triggerids": [
"13938"

]
},
"id": 1

}

Source

CTriggerPrototype::update() in frontends/php/api/classes/CTriggerPrototype.php.

User

This class is designed to work with users.

Object references:

• User

Available methods:

• user.addmedia - adding media to users
• user.create - creating new users
• user.delete - deleting users
• user.deletemedia - deleting media from users

730

• user.get - retrieving users
• user.isreadable - checking if users are readable
• user.iswritable - checking if users are writable
• user.login - logging in to the API
• user.logout - logging out of the API
• user.update - updating users
• user.updatemedia - updating user media
• user.updateprofile - updating the currently logged in user

> User object

The following objects are directly related to the user API.

User

The user object has the following properties.

Property Type Description

userid string (readonly) ID of the user.
alias
(required)

string User alias.

attempt_clock timestamp (readonly) Time of the last unsuccessful login attempt.
attempt_failed integer (readonly) Recent failed login attempt count.
attempt_ip string (readonly) IP address from where the last unsuccessful

login attempt came from.
autologin integer Whether to enable auto-login.

Possible values:
0 - (default) auto-login disabled;
1 - auto-login enabled.

autologout integer User session life time in seconds. If set to 0, the session
will never expire.

Default: 900.
lang string Language code of the user’s language.

Default: en_GB.
name string Name of the user.
refresh integer Automatic refresh period in seconds.

Default: 30.
rows_per_page integer Amount of object rows to show per page.

Default: 50.
surname string Surname of the user.
theme string User’s theme.

Possible values:
default - (default) system default;
classic - Classic;
originalblue - Original blue;
darkblue - Black & Blue;
darkorange - Dark orange.

type integer Type of the user.

Possible values:
1 - (default) Zabbix user;
2 - Zabbix admin;
3 - Zabbix super admin.

url string URL of the page to redirect the user to after logging in.

user.addmedia

731

Description

object user.addmedia(object parameters)

This method allows to add new media to multiple users.

Parameters

(object) Parameters defining the media to create and the users to add them to.

Parameter Type Description

medias
(required)

object/array Media to create for the given users.

The media userid property must not be defined.
users
(required)

object/array Users to add the media to.

The users must have the userid property defined.

Return values

(object) Returns an object containing the IDs of the created media under the mediaids property.

Examples

Adding a media to multiple users

Create a common e-mail media for two users. The media must send notifications about all alerts at any time.

Request:

{
"jsonrpc": "2.0",
"method": "user.addmedia",
"params": {

"users": [
{

"userid": "1"
},
{

"userid": "2"
}

],
"medias": {

"mediatypeid": "1",
"sendto": "support@company.com",
"active": 0,
"severity": 63,
"period": "1-7,00:00-24:00"

}
},
"auth": "038e1d7b1735c6a5436ee9eae095879e",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": {

"mediaids": [
"12",
"13"

]
},
"id": 1

}

See also

732

• user.update
• user.updatemedia
• Media
• User

Source

CUser::addMedia() in frontends/php/api/classes/CUser.php.

user.authenticate

Warning:
This method is a deprecated alias of user.login.

user.checkAuthentication

Description

object user.checkAuthentication

This method checks and prolongs user session.

Parameters

The method accepts the following parameters.

Parameter Type Description

sessionid string User session id.

Attention:
Calling user.checkAuthentication method prolongs user session by default.

Return values

(object) Returns an object containing information about user.

Examples

Request:

{
"jsonrpc": "2.0",
"method": "user.checkAuthentication",
"params": {

"sessionid": "8C8447FF6F61D134CEAC740CCA1BC90D"
},
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": {

"userid": "1",
"alias": "Admin",
"name": "Zabbix",
"surname": "Administrator",
"url": "",
"autologin": "1",
"autologout": "0",
"lang": "ru_RU",
"refresh": "0",
"type": "3",

733

"theme": "default",
"attempt_failed": "0",
"attempt_ip": "127.0.0.1",
"attempt_clock": "1355919038",
"rows_per_page": "50",
"debug_mode": true,
"userip": "127.0.0.1",
"sessionid": "8C8447FF6F61D134CEAC740CCA1BC90D",
"gui_access": "0"

},
"id": 1

}

Note:
Response is similar to User.login call response with ”userData” parameter set to true (the difference is that user data is
retrieved by session id and not by username / password).

Source

CUser::checkAuthentication() in frontends/php/include/classes/api/services/CUser.php.

user.create

Description

object user.create(object/array users)

This method allows to create new users.

Parameters

(object/array) Users to create.

Additionally to the standard user properties, the method accepts the following parameters.

Parameter Type Description

passwd
(required)

string User’s password.

usrgrps
(required)

array User groups to add the user to.

The user groups must have the usrgrpid property
defined.

user_medias array Media to create for the user.

The media userid property must not be defined.

Return values

(object) Returns an object containing the IDs of the created users under the userids property. The order of the returned IDs
matches the order of the passed users.

Examples

Creating a user

Create a new user, add him to a user group and create a new media for him.

Request:

{
"jsonrpc": "2.0",
"method": "user.create",
"params": {

"alias": "John",
"passwd": "Doe123",
"usrgrps": [

734

{
"usrgrpid": "7"

}
],
"user_medias": [

{
"mediatypeid": "1",
"sendto": "support@company.com",
"active": 0,
"severity": 63,
"period": "1-7,00:00-24:00"

}
]

},
"auth": "038e1d7b1735c6a5436ee9eae095879e",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": {

"userids": [
"12"

]
},
"id": 1

}

See also

• Media
• User group

Source

CUser::create() in frontends/php/api/classes/CUser.php.

user.delete

Description

object user.delete(array users)

This method allows to delete users.

Parameters

(array) IDs of users to delete.

Warning:
The method can also accept an array of user objects with the userid property defined. This format is deprecated.

Return values

(object) Returns an object containing the IDs of the deleted users under the userids property.

Examples

Deleting multiple users

Delete two users.

Request:

{
"jsonrpc": "2.0",
"method": "user.delete",

735

"params": [
"1",
"5"

],
"auth": "3a57200802b24cda67c4e4010b50c065",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": {

"userids": [
"1",
"5"

]
},
"id": 1

}

Source

CUser::delete() in frontends/php/api/classes/CUser.php.

user.deletemedia

Description

object user.deletemedia(string/array mediaIds)

This method allows to delete media.

Parameters

(string/array) IDs of the media to delete.

Return values

(object) Returns an object containing the IDs of the deleted media under the mediaids property.

Examples

Deleting multiple media

Delete two media.

Request:

{
"jsonrpc": "2.0",
"method": "user.deletemedia",
"params": [

"11",
"13"

],
"auth": "3a57200802b24cda67c4e4010b50c065",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": {

"mediaids": [
"11",
"13"

]
},

736

"id": 1
}

See also

• user.update
• user.updatemedia

Source

CUser::deleteMedia() in frontends/php/api/classes/CUser.php.

user.get

Description

integer/array user.get(object parameters)

The method allows to retrieve users according to the given parameters.

Parameters

(object) Parameters defining the desired output.

The method supports the following parameters.

Parameter Type Description

mediaids string/array Return only users that use the given media.
mediatypeids string/array Return only users that use the given media types.
userids string/array Return only users with the given IDs.
usrgrpids string/array Return only users that belong to the given user

groups.
getAccess flag Adds additional information about user permissions.

Adds the following properties for each user:
gui_access - (integer) user’s frontend
authentication method. Refer to the gui_access
property of the user group object for a list of possible
values.
debug_mode - (integer) indicates whether debug is
enabled for the user. Possible values: 0 - debug
disabled, 1 - debug enabled.
users_status - (integer) indicates whether the user
is disabled. Possible values: 0 - user enabled, 1 - user
disabled.

selectMedias query Return media used by the user in the medias
property.

selectMediatypes query Return media types used by the user in the
mediatypes property.

selectUsrgrps query Return user groups that the user belongs to in the
usrgrps property.

sortfield string/array Sort the result by the given properties.

Possible values are: userid and alias.
countOutput flag These parameters being common for all get methods

are described in detail in the reference commentary.
editable boolean
excludeSearch flag
filter object
limit integer
nodeids string/array
output query
preservekeys flag
search object
searchByAny boolean
searchWildcardsEnabled boolean

737

Parameter Type Description

sortorder string/array
startSearch flag

Return values

(integer/array) Returns either:

• an array of objects;
• the count of retrieved objects, if the countOutput parameter has been used.

Examples

Retrieving users

Retrieve all of the configured users.

Request:

{
"jsonrpc": "2.0",
"method": "user.get",
"params": {

"output": "extend"
},
"auth": "038e1d7b1735c6a5436ee9eae095879e",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": [

{
"userid": "1",
"alias": "Admin",
"name": "Zabbix",
"surname": "Administrator",
"url": "",
"autologin": "1",
"autologout": "0",
"lang": "ru_RU",
"refresh": "0",
"type": "3",
"theme": "default",
"attempt_failed": "0",
"attempt_ip": "",
"attempt_clock": "0",
"rows_per_page": "50"

},
{

"userid": "2",
"alias": "guest",
"name": "Default2",
"surname": "User",
"url": "",
"autologin": "0",
"autologout": "900",
"lang": "en_GB",
"refresh": "30",
"type": "1",
"theme": "default",
"attempt_failed": "0",
"attempt_ip": "",
"attempt_clock": "0",

738

"rows_per_page": "50"
}

],
"id": 1

}

See also

• Media
• Media type
• User group

Source

CUser::get() in frontends/php/api/classes/CUser.php.

user.isreadable

Description

boolean user.isreadable(array userIds)

This method checks if the given users are available for reading.

Parameters

(array) IDs of the users to check.

Return values

(boolean) Returns true if the given users are available for reading.

Examples

Check multiple users

Check if the two users are readable.

Request:

{
"jsonrpc": "2.0",
"method": "user.isreadable",
"params": [

"4",
"6"

],
"auth": "038e1d7b1735c6a5436ee9eae095879e",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": true,
"id": 1

}

See also

• user.iswritable

Source

CUser::isReadable() in frontends/php/api/classes/CUser.php.

user.iswritable

Description

boolean user.iswritable(array userIds)

739

This method checks if the given users are available for writing.

Parameters

(array) IDs of the users to check.

Return values

(boolean) Returns true if the given users are available for writing.

Examples

Check multiple users

Check if the two users are writable.

Request:

{
"jsonrpc": "2.0",
"method": "user.iswritable",
"params": [

"4",
"6"

],
"auth": "038e1d7b1735c6a5436ee9eae095879e",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": true,
"id": 1

}

See also

• user.isreadable

Source

CUser::isWritable() in frontends/php/api/classes/CUser.php.

user.login

Description

string/object user.login(object parameters)

This method allows to log in to the API and generate an authentication token.

Warning:
When using this method, you also need to do user.logout to prevent the generation of a large number of open session
records.

Parameters

Attention:
This method is available to unauthenticated users and should be called without the auth parameter in the JSON-RPC
request. Starting from Zabbix 2.4 the method will return an error if the auth parameter is given.

(object) Parameters containing the user name and password.

The method accepts the following parameters.

Parameter Type Description

password
(required)

string User password. Unused for HTTP authentication.

740

Parameter Type Description

user
(required)

string User name.

userData flag Return information about the authenticated user.

Attention:
When using HTTP authentication, the user name in the API request must match the one used in the Authorization
header. The password will not be validated and can be omitted.

Return values

(string/object) If the userData parameter is used, returns an object containing information about the authenticated user.

Additionally to the standard user properties, the following information is returned:

Property Type Description

debug_mode boolean Whether debug mode is enabled for the user.
gui_access integer User’s authentication method to the frontend.

Refer to the gui_access property of the user group
object for a list of possible values.

node object Local node of the user.

The object has the following properties:
name - (string) Name of the node;
nodeid - (string) ID of the node.

sessionid string Authentication token, which must be used in the
following API requests.

userip string IP address of the user.

Note:
If a user has been successfully authenticated after one or more failed attempts, the method will return the current values
for the attempt_clock, attempt_failed and attempt_ip properties and then reset them.

If the userData parameter is not used, the method returns an authentication token.

Note:
The generated authentication token should be remembered and used in the auth parameter of the following JSON-RPC
requests. It is also required when using HTTP authentication.

Examples

Authenticating a user

Authenticate a user.

Request:

{
"jsonrpc": "2.0",
"method": "user.login",
"params": {

"user": "Admin",
"password": "zabbix"

},
"id": 1

}

Response:

{
"jsonrpc": "2.0",

741

"result": "0424bd59b807674191e7d77572075f33",
"id": 1

}

Requesting authenticated user’s information

Authenticate and return additional information about the user.

Request:

{
"jsonrpc": "2.0",
"method": "user.login",
"params": {

"user": "Admin",
"password": "zabbix",
"userData": true

},
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": {

"userid": "1",
"alias": "Admin",
"name": "Zabbix",
"surname": "Administrator",
"url": "",
"autologin": "1",
"autologout": "0",
"lang": "ru_RU",
"refresh": "0",
"type": "3",
"theme": "default",
"attempt_failed": "0",
"attempt_ip": "127.0.0.1",
"attempt_clock": "1355919038",
"rows_per_page": "50",
"debug_mode": true,
"userip": "127.0.0.1",
"node": {

"name": "- unknown -",
"nodeid": null

},
"sessionid": "5b56eee8be445e98f0bd42b435736e42",
"gui_access": "0"

},
"id": 1

}

See also

• user.logout

Source

CUser::login() in frontends/php/api/classes/CUser.php.

user.logout

Description

string/object user.logout(array)

742

This method allows to log out of the API and invalidates the current authentication token.

Parameters

(array) The method accepts an empty array.

Return values

(boolean) Returns true if the user has been logged out successfully.

Examples

Logging out

Log out from the API.

Request:

{
"jsonrpc": "2.0",
"method": "user.logout",
"params": [],
"id": 1,
"auth": "16a46baf181ef9602e1687f3110abf8a"

}

Response:

{
"jsonrpc": "2.0",
"result": true,
"id": 1

}

See also

• user.login

Source

CUser::login() in frontends/php/api/classes/CUser.php.

user.update

Description

object user.update(object/array users)

This method allows to update existing users.

Parameters

(object/array) User properties to be updated.

The userid property must be defined for each user, all other properties are optional. Only the passed properties will be updated,
all others will remain unchanged.

Additionally to the standard user properties, the method accepts the following parameters.

Parameter Type Description

passwd string User’s password.
usrgrps array User groups to replace existing user groups.

The user groups must have the usrgrpid property
defined.

Return values

(object) Returns an object containing the IDs of the updated users under the userids property.

Examples

Renaming a user

743

Rename a user to John Doe.

Request:

{
"jsonrpc": "2.0",
"method": "user.update",
"params": {

"userid": "1",
"name": "John",
"surname": "Doe"

},
"auth": "038e1d7b1735c6a5436ee9eae095879e",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": {

"userids": [
"1"

]
},
"id": 1

}

See also

• user.updateprofile

Source

CUser::update() in frontends/php/api/classes/CUser.php.

user.updatemedia

Description

object user.updatemedia(object parameters)

This method allows to update media for multiple users.

Parameters

(object) Parameters defining the media and users to be updated.

Parameter Type Description

medias
(required)

object/array Media to replace existing media. If a media has the
mediaid property defined it will be updated,
otherwise a new media will be created.

users
(required)

object/array Users to update.

The users must have the userid property defined.

Return values

(object) Returns an object containing the IDs of the updated users under the userids property.

Examples

Replacing media for multiple users

Replace all media used by the two users with a common e-mail media. The media must send notifications about all alerts at any
time.

Request:

744

{
"jsonrpc": "2.0",
"method": "user.updatemedia",
"params": {

"users": [
{

"userid": "1"
},
{

"userid": "2"
}

],
"medias": {

"mediatypeid": "1",
"sendto": "support@company.com",
"active": 0,
"severity": 63,
"period": "1-7,00:00-24:00"

}
},
"auth": "038e1d7b1735c6a5436ee9eae095879e",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": {

"userids": [
"1",
"2"

]
},
"id": 1

}

See also

• user.addmedia
• user.deletemedia
• user.updatemedia
• Media
• User

Source

CUser::updateMedia() in frontends/php/api/classes/CUser.php.

user.updateprofile

Description

object user.updateprofile(object parameters)

This method allows to update the currently logged in user.

Parameters

(object/array) User properties to be updated.

The userid property must not be defined. Only the passed properties will be updated, all others will remain unchanged.

Additionally to the standard user properties, the method accepts the following parameters.

Parameter Type Description

passwd string User’s password.

745

Parameter Type Description

usrgrps array User groups to replace existing user groups.

The user groups must have the usrgrpid property
defined.

Return values

(object) Returns an object containing the ID of the updated user under the userids property.

Examples

Renaming the current user

Rename the current user to John Doe.

Request:

{
"jsonrpc": "2.0",
"method": "user.updateprofile",
"params": {

"name": "John",
"lastname": "Doe"

},
"auth": "038e1d7b1735c6a5436ee9eae095879e",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": {

"userids": [
"1"

]
},
"id": 1

}

See also

• user.update

Source

CUser::update() in frontends/php/api/classes/CUser.php.

User group

This class is designed to work with user groups.

Object references:

• User group

Available methods:

• usergroup.create - creating new user groups
• usergroup.delete - deleting user groups
• usergroup.exists - checking if a user group exists
• usergroup.get - retrieving user groups
• usergroup.getobjects - retrieving user groups by filters
• usergroup.isreadable - checking if user groups are readable
• usergroup.iswritable - checking if user groups are writable
• usergroup.massadd - adding permissions and users to user groups

746

• usergroup.massupdate - simultaneously updating multiple user groups
• usergroup.update - updating user groups

> User group object

The following objects are directly related to the usergroup API.

User group

The user group object has the following properties.

Property Type Description

usrgrpid string (readonly) ID of the user group.
name
(required)

string Name of the user group.

debug_mode integer Whether debug mode is enabled or disabled.

Possible values are:
0 - (default) disabled;
1 - enabled.

gui_access integer Frontend authentication method of the users in the
group.

Possible values:
0 - (default) use the system default authentication
method;
1 - use internal authentication;
2 - disable access to the frontend.

users_status integer Whether the user group is enabled or disabled.

Possible values are:
0 - (default) enabled;
1 - disabled.

Permission

The permission object has the following properties.

Property Type Description

id
(required)

string ID of the host group to add permission to.

permission
(required)

integer Access level to the host group.

Possible values:
0 - access denied;
2 - read-only access;
3 - read-write access.

usergroup.create

Description

object usergroup.create(object/array userGroups)

This method allows to create new user groups.

Parameters

(object/array) User groups to create.

Additionally to the standard user group properties, the method accepts the following parameters.

747

Parameter Type Description

rights object/array Permissions to assign to the group
userids string/array IDs of users to add to the user group.

Return values

(object) Returns an object containing the IDs of the created user groups under the usrgrpids property. The order of the
returned IDs matches the order of the passed user groups.

Examples

Creating a user group

Create a user group, which denies access to host group ”2”, and add a user to it.

Request:

{
"jsonrpc": "2.0",
"method": "usergroup.create",
"params": {

"name": "Operation managers",
"rights": {

"permission": 0,
"id": "2"

},
"userids": "12"

},
"auth": "038e1d7b1735c6a5436ee9eae095879e",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": {

"usrgrpids": [
"20"

]
},
"id": 1

}

See also

• Permission

Source

CUserGroup::create() in frontends/php/api/classes/CUserGroup.php.

usergroup.delete

Description

object usergroup.delete(array userGroupIds)

This method allows to delete user groups.

Parameters

(array) IDs of the user groups to delete.

Return values

(object) Returns an object containing the IDs of the deleted user groups under the usrgrpids property.

Examples

Deleting multiple user groups

748

Delete two user groups.

Request:

{
"jsonrpc": "2.0",
"method": "usergroup.delete",
"params": [

"20",
"21"

],
"auth": "3a57200802b24cda67c4e4010b50c065",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": {

"usrgrpids": [
"20",
"21"

]
},
"id": 1

}

Source

CUserGroup::delete() in frontends/php/api/classes/CUserGroup.php.

usergroup.exists

Description

boolean usergroup.exists(object filter)

This method checks if at least one user group that matches the given filter criteria exists.

Parameters

(object) Criteria to search by.

The following parameters are supported as search criteria.

Parameter Type Description

name string/array Names of the user groups.
node string Name of the node the user groups must belong to.

This will override the nodeids parameter.
nodeids string/array IDs of the nodes the user groups must belong to.

Return values

(boolean) Returns true if at least one user group that matches the given filter criteria exists.

Examples

Checking if a user group exists

Check if user group ”Zabbix administrators”

Request:

{
"jsonrpc": "2.0",
"method": "usergroup.exists",
"params": {

749

"name": "Zabbix administrators"
},
"auth": "3a57200802b24cda67c4e4010b50c065",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": true,
"id": 1

}

See also

• usergroup.isreadable
• usergroup.iswritable

Source

CUserGroup::exists() in frontends/php/api/classes/CUserGroup.php.

usergroup.get

Description

integer/array usergroup.get(object parameters)

The method allows to retrieve user groups according to the given parameters.

Parameters

(object) Parameters defining the desired output.

The method supports the following parameters.

Parameter Type Description

status integer Return only user groups with the given status.

Refer to the user group page for a list of supported
statuses.

userids string/array Return only user groups that contain the given users.
usrgrpids string/array Return only user groups with the given IDs.
with_gui_access integer Return only user groups with the given frontend

authentication method.

Refer to the user group page for a list of supported
methods.

selectUsers query Return the users from the user group in the users
property.

limitSelects integer Limits the number of records returned by subselects.
sortfield string/array Sort the result by the given properties.

Possible values are: usrgrpid, name.
countOutput flag These parameters being common for all get methods

are described in detail in the reference commentary.
editable boolean
excludeSearch flag
filter object
limit integer
nodeids string/array
output query
preservekeys flag
search object
searchByAny boolean
searchWildcardsEnabled boolean

750

Parameter Type Description

sortorder string/array
startSearch flag

Return values

(integer/array) Returns either:

• an array of objects;
• the count of retrieved objects, if the countOutput parameter has been used.

Examples

Retrieving enabled user groups

Retrieve all enabled user groups.

Request:

{
"jsonrpc": "2.0",
"method": "usergroup.get",
"params": {

"output": "extend",
"status": 0

},
"auth": "038e1d7b1735c6a5436ee9eae095879e",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": [

{
"usrgrpid": "7",
"name": "Zabbix administrators",
"gui_access": "0",
"users_status": "0",
"debug_mode": "1"

},
{

"usrgrpid": "8",
"name": "Guests",
"gui_access": "0",
"users_status": "0",
"debug_mode": "0"

},
{

"usrgrpid": "11",
"name": "Enabled debug mode",
"gui_access": "0",
"users_status": "0",
"debug_mode": "1"

},
{

"usrgrpid": "12",
"name": "No access to the frontend",
"gui_access": "2",
"users_status": "0",
"debug_mode": "0"

},
{

"usrgrpid": "14",
"name": "Read only",

751

"gui_access": "0",
"users_status": "0",
"debug_mode": "0"

},
{

"usrgrpid": "18",
"name": "Deny",
"gui_access": "0",
"users_status": "0",
"debug_mode": "0"

}
],
"id": 1

}

See also

• usergroup.getobjects
• User

Source

CUserGroup::get() in frontends/php/api/classes/CUserGroup.php.

usergroup.getobjects

Description

array usergroup.getobjects(object filter)

This method allows to retrieve user groups that match the given filter criteria.

Parameters

(object) Criteria to search by.

Additionally to the standard standard user group properties the following parameters are supported as search criteria.

Parameter Type Description

name string Name of the user group.
node string Name of the node the user groups must belong to.

This will override the nodeids parameter.
nodeids string/array IDs of the nodes the user groups must belong to.

Return values

(array) Returns an array of objects with all properties.

Examples

Retrieving a user group by name

Retrieve all data about the user group ”Zabbix administrators”.

Request:

{
"jsonrpc": "2.0",
"method": "usergroup.getobjects",
"params": {

"name": "Zabbix administrators"
},
"auth": "3a57200802b24cda67c4e4010b50c065",
"id": 1

}

Response:

752

{
"jsonrpc": "2.0",
"result": [

{
"usrgrpid": "7",
"name": "Zabbix administrators",
"gui_access": "0",
"users_status": "0",
"debug_mode": "1"

}
],
"id": 1

}

See also

• usergroup.get

Source

CUserGroup::getObject() in frontends/php/api/classes/CUserGroup.php.

usergroup.isreadable

Description

boolean usergroup.isreadable(array userGroupIds)

This method checks if the given user groups are available for reading.

Parameters

(array) IDs of the user groups to check.

Return values

(boolean) Returns true if the given user groups are available for reading.

Examples

Check multiple user groups

Check if the two user groups are readable.

Request:

{
"jsonrpc": "2.0",
"method": "usergroup.isreadable",
"params": [

"21",
"22"

],
"auth": "038e1d7b1735c6a5436ee9eae095879e",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": true,
"id": 1

}

See also

• usergroup.exists
• usergroup.iswritable

753

Source

CUserGroup::isReadable() in frontends/php/api/classes/CUserGroup.php.

usergroup.iswritable

Description

boolean usergroup.iswritable(array userGroupIds)

This method checks if the given user groups are available for writing.

Parameters

(array) IDs of the user groups to check.

Return values

(boolean) Returns true if the given user groups are available for writing.

Examples

Check multiple user groups

Check if the two user groups are writable.

Request:

{
"jsonrpc": "2.0",
"method": "usergroup.iswritable",
"params": [

"21",
"22"

],
"auth": "038e1d7b1735c6a5436ee9eae095879e",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": true,
"id": 1

}

See also

• usergroup.isreadable
• usergroup.exists

Source

CUserGroup::isWritable() in frontends/php/api/classes/CUserGroup.php.

usergroup.massadd

Description

object usergroup.massadd(object parameters)

This method allows to simultaneously add permissions and users to multiple user groups.

Parameters

(object) Parameters containing the IDs of the user groups to update and the permissions and users to add.

The method accepts the following parameters.

754

Parameter Type Description

usrgrpids
(required)

string/array IDs of user groups to update.

rights object/array Permissions to assign to the user groups.
userids string/array IDs of the users to add to the user groups.

Return values

(object) Returns an object containing the IDs of the updated user groups under the usrgrpids property.

Examples

Denying access to host group

Deny two user groups access to host group ”2”.

Request:

{
"jsonrpc": "2.0",
"method": "usergroup.massadd",
"params": {

"usrgrpids": [
"17",
"19"

],
"rights": {

"permission": 0,
"id": "2"

}
},
"auth": "038e1d7b1735c6a5436ee9eae095879e",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": {

"usrgrpids": [
"17",
"19"

]
},
"id": 1

}

See also

• Permission
• usergroup.massupdate
• usergroup.update

Source

CUserGroup::massAdd() in frontends/php/api/classes/CUserGroup.php.

usergroup.massupdate

Description

object usergroup.massupdate(object parameters)

This method allows to simultaneously update properties, users or permissions for multiple user groups.

Parameters

(object) Parameters containing the IDs of the user groups to update and the properties that should be updated.

755

Additionally to the standard user group properties, the method accepts the following parameters.

Parameter Type Description

usrgrpids
(required)

string/array IDs of user groups to update.

rights string/array Permissions to replace the current permissions
assigned to the user group.

userids object/array IDs of the users to replace the users in the group.

Return values

(object) Returns an object containing the IDs of the updated user groups under the usrgrpids property.

Examples

Changing permissions for a user group

Update the permissions for two user groups to only allow read-write access to two host groups.

Request:

{
"jsonrpc": "2.0",
"method": "usergroup.massupdate",
"params": {

"usrgrpids": [
"17",
"19"

],
"rights": [

{
"permission": 3,
"id": "2"

},
{

"permission": 3,
"id": "3"

}
]

},
"auth": "038e1d7b1735c6a5436ee9eae095879e",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": {

"usrgrpids": [
"17",
"19"

]
},
"id": 1

}

See also

• Permission
• usergroup.massadd
• usergroup.update

Source

CUserGroup::massUpdate() in frontends/php/api/classes/CUserGroup.php.

756

usergroup.update

Description

object usergroup.update(object/array userGroups)

This method allows to update existing user groups.

Parameters

(object/array) User group properties to be updated.

The usrgrpid property must be defined for each user group, all other properties are optional. Only the passed properties will be
updated, all others will remain unchanged.

Additionally to the standard user group properties, the method accepts the following parameters.

Parameter Type Description

rights object/array Permissions to replace the current permissions
assigned to the user group.

userids string/array IDs of the users to replace the users in the group.

Return values

(object) Returns an object containing the IDs of the updated user groups under the usrgrpids property.

Examples

Disabling a user group

Disable a user group.

Request:

{
"jsonrpc": "2.0",
"method": "usergroup.update",
"params": {

"usrgrpid": "17",
"users_status": "1"

},
"auth": "038e1d7b1735c6a5436ee9eae095879e",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": {

"usrgrpids": [
"17"

]
},
"id": 1

}

See also

• Permission
• usergroup.massadd
• usergroup.massupdate

Source

CUserGroup::update() in frontends/php/api/classes/CUserGroup.php.

757

User macro

This class is designed to work with host and global macros.

Object references:

• Global macro
• Host macro

Available methods:

• usermacro.create - creating new host macros
• usermacro.createglobal - creating new global macros
• usermacro.delete - deleting host macros
• usermacro.deleteglobal - deleting global macros
• usermacro.get - retrieving host and global macros
• usermacro.update - updating host macros
• usermacro.updateglobal - updating global macros

> User macro object

The following objects are directly related to the usermacro API.

Global macro

The global macro object has the following properties.

Property Type Description

globalmacroid string (readonly) ID of the global macro.
macro
(required)

string Macro string.

value
(required)

string Value of the macro.

Host macro

The host macro object defines a macro available on a host or template. It has the following properties.

Property Type Description

hostmacroid string (readonly) ID of the host macro.
hostid
(required)

string ID of the host that the macro belongs to.

macro
(required)

string Macro string.

value
(required)

string Value of the macro.

usermacro.create

Description

object usermacro.create(object/array hostMacros)

This method allows to create new host macros.

Parameters

(object/array) Host macros to create.

The method accepts host macros with the standard host macro properties.

Return values

758

(object) Returns an object containing the IDs of the created host macros under the hostmacroids property. The order of the
returned IDs matches the order of the passed host macros.

Examples

Creating a host macro

Creat a host macro ”{$SNMP_COMMUNITY}” with the value ”public” on host ”10198”.

Request:

{
"jsonrpc": "2.0",
"method": "usermacro.create",
"params": {

"hostid": "10198",
"macro": "{$SNMP_COMMUNITY}",
"value": "public"

},
"auth": "038e1d7b1735c6a5436ee9eae095879e",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": {

"hostmacroids": [
"11"

]
},
"id": 1

}

Source

CUserMacro::create() in frontends/php/api/classes/CUserMacro.php.

usermacro.createglobal

Description

object usermacro.createglobal(object/array globalMacros)

This method allows to create new global macros.

Parameters

(object/array) Global macros to create.

The method accepts global macros with the standard global macro properties.

Return values

(object) Returns an object containing the IDs of the created global macros under the globalmacroids property. The order of
the returned IDs matches the order of the passed global macros.

Examples

Creating a global macro

Create a global macro ”{$SNMP_COMMUNITY}” with value ”public”.

Request:

{
"jsonrpc": "2.0",
"method": "usermacro.createglobal",
"params": {

"macro": "{$SNMP_COMMUNITY}",
"value": "public"

759

},
"auth": "038e1d7b1735c6a5436ee9eae095879e",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": {

"globalmacroids": [
"6"

]
},
"id": 1

}

Source

CUserMacro::createGlobal() in frontends/php/api/classes/CUserMacro.php.

usermacro.delete

Description

object usermacro.delete(array hostMacroIds)

This method allows to delete host macros.

Parameters

(array) IDs of the host macros to delete.

Return values

(object) Returns an object containing the IDs of the deleted host macros under the hostmacroids property.

Examples

Deleting multiple host macros

Delete two host macros.

Request:

{
"jsonrpc": "2.0",
"method": "usermacro.delete",
"params": [

"32",
"11"

],
"auth": "3a57200802b24cda67c4e4010b50c065",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": {

"hostmacroids": [
"32",
"11"

]
},
"id": 1

}

Source

760

CUserMacro::delete() in frontends/php/api/classes/CUserMacro.php.

usermacro.deleteglobal

Description

object usermacro.deleteglobal(array globalMacroIds)

This method allows to delete global macros.

Parameters

(string/array) IDs of the global macros to delete.

Return values

(object) Returns an object containing the IDs of the deleted global macros under the globalmacroids property.

Examples

Deleting multiple global macros

Delete two global macros.

Request:

{
"jsonrpc": "2.0",
"method": "usermacro.deleteglobal",
"params": [

"32",
"11"

],
"auth": "3a57200802b24cda67c4e4010b50c065",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": {

"globalmacroids": [
"32",
"11"

]
},
"id": 1

}

Source

CUserMacro::deleteGlobal() in frontends/php/api/classes/CUserMacro.php.

usermacro.get

Description

integer/array usermacro.get(object parameters)

The method allows to retrieve host and global macros according to the given parameters.

Parameters

(object) Parameters defining the desired output.

The method supports the following parameters.

Parameter Type Description

globalmacro flag Return global macros instead of host macros.
globalmacroids string/array Return only global macros with the given IDs.

761

Parameter Type Description

groupids string/array Return only host macros that belong to hosts or
templates from the given host groups.

hostids string/array Return only macros that belong to the given hosts or
templates.

hostmacroids string/array Return only host macros with the given IDs.
selectGroups query Return host groups that the host macro belongs to in

the groups property.

Used only when retrieving host macros.
selectHosts query Return hosts that the host macro belongs to in the

hosts property.

Used only when retrieving host macros.
selectTemplates query Return templates that the host macro belongs to in

the templates property.

Used only when retrieving host macros.
sortfield string/array Sort the result by the given properties.

Possible value: macro.
countOutput flag These parameters being common for all get methods

are described in detail in the reference commentary
page.

editable boolean
excludeSearch flag
filter object
limit integer
nodeids string/array
output query
preservekeys flag
search object
searchByAny boolean
searchWildcardsEnabled boolean
sortorder string/array
startSearch flag

Return values

(integer/array) Returns either:

• an array of objects;
• the count of retrieved objects, if the countOutput parameter has been used.

Examples

Retrieving host macros for a host

Retrieve all host macros defined for host ”10198”.

Request:

{
"jsonrpc": "2.0",
"method": "usermacro.get",
"params": {

"output": "extend",
"hostids": "10198"

},
"auth": "038e1d7b1735c6a5436ee9eae095879e",
"id": 1

}

Response:

762

{
"jsonrpc": "2.0",
"result": [

{
"hostmacroid": "9",
"hostid": "10198",
"macro": "{$INTERFACE}",
"value": "eth0"

},
{

"hostmacroid": "11",
"hostid": "10198",
"macro": "{$SNMP_COMMUNITY}",
"value": "public"

}
],
"id": 1

}

Retrieving global macros

Retrieve all global macros.

Request:

{
"jsonrpc": "2.0",
"method": "usermacro.get",
"params": {

"output": "extend",
"globalmacro": true

},
"auth": "038e1d7b1735c6a5436ee9eae095879e",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": [

{
"globalmacroid": "6",
"macro": "{$SNMP_COMMUNITY}",
"value": "public"

}
],
"id": 1

}

Source

CUserMacro::get() in frontends/php/api/classes/CUserMacro.php.

usermacro.update

Description

object usermacro.update(object/array hostMacros)

This method allows to update existing host macros.

Parameters

(object/array) Host macro properties to be updated.

The hostmacroid property must be defined for each host macro, all other properties are optional. Only the passed properties will
be updated, all others will remain unchanged.

763

Return values

(object) Returns an object containing the IDs of the updated host macros under the hostmacroids property.

Examples

Changing the value of a host macro

Change the value of a host macro to ”public”.

Request:

{
"jsonrpc": "2.0",
"method": "usermacro.update",
"params": {

"hostmacroid": "1",
"value": "public"

},
"auth": "038e1d7b1735c6a5436ee9eae095879e",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": {

"hostmacroids": [
"1"

]
},
"id": 1

}

Source

CUserMacro::update() in frontends/php/api/classes/CUserMacro.php.

usermacro.updateglobal

Description

object usermacro.updateglobal(object/array globalMacros)

This method allows to update existing global macros.

Parameters

(object/array) Global macro properties to be updated.

The globalmacroid property must be defined for each global macro, all other properties are optional. Only the passed properties
will be updated, all others will remain unchanged.

Return values

(object) Returns an object containing the IDs of the updated global macros under the globalmacroids property.

Examples

Changing the value of a global macro

Change the value of a global macro to ”public”.

Request:

{
"jsonrpc": "2.0",
"method": "usermacro.updateglobal",
"params": {

"globalmacroid": "1",
"value": "public"

},

764

"auth": "038e1d7b1735c6a5436ee9eae095879e",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": {

"globalmacroids": [
"1"

]
},
"id": 1

}

Source

CUserMacro::updateGlobal() in frontends/php/api/classes/CUserMacro.php.

Web scenario

This class is designed to work with web scenarios.

Object references:

• Web scenario
• Scenario step

Available methods:

• httptest.create - creating new web scenarios
• httptest.delete - deleting web scenarios
• httptest.get - retrieving web scenarios
• httptest.isreadable - checking if web scenarios are readable
• httptest.iswritable - checking if web scenarios are writable
• httptest.update - updating web scenarios

> Web scenario object

The following objects are directly related to the webcheck API.

Web scenario

The web scenario object has the following properties.

Property Type Description

httptestid string (readonly) ID of the web scenario.
hostid
(required)

string ID of the host that the web scenario belongs to.

name
(required)

string Name of the web scenario.

agent string User agent string that will be used by the web scenario.
applicationid string ID of the application that the web scenario belongs to.
authentication integer Authentication method that will be used by the web

scenario.

Possible values:
0 - (default) none;
1 - basic HTTP authentication;
2 - NTLM authentication.

765

Property Type Description

delay integer Execution interval of the web scenario in seconds.

Default: 60.
http_password string Password used for authentication.

Required for web scenarios with basic HTTP or NTLM
authentication.

http_proxy string Proxy that will be used by the web scenario given as
http://[username[:password]@]proxy.example.com[:port].

http_user string User name used for authentication.

Required for web scenarios with basic HTTP or NTLM
authentication.

nextcheck timestamp (readonly) Time of the next web scenario execution.
retries integer Number of times a web scenario will try to execute each

step before failing.

Default: 1.
status integer Whether the web scenario is enabled.

Possible values are:
0 - (default) enabled;
1 - disabled.

templateid string (readonly) ID of the parent template web scenario.
variables string Web scenario variables.
macros
(deprecated)

string Renamed to variables.

Scenario step

The scenario step object defines a specific web scenario check. It has the following properties.

Property Type Description

httpstepid string (readonly) ID of the scenario step.
name
(required)

string Name of the scenario step.

no
(required)

integer Sequence number of the step in a web scenario.

url
(required)

string URL to be checked.

httptestid string (readonly) ID of the web scenario that the step belongs
to.

posts string HTTP POST variables as a string.
required string Text that must be present in the response.
status_codes string Ranges of required HTTP status codes separated by

commas.
timeout integer Request timeout in seconds.

Default: 15.
variables string Scenario step variables.
webcheckid
(deprecated)

string Renamed to httpstepid.

httptest.create

Description

object httptest.create(object/array webScenarios)

This method allows to create new web scenarios.

766

Note:
Creating a web scenario will automatically create a set of web monitoring items.

Parameters

(object/array) Web scenarios to create.

Additionally to the standard web scenario properties, the method accepts the following parameters.

Parameter Type Description

steps
(required)

array Web scenario steps.

Note:
The hostid parameter can be omitted if the applicationid parameter is given. In that case, the web scenario will be
assigned to the host that the application belongs to.

Return values

(object) Returns an object containing the IDs of the created web scenarios under the httptestids property. The order of the
returned IDs matches the order of the passed web scenarios.

Examples

Creating a web scenario

Create a web scenario to monitor the company home page. The scenario will have two steps, to check the home page and the
”About” page and make sure they return the HTTP status code 200.

Request:

{
"jsonrpc": "2.0",
"method": "httptest.create",
"params": {

"name": "Homepage check",
"hostid": "10085",
"steps": [

{
"name": "Homepage",
"url": "http://mycompany.com",
"status_codes": 200,
"no": 1

},
{

"name": "Homepage / About",
"url": "http://mycompany.com/about",
"status_codes": 200,
"no": 2

}
]

},
"auth": "038e1d7b1735c6a5436ee9eae095879e",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": {

"httptestids": [
"5"

]
},

767

"id": 1
}

See also

• Scenario step

Source

CHttpTest::create() in frontends/php/api/classes/CHttpTest.php.

httptest.delete

Description

object httptest.delete(array webScenarioIds)

This method allows to delete web scenarios.

Parameters

(array) IDs of the web scenarios to delete.

Return values

(object) Returns an object containing the IDs of the deleted web scenarios under the httptestids property.

Examples

Deleting multiple web scenarios

Delete two web scenarios.

Request:

{
"jsonrpc": "2.0",
"method": "httptest.delete",
"params": [

"2",
"3"

],
"auth": "3a57200802b24cda67c4e4010b50c065",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": {

"httptestids": [
"2",
"3"

]
},
"id": 1

}

Source

CHttpTest::delete() in frontends/php/api/classes/CHttpTest.php.

httptest.get

Description

integer/array httptest.get(object parameters)

The method allows to retrieve web scenarios according to the given parameters.

Parameters

768

(object) Parameters defining the desired output.

The method supports the following parameters.

Parameter Type Description

applicationids string/array Return only web scenarios that belong to the given
applications.

groupids string/array Return only web scenarios that belong to the given
host groups.

hostids string/array Return only web scenarios that belong to the given
hosts.

httptestids string/array Return only web scenarios with the given IDs.
inherited boolean If set to true return only web scenarios inherited

from a template.
monitored boolean If set to true return only enabled web scenarios that

belong to monitored hosts.
templated boolean If set to true return only web scenarios that belong to

templates.
templateids string/array Return only web scenarios that belong to the given

templates.
expandName flag Expand macros in the name of the web scenario.
expandStepName flag Expand macros in the names of scenario steps.
selectHosts query Return the host that the web scenario belongs to as

an array in the hosts property.
selectSteps query Return web scenario steps in the steps property.
sortfield string/array Sort the result by the given properties.

Possible values are: httptestid and name.
countOutput flag These parameters being common for all get methods

are described in detail in the reference commentary.
editable boolean
excludeSearch flag
filter object
limit integer
nodeids string/array
output query
preservekeys flag
search object
searchByAny boolean
searchWildcardsEnabled boolean
sortorder string/array
startSearch flag

Return values

(integer/array) Returns either:

• an array of objects;
• the count of retrieved objects, if the countOutput parameter has been used.

Examples

Retrieving a web scenario

Retrieve all data about web scenario ”4”.

Request:

{
"jsonrpc": "2.0",
"method": "httptest.get",
"params": {

"output": "extend",
"selectSteps": "extend",
"httptestids": "4"

},

769

"auth": "038e1d7b1735c6a5436ee9eae095879e",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": [

{
"httptestid": "4",
"name": "Homepage check",
"applicationid": "0",
"nextcheck": "0",
"delay": "60",
"status": "0",
"macros": "",
"agent": "",
"authentication": "0",
"http_user": "",
"http_password": "",
"hostid": "10085",
"templateid": "0",
"http_proxy": "",
"retries": "1",
"steps": [

{
"httpstepid": "4",
"httptestid": "4",
"name": "Homepage",
"no": "1",
"url": "http://mycompany.com",
"timeout": "30",
"posts": "",
"required": "",
"status_codes": "200",
"webstepid": "4"

},
{

"httpstepid": "5",
"httptestid": "4",
"name": "Homepage / About",
"no": "2",
"url": "http://mycompany.com/about",
"timeout": "30",
"posts": "",
"required": "",
"status_codes": "200",
"webstepid": "5"

}
]

}
],
"id": 1

}

See also

• Host
• Scenario step

Source

CHttpTest::get() in frontends/php/api/classes/CHttpTest.php.

770

httptest.isreadable

Description

boolean httptest.isreadable(array webScenarioIds)

This method checks if the given web scenarios are available for reading.

Parameters

(array) IDs of the web scenarios to check.

Return values

(boolean) Returns true if the given web scenarios are available for reading.

Examples

Check multiple web scenarios

Check if the two web scenarios are readable.

Request:

{
"jsonrpc": "2.0",
"method": "httptest.isreadable",
"params": [

"3",
"5"

],
"auth": "038e1d7b1735c6a5436ee9eae095879e",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": true,
"id": 1

}

See also

• httptest.iswritable

Source

CHttpTest::isReadable() in frontends/php/api/classes/CHttpTest.php.

httptest.iswritable

Description

boolean httptest.iswritable(array webScenarioIds)

This method checks if the given web scenarios are available for writing.

Parameters

(array) IDs of the web scenarios to check.

Return values

(boolean) Returns true if the given web scenarios are available for writing.

Examples

Check multiple web scenarios

Check if the two web scenarios are writable.

Request:

771

{
"jsonrpc": "2.0",
"method": "httptest.iswritable",
"params": [

"3",
"5"

],
"auth": "038e1d7b1735c6a5436ee9eae095879e",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": true,
"id": 1

}

See also

• httptest.isreadable

Source

CHttpTest::isWritable() in frontends/php/api/classes/CHttpTest.php.

httptest.update

Description

object httptest.update(object/array webScenarios)

This method allows to update existing web scenarios.

Parameters

(object/array) Web scenario properties to be updated.

The httptestid property must be defined for each web scenario, all other properties are optional. Only the passed properties
will be updated, all others will remain unchanged.

Additionally to the standard web scenario properties, the method accepts the following parameters.

Parameter Type Description

steps array Scenario steps to replace existing steps.

Return values

(object) Returns an object containing the IDs of the updated web scenarios under the httptestid property.

Examples

Enabling a web scenario

Enable a web scenario, that is, set its status to ”0”.

Request:

{
"jsonrpc": "2.0",
"method": "httptest.update",
"params": {

"httptestid": "5",
"status": 0

},
"auth": "700ca65537074ec963db7efabda78259",
"id": 1

}

772

Response:

{
"jsonrpc": "2.0",
"result": {

"httptestids": [
"5"

]
},
"id": 1

}

See also

• Scenario step

Source

CHttpTest::update() in frontends/php/api/classes/CHttpTest.php.

webcheck.create

Warning:
This method is a deprecated alias of httptest.create.

webcheck.delete

Warning:
This method is a deprecated alias of httptest.delete.

webcheck.get

Warning:
This method is a deprecated alias of httptest.get.

webcheck.isreadable

Warning:
This method is a deprecated alias of httptest.isreadable.

webcheck.iswritable

Warning:
This method is a deprecated alias of httptest.iswritable.

webcheck.update

Warning:
This method is a deprecated alias of httptest.update.

Appendix 1. Reference commentary

773

Notation Data types

The Zabbix API supports the following data types:

Type Description

bool A boolean value, accepts either true or false.
flag The value is considered to be true if it is passed and not equal to null and false

otherwise.
integer A whole number.
float A floating point number.
string A text string.
text A longer text string.
timestamp A Unix timestamp.
array An ordered sequence of values, that is, a plain array.
object An associative array.
query A value which defines, what data should be returned.

Can be defined as an array of property names to return only specific properties, or as one
of the predefined values:
extend - returns all object properties;
count - returns the number of retrieved records, supported only by certain subselects.

Property labels

Some of the objects properties are marked with short labels to describe their behavior. The following labels are used:

• readonly - the value of the property is set automatically and cannot be defined or changed by the client;
• constant - the value of the property can be set when creating an object, but cannot be changed after.

Removing referenced object via API Reserved ID value ”0” can be used to remove referenced objects. For example, to remove
a referenced proxy from a host, proxy_hostid should be set to 0 (”proxy_hostid”: ”0”).

Common ”get” method parameters The following parameters are supported by all get methods:

Parameter Type Description

countOutput flag Return the number of records in the result instead of
the actual data.

editable boolean If set to true return only objects that the user has
write permissions to.

Default: false.
excludeSearch flag Return results that do not match the criteria given in

the search parameter.
filter object Return only those results that exactly match the given

filter.

Accepts an array, where the keys are property names,
and the values are either a single value or an array of
values to match against.

Doesn’t work for text fields.
limit integer Limit the number of records returned.
nodeids string/array Returns objects that belong to the given nodes.
output query Object properties to be returned.

Default: extend.
preservekeys flag Use IDs as keys in the resulting array.

774

Parameter Type Description

search object Return results that match the given wildcard search
(case-insensitive).

Accepts an array, where the keys are property names,
and the values are strings to search for. If no
additional options are given, this will perform a LIKE
"%…%" search.

Works only for string and text fields.
searchByAny boolean If set to true return results that match any of the

criteria given in the filter or search parameter
instead of all of them.

Default: false.
searchWildcardsEnabled boolean If set to true enables the use of ”*” as a wildcard

character in the search parameter.

Default: false.
sortfield string/array Sort the result by the given properties. Refer to a

specific API get method description for a list of
properties that can be used for sorting. Macros are
not expanded before sorting.

If no value is specified, data will be returned unsorted.
sortorder string/array Order of sorting. If an array is passed, each value will

be matched to the corresponding property given in
the sortfield parameter.

Possible values are:
ASC - (default) ascending;
DESC - descending.

startSearch flag The search parameter will compare the beginning of
fields, that is, perform a LIKE "…%" search instead.

Ignored if searchWildcardsEnabled is set to true.

Examples User permission check

Does the user have permission to write to hosts whose names begin with ”MySQL” or ”Linux” ?

Request:

{
"jsonrpc": "2.0",
"method": "host.get",
"params": {

"countOutput": true,
"search": {

"host": ["MySQL", "Linux"]
},
"editable": true,
"startSearch": true,
"searchByAny": true

},
"auth": "766b71ee543230a1182ca5c44d353e36",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": "0",

775

"id": 1
}

Note:
Zero result means no hosts with read/write permissions.

Mismatch сounting

Count the number of hosts whose names do not contain the substring ”ubuntu”

Request:

{
"jsonrpc": "2.0",
"method": "host.get",
"params": {

"countOutput": true,
"search": {

"host": "ubuntu"
},
"excludeSearch": true

},
"auth": "766b71ee543230a1182ca5c44d353e36",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": "44",
"id": 1

}

Searching for hosts using wildcards

Find hosts whose name contains word ”server” and have interface ports ”10050” or ”10071”. Sort the result by host name in
descending order and limit it to 5 hosts.

Request:

{
"jsonrpc": "2.0",
"method": "host.get",
"params": {

"output": ["hostid", "host"],
"selectInterfaces": ["port"],
"filter": {

"port": ["10050", "10071"]
},
"search": {

"host": "*server*"
},
"searchWildcardsEnabled": true,
"searchByAny": true,
"sortfield": "host",
"sortorder": "DESC",
"limit": 5

},
"auth": "766b71ee543230a1182ca5c44d353e36",
"id": 1

}

Response:

{
"jsonrpc": "2.0",

776

"result": [
{

"hostid": "50003",
"host": "WebServer-Tomcat02",
"interfaces": [

{
"port": "10071"

}
]

},
{

"hostid": "50005",
"host": "WebServer-Tomcat01",
"interfaces": [

{
"port": "10071"

}
]

},
{

"hostid": "50004",
"host": "WebServer-Nginx",
"interfaces": [

{
"port": "10071"

}
]

},
{

"hostid": "99032",
"host": "MySQL server 01",
"interfaces": [

{
"port": "10050"

}
]

},
{

"hostid": "99061",
"host": "Linux server 01",
"interfaces": [

{
"port": "10050"

}
]

}
],
"id": 1

}

Searching for hosts using wildcards with ”preservekeys”

If you add the parameter ”preservekeys” to the previous request, the result is returned as an associative array, where the keys
are the id of the objects.

Request:

{
"jsonrpc": "2.0",
"method": "host.get",
"params": {

"output": ["hostid", "host"],
"selectInterfaces": ["port"],
"filter": {

777

"port": ["10050", "10071"]
},
"search": {

"host": "*server*"
},
"searchWildcardsEnabled": true,
"searchByAny": true,
"sortfield": "host",
"sortorder": "DESC",
"limit": 5,
"preservekeys": true

},
"auth": "766b71ee543230a1182ca5c44d353e36",
"id": 1

}

Response:

{
"jsonrpc": "2.0",
"result": {

"50003": {
"hostid": "50003",
"host": "WebServer-Tomcat02",
"interfaces": [

{
"port": "10071"

}
]

},
"50005": {

"hostid": "50005",
"host": "WebServer-Tomcat01",
"interfaces": [

{
"port": "10071"

}
]

},
"50004": {

"hostid": "50004",
"host": "WebServer-Nginx",
"interfaces": [

{
"port": "10071"

}
]

},
"99032": {

"hostid": "99032",
"host": "MySQL server 01",
"interfaces": [

{
"port": "10050"

}
]

},
"99061": {

"hostid": "99061",
"host": "Linux server 01",
"interfaces": [

{
"port": "10050"

778

}
]

}
},
"id": 1

}

Appendix 2. Changes from 2.0 to 2.2

Backward incompatible changes General

ZBXNEXT-1975 implemented a new ”text” data type
ZBXNEXT-1975 dropped support of text type fields in the get method ”filter” parameter
ZBXNEXT-1485 output value ”refer” has been deprecated for all get methods
ZBXNEXT-1492 dropped support of output shorten for all get methods

action

ZBXNEXT-1491 action.get: selectConditions and selectOperations will now return an array of objects instead of an object
ZBX-6668 action.update: fixed possibility to update action conditions and operations alone

alert

ZBXNEXT-1975 changed the data type of the ”message” property to text

application

ZBXNEXT-928 replaced the templateid property with templateids, which will return an array of parent application IDs

dcheck

ZBX-5916 dcheck.get: removed the dhostids parameter
=== discoveryrule ===

ZBX-6400 dropped support of type 8 (Aggregate check), 15 (Calculated check) and 17 (SNMP Trap check)
ZBXNEXT-1575 dropped support of status 3, not supported
=== event ===

ZBXNEXT-1574 removed the value_changed property

graph

ZBX-6975 changed the default value of “yaxismax” to 100
ZBX-6673 graph.delete: fixed errors in screens after parent graph deleting
ZBXNEXT-1491 graph.get: selectGraphItems will now return an array of graph items instead of an object

graphprototype

ZBXNEXT-1491 graphprototype.get: selectGraphItems will now return an array of graph items instead of an object

graphitem

ZBX-6975 changed the default value of “yaxisside” to 0
ZBX-5846 graphitem.getobjects: removed method

history

ZBXNEXT-1975 changed the data type of log history and text history ”value” property to text

host

ZBXNEXT-1689 host.get: removed the with_historical_items parameter

hostgroup

779

https://support.zabbix.com/browse/ZBXNEXT-1975
https://support.zabbix.com/browse/ZBXNEXT-1975
https://support.zabbix.com/browse/ZBXNEXT-1485
https://support.zabbix.com/browse/ZBXNEXT-1492
https://support.zabbix.com/browse/ZBXNEXT-1491
https://support.zabbix.com/browse/ZBX-6668
https://support.zabbix.com/browse/ZBXNEXT-1975
https://support.zabbix.com/browse/ZBXNEXT-928
https://support.zabbix.com/browse/ZBX-5916
https://support.zabbix.com/browse/ZBX-6400
https://support.zabbix.com/browse/ZBXNEXT-1575
https://support.zabbix.com/browse/ZBXNEXT-1574
https://support.zabbix.com/browse/ZBX-6975
https://support.zabbix.com/browse/ZBX-6673
https://support.zabbix.com/browse/ZBXNEXT-1491
https://support.zabbix.com/browse/ZBXNEXT-1491
https://support.zabbix.com/browse/ZBX-6975
https://support.zabbix.com/browse/ZBX-5846
https://support.zabbix.com/browse/ZBXNEXT-1975
https://support.zabbix.com/browse/ZBXNEXT-1689

ZBXNEXT-1689 hostgroup.get: removed the with_historical_items parameter

iconmap

ZBXNEXT-1491 iconmap.get: selectMappings will now return an array of icon mappings instead of an object

item

ZBXNEXT-1689 removed the prevorgvalue property
ZBXNEXT-1575 dropped support of status 3, not supported

map

ZBX-7163 changed the default value of “label_location” to 0 for ”Map” object
ZBX-7163 changed the default value of “label_location” to -1 for ”Map element” object
=== webcheck === ZBXNEXT-1491 webcheck.get: selectSteps will now return an array of scenario steps instead of an object

Other changes and bug fixes General

Changes:
ZBXNEXT-1491 implemented property array support for all get methods
Bug fixes:
ZBXNEXT-1505 implemented property array support for the output parameter in all get methods
ZBX-5752 fixed inherited object IDs being returned when deleting template objects
ZBX-5565 fixed API returns HTML when the database is down

action

Bug fixes:
ZBX-7053 fixed type-specific operation command properties not being reset when changing type
ZBX-6808 fixed multiple action condition validation problems

alert

Changes:
ZBXNEXT-1575 implemented support of event type action condition
ZBXNEXT-1575 alert.get: implemented the objectids parameter; triggerids has been depreacated.
ZBXNEXT-1575 alert.get: implemented the eventsource and eventobject parameters
Bug fixes:
ZBXNEXT-1491 alert.get: fixed the hostids and groupids parameters

application

Changes:
ZBXNEXT-928 application.delete: allowed deleting applications used in HTTP tests

Bug fixes:
ZBX-5498 application.create: fixed no error triggered if an empty parameter is passed
ZBX-7086 application.massadd: fixed application mass add from different hosts or templates validation
ZBXNEXT-1051 application.massadd: fixed regression, was impossible to link many items and fixed ”excludeSearch”
ZBX-5972 application.update: fixed application being inherited incorrectly when changing its name and an application with the
same name already exists on a linked host
ZBX-5498 application.update: fixed no error triggered if an empty parameter is passed
=== dcheck ==

Changes:
ZBXNEXT-1438 implemented the snmpv3_contextname property
ZBXNEXT-450 implemented the snmpv3_authprotocol and snmpv3_privprotocol properties

dhost

Bug fixes:
ZBX-6124 dhost.create: removed unimplemented method
ZBX-6124 dhost.delete: removed unimplemented method

780

https://support.zabbix.com/browse/ZBXNEXT-1689
https://support.zabbix.com/browse/ZBXNEXT-1491
https://support.zabbix.com/browse/ZBXNEXT-1689
https://support.zabbix.com/browse/ZBXNEXT-1575
https://support.zabbix.com/browse/ZBX-7163
https://support.zabbix.com/browse/ZBX-7163
https://support.zabbix.com/browse/ZBXNEXT-1491
https://support.zabbix.com/browse/ZBXNEXT-1491
https://support.zabbix.com/browse/ZBXNEXT-1505
https://support.zabbix.com/browse/ZBX-5752
https://support.zabbix.com/browse/ZBX-5565
https://support.zabbix.com/browse/ZBX-7053
https://support.zabbix.com/browse/ZBX-6808
https://support.zabbix.com/browse/ZBXNEXT-1575
https://support.zabbix.com/browse/ZBXNEXT-1575
https://support.zabbix.com/browse/ZBXNEXT-1575
https://support.zabbix.com/browse/ZBXNEXT-1491
https://support.zabbix.com/browse/ZBXNEXT-928
https://support.zabbix.com/browse/ZBX-5489
https://support.zabbix.com/browse/ZBX-7086
https://support.zabbix.com/browse/ZBXNEXT-1051
https://support.zabbix.com/browse/ZBX-5972
https://support.zabbix.com/browse/ZBX-5489
https://support.zabbix.com/browse/ZBXNEXT-1438
https://support.zabbix.com/browse/ZBXNEXT-450
https://support.zabbix.com/browse/ZBX-6124
https://support.zabbix.com/browse/ZBX-6124

ZBX-6124 dhost.update: removed unimplemented method

discoveryrule

Changes:
ZBXNEXT-1633 implemented support of username and password properties for Simple check LLD rules
ZBXNEXT-817 implemented support of username and password properties for Database monitor LLD rules
ZBXNEXT-1438 implemented the snmpv3_contextname property
ZBXNEXT-450 implemented the snmpv3_authprotocol and snmpv3_privprotocol properties
ZBXNEXT-1633 discoveryrule.get: implemented the selectHostPrototypes parameter
Bug fixes:
ZBX-5990 discoveryrule.copy: fixed not being able to copy an LLD rule when logged in as an admin user
ZBX-5972 discoveryrule.update: fixed LLD rule being inherited incorrectly when changing its key and an LLD rule with the same
key already exists on a linked host

drule

Bug fixes:
ZBX-7238 fixed permission checks for admin users
ZBX-6256 drule.exists: fixed ”druleids” parameter not working
ZBX-6256 drule.get: fixed ”limitSelect” sorting dchecks and dhosts results by ”name” instead of IDs
ZBXNEXT-109 drule.update: improved discovery rule check deleting
=== dservice ===

Bug fixes:
ZBX-6124 dservice.create: removed unimplemented method
ZBX-6124 dservice.delete: removed unimplemented method
ZBXNEXT-1505 dservice.get: fixed SQL error when using the dcheckids parameter
ZBX-6124 dservice.update: removed unimplemented method

event

Changes:
ZBXNEXT-1575 the source property now supports value 3 - internal event
ZBXNEXT-1575 the object property now supports values 4 - item and 5 - LLD rule
ZBXNEXT-1575 event.acknowledge: trying to acknowledge a non-trigger event will now raise an error
ZBX-7105 event.get: sort field object has been deprecated; added sort field clock
ZBXNEXT-1575 event.get: the source and object parameters will now default to trigger events and trigger objects respectfully
ZBXNEXT-1575 event.get: passing an incorrect value for the source or object parameter will now trigger an error
ZBXNEXT-1575 event.get: implemented the objectids parameter; triggerids has been deprecated
ZBXNEXT-1575 event.get: implemented the selectRelatedObject parameter; selectItems and selectTriggers has been deprecated

Bug fixes:
ZBX-6099 event.get: fixed select_acknowledges count not returning 0 if no acknowledges exist
ZBX-5719 event.get: fixed returning only trigger events by default for users without super admin privileges
=== graph ===

Changes:
ZBXNEXT-1 graph.get: implemented the expandName parameter
Bug fixes:
ZBX-5604 fixed not beeing able to update graphs without specifying items
ZBX-6678 added write permissions check for Y axis MIN/MAX items
ZBX-6649 added numeric validation when selecting item for graphs
ZBX-5990 fixed being able to access graphs that contain items from hosts with ”Deny” permissions
ZBX-6866 graph.update: fixed beeing able to add graph items from other hosts for templated graphs
ZBX-6386 graph.update: fixed being able to update discovered graphs

graphprototype

Bug fixes:
ZBX-5604 fixed not beeing able to update graph prototypes without specifying items
ZBX-6678 added write permissions check for Y axis MIN/MAX items
ZBX-6649 added numeric validation when selecting item for graph prototypes

781

https://support.zabbix.com/browse/ZBX-6124
https://support.zabbix.com/browse/ZBXNEXT-1633
https://support.zabbix.com/browse/ZBXNEXT-817
https://support.zabbix.com/browse/ZBXNEXT-1438
https://support.zabbix.com/browse/ZBXNEXT-450
https://support.zabbix.com/browse/ZBXNEXT-1633
https://support.zabbix.com/browse/ZBX-5990
https://support.zabbix.com/browse/ZBX-5972
https://support.zabbix.com/browse/ZBX-7238
https://support.zabbix.com/browse/ZBX-6256
https://support.zabbix.com/browse/ZBX-6256
https://support.zabbix.com/browse/ZBXNEXT-109
https://support.zabbix.com/browse/ZBX-6124
https://support.zabbix.com/browse/ZBX-6124
https://support.zabbix.com/browse/ZBXNEXT-1505
https://support.zabbix.com/browse/ZBX-6124
https://support.zabbix.com/browse/ZBXNEXT-1575
https://support.zabbix.com/browse/ZBXNEXT-1575
https://support.zabbix.com/browse/ZBXNEXT-1575
https://support.zabbix.com/browse/ZBX-7105
https://support.zabbix.com/browse/ZBXNEXT-1575
https://support.zabbix.com/browse/ZBXNEXT-1575
https://support.zabbix.com/browse/ZBXNEXT-1575
https://support.zabbix.com/browse/ZBXNEXT-1575
https://support.zabbix.com/browse/ZBX-6099
https://support.zabbix.com/browse/ZBX-5719
https://support.zabbix.com/browse/ZBXNEXT-1
https://support.zabbix.com/browse/ZBX-5604
https://support.zabbix.com/browse/ZBX-6678
https://support.zabbix.com/browse/ZBX-6649
https://support.zabbix.com/browse/ZBX-5990
https://support.zabbix.com/browse/ZBX-6866
https://support.zabbix.com/browse/ZBX-6386
https://support.zabbix.com/browse/ZBX-5604
https://support.zabbix.com/browse/ZBX-6678
https://support.zabbix.com/browse/ZBX-6649

ZBX-5990 fixed being able to access graph prototypes that contain items from hosts with ”Deny” permissions
ZBX-6866 graphprototype.update: fixed beeing able to add graph items from other hosts for templated graph prototypes

history

Bug fixes:
ZBX-6124 history.create: removed unimplemented method
ZBX-6124 history.delete: removed unimplemented method
=== host ===

Changes:
ZBXNEXT-1633 implemented the flags property
ZBX-6126 host.delete: changed to support arrays of IDs; passing objects has been deprecated
ZBXNEXT-1633 host.get: implemented the selectDiscoveryRule and selectHostDiscovery parameters
ZBX-5915 host.get: fixed selectParentTemplates parameter using an incorrect property name when passing count
ZBXNEXT-20 host.get: implemented the selectHttpTests parameters
Bug fixes:
ZBX-6699 host.get: fixed ”with_*” parameters taking in account prototypes and discovery rules
ZBX-6465 host.massupdate: now there will be an exception if disabling host inventory and setting inventory fields at the same
time
ZBX-6465 host.massupdate: fixed that setting some host inventory field to a disabled inventory enables it

hostinterface

Changes:
ZBX-7121 increased size of ip property to 64 characters
ZBXNEXT-1633 hostinterface.update: forbid updating interfaces for discovered hosts
Bug fixes:
ZBX-6953 added validation for DNS name limiting it to 64 characters
=== hostprototype ===

Changes:
ZBXNEXT-1633 implemented the host prototype API
Bug fixes:
ZBX-7224 hostprototype.update: fixed host prototype children group deletion
=== hostgroup ===

Changes:
ZBXNEXT-1633 implemented the flags property
ZBXNEXT-1633 hostgroup.delete: forbid deleting host groups that are used as group prototypes
ZBXNEXT-1633 hostgroup.get: implemented the selectDiscoveryRule and selectGroupDiscovery parameters
ZBXNEXT-1633 hostgroup.update: forbid updating discovered host groups
ZBXNEXT-1633 hostgroup.update: forbid updating host groups for discovered hosts
Bug fixes:
ZBX-6458 hostgroup.update: fixed ”name” parameter validation
ZBX-6699 hostgroup.get: fixed ”with_*” parameters taking in account prototypes and discovery rules
ZBX-6651 hostgroup.link: fixed template name for duplicate items in validation message

httptest

Changes:
ZBXNEXT-1597 implemented the scenario step variables property
ZBXNEXT-1597 renamed macros to variables, macros has been deprecated
ZBXNEXT-20 renamed webcheck to httptest, httptest has been deprecated
ZBXNEXT-20 implemented the hostid and templateid properties
ZBXNEXT-20 renamed the webstepid property of the httpstep object to httpstepid, webstepid has been deprecated
ZBX-6050 httptest.create: fixed duplicate step name validation
ZBXNEXT-20 httptest.get: implemented the templateids, inherited, templated, expandName and expandStepName parameters
ZBX-6050 httptest.update: fixed duplicate step name validation

Bug fixes:
ZBX-6356 httptest.get: fixed web scenarios without an application not being returned for admin users
ZBX-7235 httptest.update: fixed activating and deactivating a web scenarios
=== item ===

782

https://support.zabbix.com/browse/ZBX-5990
https://support.zabbix.com/browse/ZBX-6866
https://support.zabbix.com/browse/ZBX-6124
https://support.zabbix.com/browse/ZBX-6124
https://support.zabbix.com/browse/ZBXNEXT-1633
https://support.zabbix.com/browse/ZBX-6126
https://support.zabbix.com/browse/ZBXNEXT-1633
https://support.zabbix.com/browse/ZBX-5915
https://support.zabbix.com/browse/ZBXNEXT-20
https://support.zabbix.com/browse/ZBX-6699
https://support.zabbix.com/browse/ZBX-6465
https://support.zabbix.com/browse/ZBX-6465
https://support.zabbix.com/browse/ZBX-7121
https://support.zabbix.com/browse/ZBXNEXT-1633
https://support.zabbix.com/browse/ZBX-6953
https://support.zabbix.com/browse/ZBXNEXT-1633
https://support.zabbix.com/browse/ZBX-7224
https://support.zabbix.com/browse/ZBXNEXT-1633
https://support.zabbix.com/browse/ZBXNEXT-1633
https://support.zabbix.com/browse/ZBXNEXT-1633
https://support.zabbix.com/browse/ZBXNEXT-1633
https://support.zabbix.com/browse/ZBXNEXT-1633
https://support.zabbix.com/browse/ZBX-6458
https://support.zabbix.com/browse/ZBX-6699
https://support.zabbix.com/browse/ZBX-6651
https://support.zabbix.com/browse/ZBXNEXT-1597
https://support.zabbix.com/browse/ZBXNEXT-1597
https://support.zabbix.com/browse/ZBXNEXT-20
https://support.zabbix.com/browse/ZBXNEXT-20
https://support.zabbix.com/browse/ZBXNEXT-20
https://support.zabbix.com/browse/ZBX-6050
https://support.zabbix.com/browse/ZBXNEXT-20
https://support.zabbix.com/browse/ZBX-6050
https://support.zabbix.com/browse/ZBX-6356
https://support.zabbix.com/browse/ZBX-7235

Changes:
ZBXNEXT-1633 implemented support of username and password properties for Simple check items
ZBXNEXT-817 implemented support of username and password properties for Database monitor items
ZBXNEXT-1438 implemented the snmpv3_contextname property
ZBXNEXT-450 implemented the snmpv3_authprotocol and snmpv3_privprotocol properties
Bug fixes:
ZBX-7171 fixed displaying correct percentages in error messages
ZBX-6699 item.get: fixed ”with_*” parameters taking in account prototypes and discovery rules
ZBXNEXT-1491 item.get: fixed selectHosts returning double template objects
ZBX-6386 item.update: fixed being able to update read-only properties of discovered items
ZBX-5972 item.update: fixed template item being inherited incorrectly when changing its key and an item with the same key
already exists on a linked host
ZBX-7165 item.update: fixed snmp fields validation
=== itemprototype ===

Changes:
ZBXNEXT-1633 implemented support of username and password properties for Simple check item prototypes
ZBXNEXT-817 implemented support of username and password properties for Database monitor item prototypes
ZBXNEXT-1438 implemented the snmpv3_contextname property
ZBXNEXT-450 implemented the snmpv3_authprotocol and snmpv3_privprotocol properties
ZBXNEXT-1491 itemprototype.get: implemented the selectDiscoveryRule parameter
Bug fixes:
ZBXNEXT-1491 itemprototype.get: fixed selectItems not returning web items
ZBX-5972 itemprototype.update: fixed template item prototype being inherited incorrectly when changing its key and an item
prototype with the same key already exists on a linked host

map

Changes:
ZBXNEXT-715 increased size of label property of map elements and map links to 2048
ZBXNEXT-1124 implemented the severity_min property
ZBXNEXT-1491 map.get: implemented the selectUrls parameter
Bug fixes:
ZBX-3934 fixed map link color attribute not being validated
ZBX-7247 map.create: fixed checking permissions to objects used in map elements
ZBX-5927 map.get: fixed preservekeys affecting selectSelements and selectLinks
ZBX-6084 map.delete: fixed favourites removing
ZBX-7247 map.update: fixed checking permissions to objects used in map elements
ZBX-6399 map.update: fixed map element linking
=== proxy ===

Changes:
ZBX-7121 increased size of ip property of interface to 64 characters
ZBX-6362 proxy.create: fixed proxy interface array structure, multiple interface support has been deprecated and only single
interface must be used
ZBX-6126 proxy.delete: changed to support arrays of IDs; passing objects has been deprecated
ZBX-6362 proxy.get: renamed selectInterfaces to selectInterface; selectInterfaces has been deprecated
ZBXNEXT-1633 proxy.update: forbid updating proxies for discovered hosts
ZBX-6362 proxy.update: fixed proxy interface array structure, multiple interface support has been deprecated and only single
interface must be used
Bug fixes:
ZBX-6771 ”status” field on creating proxy is mandatory and is being validated
=== screen ===

Bug fixes:
ZBX-6084 screen.delete: fixed favourites removing

screenitem

Bug fixes:
ZBX-7259 added ”elements” field validation to be a number between 1 and 100

script

783

https://support.zabbix.com/browse/ZBXNEXT-1633
https://support.zabbix.com/browse/ZBXNEXT-817
https://support.zabbix.com/browse/ZBXNEXT-1438
https://support.zabbix.com/browse/ZBXNEXT-450
https://support.zabbix.com/browse/ZBX-7171
https://support.zabbix.com/browse/ZBX-6699
https://support.zabbix.com/browse/ZBXNEXT-1491
https://support.zabbix.com/browse/ZBX-6386
https://support.zabbix.com/browse/ZBX-5972
https://support.zabbix.com/browse/ZBX-7165
https://support.zabbix.com/browse/ZBXNEXT-1633
https://support.zabbix.com/browse/ZBXNEXT-817
https://support.zabbix.com/browse/ZBXNEXT-1438
https://support.zabbix.com/browse/ZBXNEXT-450
https://support.zabbix.com/browse/ZBXNEXT-1491
https://support.zabbix.com/browse/ZBXNEXT-1491
https://support.zabbix.com/browse/ZBX-5972
https://support.zabbix.com/browse/ZBXNEXT-715
https://support.zabbix.com/browse/ZBXNEXT-1124
https://support.zabbix.com/browse/ZBXNEXT-1491
https://support.zabbix.com/browse/ZBX-3934
https://support.zabbix.com/browse/ZBX-7247
https://support.zabbix.com/browse/ZBX-5927
https://support.zabbix.com/browse/ZBX-6084
https://support.zabbix.com/browse/ZBX-7247
https://support.zabbix.com/browse/ZBX-6399
https://support.zabbix.com/browse/ZBX-7121
https://support.zabbix.com/browse/ZBX-6362
https://support.zabbix.com/browse/ZBX-6126
https://support.zabbix.com/browse/ZBX-6362
https://support.zabbix.com/browse/ZBXNEXT-1633
https://support.zabbix.com/browse/ZBX-6362
https://support.zabbix.com/browse/ZBX-6771
https://support.zabbix.com/browse/ZBX-6084
https://support.zabbix.com/browse/ZBX-7259

Changes:
ZBXNEXT-1786 the name of the script can now contain a hierarchical category path
Bug fixes:
ZBX-7053 script.delete: fixed displaying correct error message for scripts linked to action operation
ZBXNEXT-1491 script.get: fixed subselects not working when not requesting the groupid and host_access properties
ZBX-6446 script.getobjects: removed unimplemented method
=== template ===

Changes:
ZBXNEXT-20 template.get: implemented the selectHttpTests and with_httptests parameters
Bug fixes:
ZBX-6699 template.get: fixed ”with_*” parameters taking in account prototypes and discovery rules
ZBX-5915 template.get: fixed selectParentTemplates parameter using an incorrect property name when passing count
ZBXNEXT-1491 template.get: fixed selectTemplate and selectHosts not working with count
ZBX-3684 template.get: fixed always returning a hostid attribute in the result
ZBXNEXT-1633 template.update: forbid updating templates for discovered hosts
=== trigger ===

Changes:
ZBX-6883 added possibility to use empty parameters of trigger functions; first parameter of functions last(), band() and strlen();
second parameter of functions sum(), avg(), last(), strlen(), min(), max(), delta(), str(), regexp() and iregexp(); third parameter of
function band(); fourth parameter of function count()
ZBXNEXT-1575 value_flags is renamed to state; value_flags has been deprecated
ZBXNEXT-1574 creating or disabling a trigger will no longer generate unknown events
ZBXNEXT-1466 trigger.create: new triggers will be created in OK state with an empty error message
ZBXNEXT-1466 trigger.get: implemented the expandComment parameter
Bug fixes:
ZBX-7171 fixed displaying correct percentages in error messages
ZBX-5990 fixed being able to access triggers that contain items from hosts with ”Deny” permissions
ZBX-5706 trigger.adddependencies: fixed returning an object instead of an array of trigger IDs
ZBX-5718 trigger.create: fixed unknown event generation for templated triggers
ZBX-7256 trigger.get: fixed sorting by hostname
ZBX-7164 trigger.update: fixed read only fields to no longer change when linking template to host
ZBX-7026 trigger.update: ”error” field is no longer changed when expression is changed
ZBX-6386 trigger.update: fixed being able to update read-only properties of discovered triggers
ZBX-6192 trigger.update: removing check if field was changed, all received fields will be updated and propagated to inherited
objects
=== triggerprototype ===

Changes:
ZBX-6883 added possibility to use empty parameters of trigger functions; first parameter of functions last(), band() and strlen();
second parameter of functions sum(), avg(), last(), strlen(), min(), max(), delta(), str(), regexp() and iregexp(); third parameter of
function band(); fourth parameter of function count()
Bug fixes:
ZBX-5990 fixed being able to access trigger prototypes that contain items from hosts with ”Deny” permissions
ZBX-6613 fixed trigger prototype create/update error message
ZBX-7164 triggerprototype.update: fixed read only fields to no longer change when linking template to host
ZBX-7026 triggerprototype.update: ”error” field is no longer changed when expression is changed
=== user ===

Changes:
ZBX-2872 user.authenticate: deprecated
ZBX-6126 user.delete: changed to support arrays of IDs; passing objects has been deprecated

Bug fixes:
ZBX-6952 added ”theme” field validation
ZBX-6127 changed the default value of ”type” to 1
ZBX-6126 user.delete: implemented empty parameter validation

usergroup

Bug fixes:
ZBX-6124 usergroup.massremove: removed unimplemented method
=== usermacro ===

784

https://support.zabbix.com/browse/ZBXNEXT-1786
https://support.zabbix.com/browse/ZBX-7053
https://support.zabbix.com/browse/ZBXNEXT-1491
https://support.zabbix.com/browse/ZBX-6446
https://support.zabbix.com/browse/ZBXNEXT-20
https://support.zabbix.com/browse/ZBX-6699
https://support.zabbix.com/browse/ZBX-5915
https://support.zabbix.com/browse/ZBXNEXT-1491
https://support.zabbix.com/browse/ZBX-3684
https://support.zabbix.com/browse/ZBXNEXT-1633
https://support.zabbix.com/browse/ZBX-6883
https://support.zabbix.com/browse/ZBXNEXT-1575
https://support.zabbix.com/browse/ZBXNEXT-1574
https://support.zabbix.com/browse/ZBXNEXT-1466
https://support.zabbix.com/browse/ZBXNEXT-1466
https://support.zabbix.com/browse/ZBX-7171
https://support.zabbix.com/browse/ZBX-5990
https://support.zabbix.com/browse/ZBX-5706
https://support.zabbix.com/browse/ZBX-5718
https://support.zabbix.com/browse/ZBX-7256
https://support.zabbix.com/browse/ZBX-7164
https://support.zabbix.com/browse/ZBX-7026
https://support.zabbix.com/browse/ZBX-6386
https://support.zabbix.com/browse/ZBX-6192
https://support.zabbix.com/browse/ZBX-6883
https://support.zabbix.com/browse/ZBX-5990
https://support.zabbix.com/browse/ZBX-6613
https://support.zabbix.com/browse/ZBX-7164
https://support.zabbix.com/browse/ZBX-7026
https://support.zabbix.com/browse/ZBX-2872
https://support.zabbix.com/browse/ZBX-6126
https://support.zabbix.com/browse/ZBX-6952
https://support.zabbix.com/browse/ZBX-6127
https://support.zabbix.com/browse/ZBX-6126
https://support.zabbix.com/browse/ZBX-6124

Bug fixes:
ZBX-5714 usermacro.get: fixed output refer not returning hosts when used together with the hostids parameter

Zabbix API changes in 2.2

2.2.16 httptest

Bug fixes:
ZBX-10842 httptest.update: fixed SQL error when updating httptest with applicationid and without httpstepid parameters
ZBX-10842 httptest.update: prevented disappearing of step items when updating httptest without applicationid, httpstepid param-
eters
ZBX-10842 httptest.update: fixed connecting web scenario applicationid to created steps when updating

usergroup

Bug fixes:
ZBX-11121 usergroup.update, usergroup.massupdate, usergroup.delete: disallowed leaving a user without linked user groups

2.2.15 host

Bug fixes:
ZBX-11020 host.create: made both ”inventory” and ”inventory_mode” optional

2.2.14 trigger

Bug fixes:
ZBX-10933 trigger.update: fixed unexpected overwriting of trigger expressions for unchanged triggers when updating multiple
triggers simultaneously via the API trigger.update method

2.2.13 host

Bug fixes:
ZBX-10587 host.create: fixed inventory mode not being inherited for host prototypes when linking a template to this host

item

Bug fixes:
ZBX-10755 item.delete: fixed possible SQL errors when deleting items which are used in Y axis MIN/MAX parameters

template

Bug fixes:
ZBX-10587 template.create: fixed inventory mode not being inherited for host prototypes when linking this template to another
template or host

2.2.12 hostgroup

Bug fixes:
ZBX-9162 hostgroup.get: performance improvements under MySQL

httptest

Bug fixes:
ZBX-10316 removed faulty web scenario step name validation

item

Bug fixes:
ZBX-10262 item.update: fixed ”delta” field being modified for templated items

maintenance

Bug fixes:
ZBX-4842 maintenance.create, maintenance.update, maintenance.delete: added auditlog

map

785

https://support.zabbix.com/browse/ZBX-5714
https://support.zabbix.com/browse/ZBX-10842
https://support.zabbix.com/browse/ZBX-10842
https://support.zabbix.com/browse/ZBX-10842
https://support.zabbix.com/browse/ZBX-11121
https://support.zabbix.com/browse/ZBX-11020
https://support.zabbix.com/browse/ZBX-10933
https://support.zabbix.com/browse/ZBX-10587
https://support.zabbix.com/browse/ZBX-10755
https://support.zabbix.com/browse/ZBX-10587
https://support.zabbix.com/browse/ZBX-9162
https://support.zabbix.com/browse/ZBX-10316
https://support.zabbix.com/browse/ZBX-10262
https://support.zabbix.com/browse/ZBX-4842

Bug fixes:
ZBX-10251 map.get: fixed ”countOutput” calculation for unprivileged users

screen

Bug fixes:
ZBX-10150 screen.get: fixed ”countOutput” calculation for unprivileged users
ZBX-10369 screen.update: fixed unexpected deleting of screen items when updating both screen size and screen items

service

Bug fixes:
ZBX-10232 service.getSla: fixed SQL errors with invalid ”year” parameter in IT services report

triggerprototype

Bug fixes:
ZBX-10155 triggerprototype.create, triggerprototype.update: prohibited creation of a trigger prototype which belongs to a host
and a template simultaneously
ZBX-10155 triggerprototype.create, triggerprototype.update: prohibited creation of a trigger prototype without item prototypes in
the expression
ZBX-10155 triggerprototype.create, triggerprototype.update: prohibited creation of a trigger prototype without permissions to a
host or template in the expression

2.2.11 General

Bug fixes:
ZBX-9340 fixed ”data” property not being returned by API when error is generated on DB level

hostgroup

Bug fixes:
ZBX-9738 hostgroup.delete: fixed deletion of related action operations when deleting a host group

item

Bug fixes:
ZBX-8235 item.update: fixed losing initial values when updating templated items

2.2.10 maintenance

Bug fixes:
ZBX-5656 fixed ”timeperiods” validation when passing a single timeperiod object

2.2.9 host

Bug fixes:
ZBX-8448 host.update, host.massupdate, host.massadd: fixed ”groups” property to also accept read-only ”groupid” if host
currently belongs to both read and read-write groups
ZBX-9093 host.create: fixed ”inventory” property causing SQL errors when using MySQL strict mode

hostgroup

Bug fixes:
ZBX-8448 hostgroup.massupdate, hostgroup.massremove: fixed permissions validation to no longer silently remove hosts and
templates to which user has no write permissions

template

Bug fixes:
ZBX-8448 template.massadd: fixed ”groups” property to also accept read-only ”groupid” if template currently belongs to both
read and read-write groups
ZBX-8448 template.update, template.massupdate: fixed ”hosts” property to no longer silently remove hosts and templates to
which user has no write permissions

786

https://support.zabbix.com/browse/ZBX-10251
https://support.zabbix.com/browse/ZBX-10150
https://support.zabbix.com/browse/ZBX-10369
https://support.zabbix.com/browse/ZBX-10232
https://support.zabbix.com/browse/ZBX-10155
https://support.zabbix.com/browse/ZBX-10155
https://support.zabbix.com/browse/ZBX-10155
https://support.zabbix.com/browse/ZBX-9340
https://support.zabbix.com/browse/ZBX-9738
https://support.zabbix.com/browse/ZBX-8235
https://support.zabbix.com/browse/ZBX-5656
https://support.zabbix.com/browse/ZBX-8448
https://support.zabbix.com/browse/ZBX-9093
https://support.zabbix.com/browse/ZBX-8448
https://support.zabbix.com/browse/ZBX-8448
https://support.zabbix.com/browse/ZBX-8448

2.2.8 application

Bug fixes:
ZBX-8832 application.create: fixed template application inheritance when template is linked to one or more templates having
applications with same name

item

Bug fixes:
ZBX-8904 item.get: fixed ”selectInterfaces” option retrieving all host interfaces

hostgroup

Bug fixes:
ZBX-9017 hostgroup.create, hostgroup.update: fixed methods accepting readonly ”internal” param for create/update.

httptest

Bug fixes:
ZBX-8486 fixed web scenario re-linking

2.2.7 trigger

Bug fixes:
ZBX-6174 trigger.get: fixed ”skipDependent” option not handling cases when triggers upon which other triggers depend are dis-
abled (or have disabled items or disabled item hosts)

user

Bug fixes:
ZBX-8650 user.get: fixed undefined index ’passwd’ when using ’search’ option

2.2.6 host

Bug fixes:
ZBX-8603 host.massadd: fixed web scenario fields ”http_proxy” and ”retries” not updating properly when linking template to host

item

Breaking changes:
ZBX-8428 item.get: changed item last value retrieval to use only values from last 24 hours

usergroup

Bug fixes:
ZBX-8493 usergroup.massadd: fixed creating duplicate entries in ”rights” table

template

Bug fixes:
ZBX-8603 template.massadd: fixed web scenario fields ”http_proxy” and ”retries” not updating properly when linking to template

trigger

Breaking changes:
ZBX-8473 trigger.delete, trigger.update: removed trigger event deletion directly via frontend API
Bug fixes:
ZBX-8510 fixed possible deadlocks when updating or removing triggers used in IT services
ZBX-8424 trigger.get: fixed option ’selectLastEvent’ not returning results when clock value is higher than event ID
=== service ===

Bug fixes:
ZBX-8510 fixed possible deadlocks when changing the structure of the service graph

787

https://support.zabbix.com/browse/ZBX-8832
https://support.zabbix.com/browse/ZBX-8904
https://support.zabbix.com/browse/ZBX-9017
https://support.zabbix.com/browse/ZBX-8486
https://support.zabbix.com/browse/ZBX-6174
https://support.zabbix.com/browse/ZBX-8650
https://support.zabbix.com/browse/ZBX-8603
https://support.zabbix.com/browse/ZBX-8428
https://support.zabbix.com/browse/ZBX-8493
https://support.zabbix.com/browse/ZBX-8603
https://support.zabbix.com/browse/ZBX-8473
https://support.zabbix.com/browse/ZBX-8510
https://support.zabbix.com/browse/ZBX-8424
https://support.zabbix.com/browse/ZBX-8510

2.2.5 configuration

Bug fixes:
ZBX-8151 configuration.import: fixed XXE vulnerability while importing XML with external entities

2.2.4 hostprototype

Bug fixes:
ZBX-8334 hostprototype.get: fixed getting of group prototypes in Oracle

httptest

Bug fixes:
ZBX-7766 fixed web scenario step validation to allow user macro in status code field
ZBX-8195 fixed step name and URL validation

image

Bug fixes:
ZBX-8101 image.get: fixed returning image data having defined ”sysmapids” and extended output options for ORACLE database

2.2.3 application

Bug fixes:
ZBX-7879 fixed creating and updating applications with multibyte characters in template which is linked to host while mb-
string.func_overload set greater than 1

graph

Bug fixes:
ZBX-6742 fixed templated graph item validation when items seem to belong to multiple hosts
ZBX-6151 graph.update: fixed validation allowing to pass only ’gitemid’ parameter without ’itemid’
ZBX-7809 graph.update: fixed unused graph Y axis min/max fields unsetting from db

graphprototype

Bug fixes:
ZBX-6742 fixed templated graph prototype item validation when items seem to belong to multiple hosts
ZBX-6151 fixed validation so item prototypes are no longer allowed from multiple discovery rules
ZBX-6151 graphprototype.create: added missing graph prototype name in error message when validating non-numeric items
ZBX-6151 graphprototype.update: fixed validation allowing to pass only ’gitemid’ parameter without ’itemid’. Added missing
graph prototype name in error message when validating non-numeric items

screen

Bug fixes:
ZBX-7832 screen.update: fixed screen item row- and colspans not being adjusted when reducing the size of a screen

trigger

Bug fixes:
ZBX-7674 trigger.delete: fixed trigger unlink from IT Services

triggerprototype

Bug fixes:
ZBX-6151 fixed validation so item prototypes are no longer allowed from multiple discovery rules

2.2.2 action

Bug fixes:
ZBX-7407 action.update: fixed being able to change ’eventsource’ parameter

788

https://support.zabbix.com/browse/ZBX-8151
https://support.zabbix.com/browse/ZBX-8334
https://support.zabbix.com/browse/ZBX-7766
https://support.zabbix.com/browse/ZBX-8195
https://support.zabbix.com/browse/ZBX-8101
https://support.zabbix.com/browse/ZBX-7879
https://support.zabbix.com/browse/ZBX-6742
https://support.zabbix.com/browse/ZBX-6151
https://support.zabbix.com/browse/ZBX-7809
https://support.zabbix.com/browse/ZBX-6742
https://support.zabbix.com/browse/ZBX-6151
https://support.zabbix.com/browse/ZBX-6151
https://support.zabbix.com/browse/ZBX-6151
https://support.zabbix.com/browse/ZBX-7832
https://support.zabbix.com/browse/ZBX-7674
https://support.zabbix.com/browse/ZBX-6151
https://support.zabbix.com/browse/ZBX-7407

configuration

ZBX-7671 configuration.import: fixed error when importing an existing trigger with dependencies from 1.8

graph

Bug fixes:
ZBX-7578 graph.update: fixed graph item validation

host

Bug fixes:
ZBX-7660 host.get: fixed method returning the ”templates” property even if the ”templateids” parameter is not used
ZBX-7454 host.massupdate: updating only host inventory parameters with no ’inventory_mode’ parameter set no longer changes
inventory mode from ’Automatic’ to ’Manual’
=== hostgroup ===

Bug fixes:
ZBX-6348 hostgroup.create: fixed allowing now to enter host group name containing only zeros

httptest

Bug fixes:
ZBX-7591 httptest.update: fixed deleting web scenario steps on template linked to host
ZBX-6348 httptest.update: fixed allowing now to enter web scenario name and step name containing only zeros

screen

Bug fixes:
ZBX-7338 fixed screen validation

screenitem

Bug fixes:
ZBX-7338 fixed screen item validation

template

Bug fixes:
ZBX-6348 template.create object name is now shown in double quotes instead of brackets in error messages
ZBX-7687 template.get: fixed method returning and incorrect ”parenttemplateid” property with PostgreSQL

templatescreen

Bug fixes:
ZBX-7338 fixed template screen validation

templatescreenitem

Bug fixes:
ZBX-7338 fixed template screen item validation

trigger

Bug fixes:
ZBX-7509 changed deprecated parameter ”value_flag” to its proper name ”value_flags”
ZBX-7345 trigger.get: fixed method trying to sort by ”lastchange” DESC even if a different sort field or sort order is given

user

ZBX-7693 fixed multiple media validation issues
ZBX-7693 fixed admin users being able to edit media for other users
ZBX-7703 user.login: fixed being able to switch users without proper credentials when using HTTP authentication
=== usergroup ===

789

https://support.zabbix.com/browse/ZBX-7671
https://support.zabbix.com/browse/ZBX-7578
https://support.zabbix.com/browse/ZBX-7660
https://support.zabbix.com/browse/ZBX-7454
https://support.zabbix.com/browse/ZBX-6348
https://support.zabbix.com/browse/ZBX-7591
https://support.zabbix.com/browse/ZBX-6348
https://support.zabbix.com/browse/ZBX-7338
https://support.zabbix.com/browse/ZBX-7338
https://support.zabbix.com/browse/ZBX-6348
https://support.zabbix.com/browse/ZBX-7687
https://support.zabbix.com/browse/ZBX-7338
https://support.zabbix.com/browse/ZBX-7338
https://support.zabbix.com/browse/ZBX-7509
https://support.zabbix.com/browse/ZBX-7345
https://support.zabbix.com/browse/ZBX-7693
https://support.zabbix.com/browse/ZBX-7693
https://support.zabbix.com/browse/ZBX-7703

Bug fixes:
ZBX-7483 usergroup.delete: fixed user group delete validation

2.2.1 drule

Bug fixes:
ZBX-7316 drule.delete: fixed SQL errors preventing method from working and added existing ID validation

screenitem

Bug fixes:
ZBX-7351 fixed screen item not being saved if resource type is URL

script

Bug fixes:
ZBX-7372 script.getscriptsbyhosts: fixed undefined indexes while resolving macros in confirmation messages

18. Appendixes

Please use the sidebar to access content in the Appendixes section.

1 Frequently asked questions / Troubleshooting

Frequently asked questions or FAQ.

1. Q: Can I flush/clear the queue (as depicted in Administration → Queue)?
A: No.

2. Q: How do I migrate from one database to another?
A: Dump data only (for MySQL, use flag -t or --no-create-info), create the new database using schema files from Zabbix and
import the data.

3. Q: I would like to replace all spaces with underscores in my item keys because they worked in older versions but space is not
a valid symbol for an item key in 1.8 (or any other reason to mass-modify item keys). How should I do it and what should i
beware of?
A: You may use a database query to replace all occurrences of spaces in item keys with underscores:
update items set key_=replace(key_,’ ’,’_’);
Triggers will be able to use these items without any additional modifications, but you might have to change any item refer-
ences in these locations:
* Notifications (actions)
* Map element and link labels
* Calculated item formulas

4. Q: My graphs have dots instead of lines or empty areas. Why so?
A: Data is missing. This can happen for a variety of reasons - performance problems on Zabbix database, Zabbix server,
network, monitored devices...

5. Q: Zabbix daemons fail to start up with a message Listener failed with error: socket() for [[-]:10050] failed with error 22:
Invalid argument.
A: This error arises at attempt to run Zabbix agent compiled on version 2.6.27 or above on a platform with a kernel 2.6.26
and lower. Note that static linking will not help in this case because it is the socket() system call that does not support
SOCK_CLOEXEC flag on earlier kernels. ZBX-3395

6. Q: I try to set up a flexible user parameter (one that accepts parameters) with a command that uses a positional parameter
like $1, but it doesn’t work (uses item parameter instead). How to solve this?
A: Use a double dollar sign like $$1

7. Q: All dropdowns have a scrollbar and look ugly in Opera 11. Why so?
A: It’s a known bug in Opera 11.00 and 11.01; see Zabbix issue tracker for more information.

8. Q: What is the structure of IDs in the database for distributed monitoring?
A: For configuration tables like items, hosts etc: NNNSSSDDDDDDDDDDD, where NNN - nodeid (to which node the ID
belongs to), SSS - source nodeid (in which node was the ID created), DDDDDDDDDDD - the ID itself.

790

https://support.zabbix.com/browse/ZBX-7483
https://support.zabbix.com/browse/ZBX-7316
https://support.zabbix.com/browse/ZBX-7351
https://support.zabbix.com/browse/ZBX-7372
https://support.zabbix.com/browse/ZBX-3395
https://support.zabbix.com/browse/ZBX-3594

For historical tables like events, history* etc: NNNDDDDDDDDDDDDDD, where NNN - nodeid (to which node the ID belongs
to), DDDDDDDDDDDDDD - the ID itself.
For instance, an item ID created on source node 5 for node 14 might look like 1400500000012345. Note that in this example
the length of ID is less than 17 digits, because the target node number has less than three digits.

9. Q: How can I change graph background colour in a custom theme?
A: See graph_theme table in the database and theming guide.

10. Q: With DebugLevel 4 I’m seeing messages ”Trapper got [] len 0” in server/proxy log - what’s that?
A: Most likely that is frontend, connecting and checking whether server is still running.

11. Q: My system had the time set in the future and now no data is coming in. How could this be solved?
A: Clear values of database fields hosts.disable_until*, drules.nextcheck, httptest.nextcheck and restart the server/proxy.

12. Q: Text item values in frontend (when using {ITEM.VALUE}macro and in other cases) are cut/trimmed to 20 symbols. Is that
normal?
A: Yes, there is a hardcoded limit in include/items.inc.php currently.

Installation troubleshooting

See the installation-specific troubleshooting section.

See also

* Troubleshooting page on zabbix.org

2 Installation

1 Database creation scripts

Overview

A Zabbix database must be created during the installation of Zabbix server or proxy.

This section provides scripts for creating a Zabbix database. A separate schema script is provided for each supported database.

Note:
schema.sql, images.sql and data.sql files are located in the database subdirectory of Zabbix sources. If Zabbix was
installed from distribution packages, refer to the distribution documentation.

Attention:
For a Zabbix proxy database, only schema.sql should be imported (no images.sql nor data.sql)

UTF-8 is the only encoding supported by Zabbix. It is known to work without any security flaws. Users should be aware that there
are known security issues if using some of the other encodings.

Scripts

MySQL

Character set utf8 and utf8_bin collation is required for Zabbix server to work properly with MySQL database.

We assume that a username user with password password exists and has permissions to create database objects.

shell> mysql -u<username> -p<password>
mysql> create database zabbix character set utf8 collate utf8_bin;
mysql> quit;
shell> mysql -u<username> -p<password> zabbix < database/mysql/schema.sql
stop here if you are creating database for Zabbix proxy
shell> mysql -u<username> -p<password> zabbix < database/mysql/images.sql
shell> mysql -u<username> -p<password> zabbix < database/mysql/data.sql

PostgreSQL

We assume that a username user exists and has permissions to create database objects.

shell> psql -U <username>
psql> create database 'zabbix' with encoding 'UNICODE' template=template0;
psql> \q
shell> cd database/postgresql

791

https://www.zabbix.org/wiki/Troubleshooting

shell> psql -U <username> zabbix < schema.sql
stop here if you are creating database for Zabbix proxy
shell> psql -U <username> zabbix < images.sql
shell> psql -U <username> zabbix < data.sql

Oracle

We assume that a zabbix database user with password password exists and has permissions to create database objects in ORCL
service located on the host Oracle database server with a user shell user having write access to /tmp directory. Zabbix requires a
Unicode database character set and a UTF8 national character set. Check current settings:

sqlplus> select parameter,value from v$nls_parameters where parameter='NLS_CHARACTERSET' or parameter='NLS_NCHAR_CHARACTERSET';

If you are creating a database for Zabbix server you need to have images somewhere on the Oracle host, for example in
/tmp/zabbix_images folder. Copy all images from misc/images/png_modern to /tmp/zabbix_images directory on the Oracle host:

shell> cd /path/to/zabbix-sources
shell> scp -r misc/images/png_modern user@host:/tmp/zabbix_images

Edit the database/oracle/images.sql file and set images_dir variable to the /tmp/zabbix_images path:

CREATE OR REPLACE DIRECTORY image_dir AS '/tmp/zabbix_images'

Now prepare the database:

shell> sqlplus zabbix/password@host/ORCL
sqlplus> @database/oracle/schema.sql
stop here if you are creating database for Zabbix proxy
sqlplus> @database/oracle/images.sql
sqlplus> @database/oracle/data.sql

Note:
Please set the initialization parameter CURSOR_SHARING=FORCE for best performance.

IBM DB2

shell> db2 "create database zabbix using codeset utf-8 territory us pagesize 32768"
shell> cd database/ibm_db2
shell> db2batch -d zabbix -f schema.sql
stop here if you are creating database for Zabbix proxy
shell> db2batch -d zabbix -f images.sql
shell> db2batch -d zabbix -f data.sql

Note:
It is important to set UTF-8 locale for Zabbix server, Zabbix proxy and web server running Zabbix frontend. Otherwise text
information from Zabbix will be interpreted by IBM DB2 server as non-UTF-8 and will be additionally converted on the way
from Zabbix to the database and back. The database will store corrupted non-ASCII characters.

Zabbix frontend uses OFFSET and LIMIT clauses in SQL queries. For this to work, IBMDB2 servermust have DB2_COMPATIBILITY_VECTOR
variable be set to 3. Run the following command before starting the database server:

shell> db2set DB2_COMPATIBILITY_VECTOR=3

SQLite

shell> cd database/sqlite3
shell> sqlite3 /var/lib/sqlite/zabbix.db < schema.sql
stop here if you are creating database for Zabbix proxy
shell> sqlite3 /var/lib/sqlite/zabbix.db < images.sql
shell> sqlite3 /var/lib/sqlite/zabbix.db < data.sql

Note:
If using SQLite with Zabbix proxy, database will be automatically created if it does not exist.

Return to the installation section.

792

2 Zabbix agent on Microsoft Windows

Configuring agent

Zabbix agent runs as a Windows service.

You can run a single instance of Zabbix agent or multiple instances of the agent on a Microsoft Windows host. A single instance
can use the default configuration file C:\zabbix_agentd.conf or a configuration file specified in the command line. In case of
multiple instances each agent instance must have its own configuration file (one of the instances can use the default configuration
file).

An example configuration file is available in Zabbix source archive as conf/zabbix_agentd.win.conf.

See the configuration file options for details on configuring Zabbix Windows agent.

Hostname parameter

To perform active checks on a host Zabbix agent needs to have the hostname defined. Moreover, the hostname value set on the
agent side should exactly match the ”Host name” configured for the host in the frontend.

The hostname value on the agent side can be defined by either the Hostname or HostnameItem parameter in the agent config-
uration file - or the default values are used if any of these parameters are not specified.

The default value for HostnameItem parameter is the value returned by the ”system.hostname” agent key and for Windows
platform it returns the NetBIOS host name.

The default value for Hostname is the value returned by the HostnameItem parameter. So, in effect, if both these parameters
are unspecified the actual hostname will be the host NetBIOS name; Zabbix agent will use NetBIOS host name to retrieve the list
of active checks from Zabbix server and send results to it.

Attention:
The system.hostname key always returns the NetBIOS host name which is limited to 15 symbols and in UPPERCASE only
- regardless of the length and lowercase/uppercase characters in the real host name.

Starting from Zabbix agent 1.8.6 version for Windows the ”system.hostname” key supports an optional parameter - type of the
name. The default value of this parameter is ”netbios” (for backward compatibility) and the other possible value is ”host”.

Attention:
The system.hostname[host] key always returns the full, real (case sensitive) Windows host name.

So, to simplify the configuration of zabbix_agentd.conf file and make it unified, two different approaches could be used.

1. leave Hostname or HostnameItem parameters undefined and Zabbix agent will use NetBIOS host name as the hostname;
2. leave Hostname parameter undefined and define HostnameItem like this:
HostnameItem=system.hostname[host]
and Zabbix agent will use the full, real (case sensitive) Windows host name as the hostname.

Host name is also used as part of Windows service name which is used for installing, starting, stopping and uninstalling theWindows
service. For example, if Zabbix agent configuration file specifies Hostname=Windows_db_server, then the agent will be installed
as a Windows service ”Zabbix Agent [Windows_db_server]”. Therefore, to have a different Windows service name for each
Zabbix agent instance, each instance must use a different host name.

Installing agent as Windows service

To install a single instance of Zabbix agent with the default configuration file c:\zabbix_agentd.conf:

zabbix_agentd.exe --install

Attention:
On a 64-bit system, a 64-bit Zabbix agent version is required for all checks related to running 64-bit processes to work
correctly.

If you wish to use a configuration file other than c:\zabbix_agentd.conf, you should use the following command for service
installation:

zabbix_agentd.exe --config <your_configuration_file> --install

A full path to the configuration file should be specified.

Multiple instances of Zabbix agent can be installed as services like this:

793

zabbix_agentd.exe --config <configuration_file_for_instance_1> --install --multiple-agents
zabbix_agentd.exe --config <configuration_file_for_instance_2> --install --multiple-agents
...
zabbix_agentd.exe --config <configuration_file_for_instance_N> --install --multiple-agents

The installed service should now be visible in Control Panel.

Starting agent

To start the agent service, you can use Control Panel or do it from command line.

To start a single instance of Zabbix agent with the default configuration file:

zabbix_agentd.exe --start

To start a single instance of Zabbix agent with another configuration file:

zabbix_agentd.exe --config <your_configuration_file> --start

To start one of multiple instances of Zabbix agent:

zabbix_agentd.exe --config <configuration_file_for_this_instance> --start --multiple-agents

Stopping agent

To stop the agent service, you can use Control Panel or do it from command line.

To stop a single instance of Zabbix agent started with the default configuration file:

zabbix_agentd.exe --stop

To stop a single instance of Zabbix agent started with another configuration file:

zabbix_agentd.exe --config <your_configuration_file> --stop

To stop one of multiple instances of Zabbix agent:

zabbix_agentd.exe --config <configuration_file_for_this_instance> --stop --multiple-agents

Uninstalling agent Windows service

To uninstall a single instance of Zabbix agent using the default configuration file:

zabbix_agentd.exe --uninstall

To uninstall a single instance of Zabbix agent using a non-default configuration file:

zabbix_agentd.exe --config <your_configuration_file> --uninstall

To uninstall multiple instances of Zabbix agent from Windows services:

zabbix_agentd.exe --config <configuration_file_for_instance_1> --uninstall --multiple-agents
zabbix_agentd.exe --config <configuration_file_for_instance_2> --uninstall --multiple-agents
...
zabbix_agentd.exe --config <configuration_file_for_instance_N> --uninstall --multiple-agents

3 Troubleshooting installation issues

This page covers potential issues that could arise during installation of Zabbix

Access control with Apache

Zabbix frontend includes .htaccess files that limit access to directories api, conf and include. Since Apache 2.4 introduced a new
access control syntax, running versions of Zabbix 2.2.1 and older might cause the following error to appear in the Apache error
logs:

Invalid command 'Order', perhaps misspelled or defined by a module not included in the server configuration

Using the outdated syntax in the Apache configuration files might prevent Apache from starting at all. To solve this problem either
upgrade to Zabbix 2.2.2 or enable the Apache mod_access_compat module.

See Apache documentation for details.

3 Daemon configuration

794

http://httpd.apache.org/docs/2.4/upgrading.html
http://httpd.apache.org/docs/2.4/upgrading.html
http://httpd.apache.org/docs/current/mod/mod_authz_core.html

1 Zabbix server

The parameters supported in a Zabbix server configuration file:

Parameter Mandatory Range Default Description

AlertScriptsPath no /usr/local/share/zabbix/alertscriptsLocation of custom alert
scripts (depends on
compile-time installation
variable datadir).

AllowRoot no 0-1 0 Allow the server to run as
’root’. If disabled and the
server is started by ’root’, the
server will try to switch to the
’zabbix’ user instead. Has no
effect if started under a
regular user.
0 - do not allow
1 - allow
This parameter is supported
since Zabbix 2.2.0.

CacheSize no 128K-8G 8M Size of configuration cache,
in bytes.
Shared memory size for
storing host, item and trigger
data.
Upper limit used to be 2GB
before Zabbix 2.2.3.

CacheUpdateFrequency no 1-3600 60 How often Zabbix will
perform update of
configuration cache, in
seconds.

DBHost no localhost Database host name.
In case of MySQL localhost or
empty string results in using
a socket. In case of
PostgreSQL
only empty string results in
attempt to use socket.

DBName yes Database name.
For SQLite3 path to database
file must be provided.
DBUser and DBPassword are
ignored.

DBPassword no Database password. Ignored
for SQLite.
Comment this line if no
password is used.

DBPort no 1024-65535 3306 Database port when not
using local socket. Ignored
for SQLite.

DBSchema no Schema name. Used for IBM
DB2.

DBSocket no /tmp/mysql.sock Path to MySQL socket.
DBUser no Database user. Ignored for

SQLite.
DebugLevel no 0-4 3 Specifies debug level:

0 - no debug
1 - critical information
2 - error information
3 - warnings
4 - for debugging (produces
lots of information)

795

Parameter Mandatory Range Default Description

EnableSNMPBulkRequests no 0-1 1 Enable or disable SNMP bulk
requests:
0 - disable
1 - enable
This parameter is supported
since Zabbix 2.2.7.

ExternalScripts no /usr/local/share/zabbix/externalscriptsLocation of external scripts
(depends on compile-time
installation variable datadir).

Fping6Location no /usr/sbin/fping6 Location of fping6.
Make sure that fping6 binary
has root ownership and SUID
flag set.
Make empty
(”Fping6Location=”) if your
fping utility is capable to
process IPv6 addresses.

FpingLocation no /usr/sbin/fping Location of fping.
Make sure that fping binary
has root ownership and SUID
flag set!

HistoryCacheSize no 128K-2G 8M Size of history cache, in
bytes.
Shared memory size for
storing history data.

HistoryTextCacheSize no 128K-2G 16M Size of text history cache, in
bytes.
Shared memory size for
storing character, text or log
history data.

HousekeepingFrequency no 1-24 1 How often Zabbix will
perform housekeeping
procedure (in hours).
Housekeeping is removing
outdated information from
the database.
Note: To prevent
housekeeper from being
overloaded (for example,
when history and trend
periods are greatly reduced),
no more than 4 times
HousekeepingFrequency
hours of outdated
information are deleted in
one housekeeping cycle, for
each item. Thus, if
HousekeepingFrequency is 1,
no more than 4 hours of
outdated information
(starting from the oldest
entry) will be deleted per
cycle.

Include no You may include individual
files or all files in a directory
in the configuration file. See
special notes about
limitations.

796

Parameter Mandatory Range Default Description

JavaGateway no IP address (or hostname) of
Zabbix Java gateway.
Only required if Java pollers
are started.
This parameter is supported
since Zabbix 2.0.0.

JavaGatewayPort no 1024-32767 10052 Port that Zabbix Java
gateway listens on.
This parameter is supported
since Zabbix 2.0.0.

ListenIP no 0.0.0.0 List of comma delimited IP
addresses that the trapper
should listen on.
Trapper will listen on all
network interfaces if this
parameter is missing.
Multiple IP addresses are
supported since Zabbix
1.8.3.

ListenPort no 1024-32767 10051 Listen port for trapper.
LoadModule no Module to load at server

startup. Modules are used to
extend functionality of the
server.
Format:
LoadModule=<module.so>
The modules must be located
in directory specified by
LoadModulePath.
It is allowed to include
multiple LoadModule
parameters.

LoadModulePath no Full path to location of server
modules.
Default depends on
compilation options.

LogFile no Name of log file.
LogFileSize no 0-1024 1 Maximum size of log file in

MB.
0 - disable automatic log
rotation.
Note: If the log file size limit
is reached and file rotation
fails, for whatever reason,
the existing log file is
truncated and started anew.

LogSlowQueries no 0-3600000 0 How long a database query
may take before being
logged (in milliseconds).
0 - don’t log slow queries.
This option becomes enabled
starting with DebugLevel=3.
This parameter is supported
since Zabbix 1.8.2.

797

Parameter Mandatory Range Default Description

MaxHousekeeperDelete no 0-1000000 500 No more than
’MaxHousekeeperDelete’
rows (corresponding to
[tablename], [field], [value])
will be deleted per one task
in one housekeeping cycle.
SQLite3 does not use this
parameter, deletes all
corresponding rows without a
limit.
If set to 0 then no limit is
used at all. In this case you
must know what you are
doing!
This parameter is supported
since Zabbix 1.8.2 and
applies only to deleting
history and trends of already
deleted items.

NodeID no 0-999 0 Unique NodeID in distributed
setup.
0 - standalone server

NodeNoEvents no 0-1 0 If set to ’1’ local events won’t
be sent to master node.
This won’t impact ability of
this node to propagate
events from its child nodes.

NodeNoHistory no 0-1 0 If set to ’1’ local history won’t
be sent to master node.
This won’t impact ability of
this node to propagate
history from its child nodes.

PidFile no /tmp/zabbix_server.pidName of PID file.
ProxyConfigFrequency no 1-604800 3600 How often Zabbix server

sends configuration data to a
Zabbix proxy in seconds.
Used only for proxies in a
passive mode.
This parameter is supported
since Zabbix 1.8.3.

ProxyDataFrequency no 1-3600 1 How often Zabbix server
requests history data from a
Zabbix proxy in seconds.
Used only for proxies in a
passive mode.
This parameter is supported
since Zabbix 1.8.3.

SenderFrequency no 5-3600 30 How often Zabbix will try to
send unsent alerts (in
seconds).

SNMPTrapperFile no /tmp/zabbix_traps.tmpTemporary file used for
passing data from SNMP trap
daemon to the server.
Must be the same as in
zabbix_trap_receiver.pl or
SNMPTT configuration file.
This parameter is supported
since Zabbix 2.0.0.

SourceIP no Source IP address for
outgoing connections.

798

Parameter Mandatory Range Default Description

SSHKeyLocation no Location of public and private
keys for SSH checks and
actions

StartDBSyncers no 1-100 4 Number of pre-forked
instances of DB Syncers.
The upper limit used to be 64
before version 1.8.5.
This parameter is supported
since Zabbix 1.8.3.

StartDiscoverers no 0-250 1 Number of pre-forked
instances of discoverers.
The upper limit used to be
255 before version 1.8.5.

StartHTTPPollers no 0-1000 1 Number of pre-forked
instances of HTTP pollers.
The upper limit used to be
255 before version 1.8.5.

StartIPMIPollers no 0-1000 0 Number of pre-forked
instances of IPMI pollers.
The upper limit used to be
255 before version 1.8.5.

StartJavaPollers no 0-1000 0 Number of pre-forked
instances of Java pollers.
This parameter is supported
since Zabbix 2.0.0.

StartPingers no 0-1000 1 Number of pre-forked
instances of ICMP pingers.
The upper limit used to be
255 before version 1.8.5.

StartPollersUnreachable no 0-1000 1 Number of pre-forked
instances of pollers for
unreachable hosts (including
IPMI).
The upper limit used to be
255 before version 1.8.5.
This option is missing in
version 1.8.3.

StartPollers no 0-1000 5 Number of pre-forked
instances of pollers.
Note that a non-zero value is
required for internal,
aggregated and calculated
items to work.

StartProxyPollers no 0-250 1 Number of pre-forked
instances of pollers for
passive proxies.
The upper limit used to be
255 before version 1.8.5.
This parameter is supported
since Zabbix 1.8.3.

StartSNMPTrapper no 0-1 0 If set to 1, SNMP trapper
process will be started.
This parameter is supported
since Zabbix 2.0.0.

799

Parameter Mandatory Range Default Description

StartTimers no 1-1000 1 Number of pre-forked
instances of timers.
Timers process time-based
trigger functions and
maintenance periods.
Only the first timer process
handles the maintenance
periods.
This parameter is supported
since Zabbix 2.2.0.

StartTrappers no 0-1000 5 Number of pre-forked
instances of trappers.
Trappers accept incoming
connections from Zabbix
sender, active agents, active
proxies and child nodes.
At least one trapper process
must be running to display
server availability and view
queue in the frontend.
The upper limit used to be
255 before version 1.8.5.

StartVMwareCollectors no 0-250 0 Number of pre-forked
vmware collector instances.
This parameter is supported
since Zabbix 2.2.0.

Timeout no 1-30 3 Specifies how long we wait
for agent, SNMP device or
external check (in seconds).

TmpDir no /tmp Temporary directory.
TrapperTimeout no 1-300 300 Specifies how many seconds

trapper may spend
processing new data.

TrendCacheSize no 128K-2G 4M Size of trend cache, in bytes.
Shared memory size for
storing trends data.

UnavailableDelay no 1-3600 60 How often host is checked for
availability during the
unavailability period, in
seconds.

UnreachableDelay no 1-3600 15 How often host is checked for
availability during the
unreachability period, in
seconds.

UnreachablePeriod no 1-3600 45 After how many seconds of
unreachability treat a host as
unavailable.

ValueCacheSize no 0,128K-64G 8M Size of history value cache, in
bytes.
Shared memory size for
caching item history data
requests.
Setting to 0 disables value
cache (not recommended).
When value cache runs out of
the shared memory a
warning message is written
to the server log every 5
minutes.
This parameter is supported
since Zabbix 2.2.0.

800

Parameter Mandatory Range Default Description

VMwareCacheSize no 256K-2G 8M Shared memory size for
storing VMware data.
A VMware internal check
zabbix[vmware,buffer,...] can
be used to monitor the
VMware cache usage (see
Internal checks).
Note that shared memory is
not allocated if there are no
vmware collector instances
configured to start.
This parameter is supported
since Zabbix 2.2.0.

VMwareFrequency no 10-86400 60 Delay in seconds between
data gathering from a single
VMware service.
This delay should be set to
the least update interval of
any VMware monitoring item.
This parameter is supported
since Zabbix 2.2.0.

VMwarePerfFrequency no 10-86400 60 Delay in seconds between
performance counter
statistics retrieval from a
single VMware service.
This delay should be set to
the least update interval of
any VMware monitoring item
that uses VMware
performance counters.
This parameter is supported
since Zabbix 2.2.9

VMwareTimeout no 1-300 10 The maximum number of
seconds vmware collector will
wait for a response from
VMware service (vCenter or
ESX hypervisor).
This parameter is supported
since Zabbix 2.2.9

Note:
Zabbix supports configuration files only in UTF-8 encoding without BOM.

2 Zabbix proxy

The parameters supported in a Zabbix proxy configuration file:

801

https://en.wikipedia.org/wiki/Byte_order_mark

Parameter Mandatory Range Default Description

AllowRoot no 0-1 0 Allow the proxy to run as
’root’. If disabled and the
proxy is started by ’root’, the
proxy will try to switch to the
’zabbix’ user instead. Has no
effect if started under a
regular user.
0 - do not allow
1 - allow
This parameter is supported
since Zabbix 2.2.0.

CacheSize no 128K-8G 8M Size of configuration cache,
in bytes.
Shared memory size, for
storing hosts and items data.
Upper limit used to be 2GB
before Zabbix 2.2.3.

ConfigFrequency no 1-604800 3600 How often proxy retrieves
configuration data from
Zabbix server in seconds.
Active proxy parameter.
Ignored for passive proxies
(see ProxyMode parameter).

DBHost no localhost Database host name.
In case of MySQL localhost or
empty string results in using
a socket. In case of
PostgreSQL
only empty string results in
attempt to use socket.

DBName yes Database name or path to
database file for SQLite3
(multi-process architecture of
Zabbix does not allow to use
in-memory database, e.g.
:memory:,
file::memory:?cache=shared
or
file:memdb1?mode=memory&cache=shared).

Warning: Do not attempt to
use the same database
Zabbix server is using.

DBPassword no Database password. Ignored
for SQLite.
Comment this line if no
password is used.

DBSchema no Schema name. Used for IBM
DB2.

DBSocket no 3306 Path to MySQL socket.
Database port when not
using local socket. Ignored
for SQLite.

DBUser Database user. Ignored for
SQLite.

DataSenderFrequency no 1-3600 1 Proxy will send collected data
to the server every N
seconds.
Active proxy parameter.
Ignored for passive proxies
(see ProxyMode parameter).

802

https://www.sqlite.org/inmemorydb.html

Parameter Mandatory Range Default Description

DebugLevel no 0-4 3 Specifies debug level:
0 - no debug
1 - critical information
2 - error information
3 - warnings
4 - for debugging (produces
lots of information)

EnableSNMPBulkRequests no 0-1 1 Enable or disable SNMP bulk
requests:
0 - disable
1 - enable
This parameter is supported
since Zabbix 2.2.7.

ExternalScripts no /usr/local/share/zabbix/externalscriptsLocation of external scripts
(depends on compile-time
installation variable datadir).

Fping6Location no /usr/sbin/fping6 Location of fping6.
Make sure that fping6 binary
has root ownership and SUID
flag set.
Make empty
(”Fping6Location=”) if your
fping utility is capable to
process IPv6 addresses.

FpingLocation no /usr/sbin/fping Location of fping.
Make sure that fping binary
has root ownership and SUID
flag set!

HeartbeatFrequency no 0-3600 60 Frequency of heartbeat
messages in seconds.
Used for monitoring
availability of proxy on server
side.
0 - heartbeat messages
disabled.
Active proxy parameter.
Ignored for passive proxies
(see ProxyMode parameter).

HistoryCacheSize no 128K-2G 8M Size of history cache, in
bytes.
Shared memory size for
storing history data.

HistoryTextCacheSize no 128K-2G 16M Size of text history cache, in
bytes.
Shared memory size for
storing character, text or log
history data.

Hostname no Set by
HostnameItem

Unique, case sensitive Proxy
name. Make sure the proxy
name is known to the server!
Allowed characters:
alphanumeric, ’.’, ’ ’, ’_’ and
’-’.
Maximum length: 64

803

Parameter Mandatory Range Default Description

HostnameItem no system.hostname Item used for setting
Hostname if it is undefined
(this will be run on the proxy
similarly as on an agent).
Does not support
UserParameters,
performance counters or
aliases, but does support
system.run[].

Ignored if Hostname is set.

This parameter is supported
since Zabbix 1.8.6.

HousekeepingFrequency no 1-24 1 How often Zabbix will
perform housekeeping
procedure (in hours).
Housekeeping is removing
outdated information from
the database.
Note: To prevent
housekeeper from being
overloaded (for example,
when configuration
parameters ProxyLocalBuffer
or ProxyOfflineBuffer are
greatly reduced), no more
than 4 times
HousekeepingFrequency
hours of outdated information
are deleted in one
housekeeping cycle. Thus, if
HousekeepingFrequency is 1,
no more than 4 hours of
outdated information
(starting from the oldest
entry) will be deleted per
cycle.

Include no You may include individual
files or all files in a directory
in the configuration file. See
special notes about
limitations.

JavaGateway no IP address (or hostname) of
Zabbix Java gateway.
Only required if Java pollers
are started.
This parameter is supported
since Zabbix 2.0.0.

JavaGatewayPort no 1024-32767 10052 Port that Zabbix Java
gateway listens on.
This parameter is supported
since Zabbix 2.0.0.

ListenIP no 0.0.0.0 List of comma delimited IP
addresses that the trapper
should listen on.
Trapper will listen on all
network interfaces if this
parameter is missing.
Multiple IP addresses are
supported since Zabbix
1.8.3.

804

Parameter Mandatory Range Default Description

ListenPort no 1024-32767 10051 Listen port for trapper.
LoadModule no Module to load at proxy

startup. Modules are used to
extend functionality of the
proxy.
Format:
LoadModule=<module.so>
The modules must be located
in directory specified by
LoadModulePath.
It is allowed to include
multiple LoadModule
parameters.

LoadModulePath no Full path to location of proxy
modules.
Default depends on
compilation options.

LogFile no Name of log file.
If not set, syslog is used.

LogFileSize no 0-1024 1 Maximum size of log file in
MB.
0 - disable automatic log
rotation.
Note: If the log file size limit
is reached and file rotation
fails, for whatever reason,
the existing log file is
truncated and started anew.

LogSlowQueries no 0-3600000 0 How long a database query
may take before being
logged (in milliseconds).
0 - don’t log slow queries.
This option becomes enabled
starting with DebugLevel=3.
This parameter is supported
since Zabbix 1.8.2.

PidFile no /tmp/zabbix_proxy.pid Name of PID file.
ProxyLocalBuffer no 0-720 0 Proxy will keep data locally

for N hours, even if the data
have already been synced
with the server.
This parameter may be used
if local data will be used by
third party applications.

ProxyMode no 0-1 0 Proxy operating mode.
0 - proxy in the active mode
1 - proxy in the passive mode
This parameter is supported
since Zabbix 1.8.3.
Note that (sensitive) proxy
configuration data may
become available to parties
having access to the Zabbix
server trapper port when
using an active proxy. This is
possible because anyone
may pretend to be an active
proxy and request
configuration data;
authentication does not take
place.

805

Parameter Mandatory Range Default Description

ProxyOfflineBuffer no 1-720 1 Proxy will keep data for N
hours in case of no
connectivity with Zabbix
server.
Older data will be lost.

ServerPort no 1024-32767 10051 Port of Zabbix trapper on
Zabbix server.
Active proxy parameter.
Ignored for passive proxies
(see ProxyMode parameter).

Server yes IP address (or hostname) of
Zabbix server.
Active proxy will get
configuration data from the
server.
Active proxy parameter.
Ignored for passive proxies
(see ProxyMode parameter).

SNMPTrapperFile no /tmp/zabbix_traps.tmpTemporary file used for
passing data from SNMP trap
daemon to the proxy.
Must be the same as in
zabbix_trap_receiver.pl or
SNMPTT configuration file.
This parameter is supported
since Zabbix 2.0.0.

SourceIP no Source IP address for
outgoing connections.

SSHKeyLocation no Location of public and private
keys for SSH checks and
actions

StartDBSyncers no 1-100 4 Number of pre-forked
instances of DB Syncers.
The upper limit used to be 64
before version 1.8.5.
This parameter is supported
since Zabbix 1.8.3.

StartDiscoverers no 0-250 1 Number of pre-forked
instances of discoverers.
The upper limit used to be
255 before version 1.8.5.

StartHTTPPollers no 0-1000 1 Number of pre-forked
instances of HTTP pollers.

StartIPMIPollers no 0-1000 0 Number of pre-forked
instances of IPMI pollers.
The upper limit used to be
255 before version 1.8.5.

StartJavaPollers no 0-1000 0 Number of pre-forked
instances of Java pollers.
This parameter is supported
since Zabbix 2.0.0.

StartPingers no 0-1000 1 Number of pre-forked
instances of ICMP pingers.
The upper limit used to be
255 before version 1.8.5.

806

Parameter Mandatory Range Default Description

StartPollersUnreachable no 0-1000 1 Number of pre-forked
instances of pollers for
unreachable hosts (including
IPMI).
The upper limit used to be
255 before version 1.8.5.
This option is missing in
version 1.8.3.

StartPollers no 0-1000 5 Number of pre-forked
instances of pollers.
The upper limit used to be
255 before version 1.8.5.

StartSNMPTrapper no 0-1 0 If set to 1, SNMP trapper
process will be started.
This parameter is supported
since Zabbix 2.0.0.

StartTrappers no 0-1000 5 Number of pre-forked
instances of trappers.
Trappers accept incoming
connections from Zabbix
sender and active agents.
The upper limit used to be
255 before version 1.8.5.

StartVMwareCollectors no 0-250 0 Number of pre-forked
vmware collector instances.
This parameter is supported
since Zabbix 2.2.0.

Timeout no 1-30 3 Specifies how long we wait
for agent, SNMP device or
external check (in seconds).

TmpDir no /tmp Temporary directory.
TrapperTimeout no 1-300 300 Specifies how many seconds

trapper may spend
processing new data.

UnavailableDelay no 1-3600 60 How often host is checked for
availability during the
unavailability period, in
seconds.

UnreachableDelay no 1-3600 15 How often host is checked for
availability during the
unreachability period, in
seconds.

UnreachablePeriod no 1-3600 45 After how many seconds of
unreachability treat a host as
unavailable.

VMwareCacheSize no 256K-2G 8M Shared memory size for
storing VMware data.
A VMware internal check
zabbix[vmware,buffer,...] can
be used to monitor the
VMware cache usage (see
Internal checks).
Note that shared memory is
not allocated if there are no
vmware collector instances
configured to start.
This parameter is supported
since Zabbix 2.2.0.

807

Parameter Mandatory Range Default Description

VMwareFrequency no 10-86400 60 Delay in seconds between
data gathering from a single
VMware service.
This delay should be set to
the least update interval of
any VMware monitoring item.
This parameter is supported
since Zabbix 2.2.0.

VMwarePerfFrequency no 10-86400 60 Delay in seconds between
performance counter
statistics retrieval from a
single VMware service.
This delay should be set to
the least update interval of
any VMware monitoring item
that uses VMware
performance counters.
This parameter is supported
since Zabbix 2.2.9

VMwareTimeout no 1-300 10 The maximum number of
seconds vmware collector will
wait for a response from
VMware service (vCenter or
ESX hypervisor).
This parameter is supported
since Zabbix 2.2.9

Note:
Zabbix supports configuration files only in UTF-8 encoding without BOM.

3 Zabbix agent (UNIX)

The parameters supported in a Zabbix agent configuration file (zabbix_agentd.conf):

Parameter Mandatory Range Default Description

Alias no Sets an alias for an item key.
It can be used to substitute
long and complex item key
with a smaller and simpler
one.
Multiple Alias parameters
may be present. Multiple
parameters with the same
Alias key are not allowed.
Different Alias keys may
reference the same item key.
For example, to retrieve the
ID of user ’zabbix’:
Alias=zabbix.userid:vfs.file.regexp[/etc/passwd,”^zabbix:.:([0-
9]+)”„„\1]
Now shorthand key
zabbix.userid may be used
to retrieve data.
Aliases can be used in
HostMetadataItem but not in
HostnameItem parameters.

808

https://en.wikipedia.org/wiki/Byte_order_mark

Parameter Mandatory Range Default Description

AllowRoot no 0 Allow the agent to run as
’root’. If disabled and the
agent is started by ’root’, the
agent will try to switch to
user ’zabbix’ instead. Has no
effect if started under a
regular user.
0 - do not allow
1 - allow

BufferSend no 1-3600 5 Do not keep data longer than
N seconds in buffer.

BufferSize no 2-65535 100 Maximum number of values
in a memory buffer. The
agent will send
all collected data to Zabbix
server or proxy if the buffer is
full.

DebugLevel no 0-4 3 Specifies debug level:
0 - no debug
1 - critical information
2 - error information
3 - warnings
4 - for debugging (produces
lots of information)

EnableRemoteCommands no 0 Whether remote commands
from Zabbix server are
allowed.
0 - not allowed
1 - allowed

HostMetadata no 0-255
characters

Optional parameter that
defines host metadata. Host
metadata is used only at host
auto-registration process
(active agent).
If not defined, the value will
be acquired from
HostMetadataItem.
An agent will issue an error
and not start if the specified
value is over the limit or a
non-UTF-8 string.
This option is supported in
version 2.2.0 and higher.

809

Parameter Mandatory Range Default Description

HostMetadataItem no Optional parameter that
defines a Zabbix agent item
used for getting host
metadata. This option is only
used when HostMetadata is
not defined.
Supports UserParameters
and aliases. Supports
system.run[] regardless of
EnableRemoteCommands
value.
HostMetadataItem value is
retrieved on each
auto-registration attempt and
is used only at host
auto-registration process
(active agent).
During an auto-registration
request an agent will log a
warning message if the value
returned by the specified
item is over the limit of 255
characters.
The value returned by the
item must be a UTF-8 string
otherwise it will be ignored.
This option is supported in
version 2.2.0 and higher.

Hostname no Set by
HostnameItem

Unique, case sensitive
hostname.
Required for active checks
and must match hostname as
configured on the server.
Allowed characters:
alphanumeric, ’.’, ’ ’, ’_’ and
’-’.
Maximum length: 64

HostnameItem no system.hostname Optional parameter that
defines a Zabbix agent item
used for getting host name.
This option is only used when
Hostname is not defined.
Does not support
UserParameters or aliases,
but does support
system.run[] regardless of
EnableRemoteCommands
value.
This option is supported in
version 1.8.6 and higher.

Include no You may include individual
files or all files in a directory
in the configuration file. See
special notes about
limitations.

ListenIP no 0.0.0.0 List of comma delimited IP
addresses that the agent
should listen on.
Multiple IP addresses are
supported in version 1.8.3
and higher.

810

Parameter Mandatory Range Default Description

ListenPort no 1024-32767 10050 Agent will listen on this port
for connections from the
server.

LoadModule no Module to load at agent
startup. Modules are used to
extend functionality of the
agent.
Format:
LoadModule=<module.so>
The modules must be located
in directory specified by
LoadModulePath.
It is allowed to include
multiple LoadModule
parameters.

LoadModulePath no Full path to location of agent
modules.
Default depends on
compilation options.

LogFile no Name of log file.
If not set, syslog is used.

LogFileSize no 0-1024 1 Maximum size of log file in
MB.
0 - disable automatic log
rotation.
Note: If the log file size limit
is reached and file rotation
fails, for whatever reason,
the existing log file is
truncated and started anew.

LogRemoteCommands no 0 Enable logging of executed
shell commands as warnings.
0 - disabled
1 - enabled

MaxLinesPerSecond no 1-1000 100 Maximum number of new
lines the agent will send per
second to Zabbix server or
proxy when processing ’log’
and ’eventlog’ active checks.
The provided value will be
overridden by the parameter
’maxlines’,
provided in ’log’ or ’eventlog’
item key.
Note: Zabbix will process 4
times more new lines than
set in MaxLinesPerSecond to
seek the required string in
log items.

PidFile no /tmp/zabbix_agentd.pidName of PID file.
RefreshActiveChecks no 60-3600 120 How often list of active

checks is refreshed, in
seconds.
Note that after failing to
refresh active checks the
next refresh will be
attempted after 60 seconds.

811

Parameter Mandatory Range Default Description

Server no List of comma delimited IP
addresses (or hostnames) of
Zabbix servers and Zabbix
proxies. Spaces are allowed
since Zabbix 2.2.
Incoming connections will be
accepted only from the hosts
listed here.
If IPv6 support is enabled
then ’127.0.0.1’,
’::127.0.0.1’, ’::ffff:127.0.0.1’
are treated equally.

ServerActive no IP:port (or hostname:port) of
Zabbix server or Zabbix
proxy for active checks.
Multiple comma-delimited
addresses can be provided to
use several independent
Zabbix servers in parallel.
Spaces are allowed since
Zabbix 2.2.
If port is not specified,
default port is used.
IPv6 addresses must be
enclosed in square brackets if
port for that host is specified.
If port is not specified, square
brackets for IPv6 addresses
are optional.
If this parameter is not
specified, active checks are
disabled.

SourceIP no Source IP address for
outgoing connections.

StartAgents no 0-100 3 Number of pre-forked
instances of zabbix_agentd
that process passive checks.
If set to 0, disables passive
checks and the agent will not
listen on any TCP port.
The upper limit used to be 16
before version 1.8.5.

Timeout no 1-30 3 Spend no more than Timeout
seconds on processing

UnsafeUserParameters no 0,1 0 Allow all characters to be
passed in arguments to
user-defined parameters.
Supported since Zabbix 1.8.2.

UserParameter no User-defined parameter to
monitor. There can be several
user-defined parameters.
Format: UserParame-
ter=<key>,<shell
command>
Note that shell command
must not return empty string
or EOL only.
Example: UserParame-
ter=system.test,who|wc -l

812

Note:
In Zabbix agent 2.0.0 version configuration parameters related to active and passive checks have been changed.
See the ”See also” section at the bottom of this page to read more details about these changes.

Note:
Zabbix supports configuration files only in UTF-8 encoding without BOM.

See also

1. Differences in the Zabbix agent configuration for active and passive checks starting from version 2.0.0

4 Zabbix agent (Windows)

The parameters supported in a Zabbix agent (Windows) configuration file:

Parameter Mandatory Range Default Description

Alias no Sets an alias for an item key.
It can be used to substitute
long and complex item key
with a smaller and simpler
one.
Multiple Alias parameters
may be present. Multiple
parameters with the same
Alias key are not allowed.
Different Alias keys may
reference the same item key.
For example, to retrieve
paging file usage in percents
from the server:
Alias=pg_usage:perf_counter[\Paging
File(_Total)\% Usage]
Now shorthand key pg_usage
may be used to retrieve data.
Aliases can be used in
HostMetadataItem but not in
HostnameItem or
PerfCounter parameters.

BufferSend no 1-3600 5 Do not keep data longer than
N seconds in buffer.

BufferSize no 2-65535 100 Maximum number of values
in a memory buffer. The
agent will send
all collected data to Zabbix
server or proxy if the buffer is
full.

DebugLevel no 0-4 3 Specifies debug level:
0 - no debug
1 - critical information
2 - error information
3 - warnings
4 - for debugging (produces
lots of information)

EnableRemoteCommands no 0 Whether remote commands
from Zabbix server are
allowed.
0 - not allowed
1 - allowed

813

https://en.wikipedia.org/wiki/Byte_order_mark
http://blog.zabbix.com/multiple-servers-for-active-agent-sure/858

Parameter Mandatory Range Default Description

HostMetadata no 0-255
characters

Optional parameter that
defines host metadata. Host
metadata is used only at host
auto-registration process
(active agent).
If not defined, the value will
be acquired from
HostMetadataItem.
An agent will issue an error
and not start if the specified
value is over the limit or a
non-UTF-8 string.
This option is supported in
version 2.2.0 and higher.

HostMetadataItem no Optional parameter that
defines a Zabbix agent item
used for getting host
metadata. This option is only
used when HostMetadata is
not defined.
Supports UserParameters,
performance counters and
aliases. Supports
system.run[] regardless of
EnableRemoteCommands
value.
HostMetadataItem value is
retrieved on each
auto-registration attempt and
is used only at host
auto-registration process
(active agent).
During an auto-registration
request an agent will log a
warning message if the value
returned by the specified
item is over the limit of 255
characters.
The value returned by the
item must be a UTF-8 string
otherwise it will be ignored.
This option is supported in
version 2.2.0 and higher.

Hostname no Set by
HostnameItem

Unique, case sensitive
hostname.
Required for active checks
and must match hostname as
configured on the server.
Allowed characters:
alphanumeric, ’.’, ’ ’, ’_’ and
’-’.
Maximum length: 64

814

Parameter Mandatory Range Default Description

HostnameItem no system.hostname Optional parameter that
defines a Zabbix agent item
used for getting host name.
This option is only used when
Hostname is not defined.
Does not support
UserParameters,
performance counters or
aliases, but does support
system.run[] regardless of
EnableRemoteCommands
value.
This option is supported in
version 1.8.6 and higher.
See also a more detailed
description.

Include no You may include individual
file in the configuration file.

ListenIP no 0.0.0.0 List of comma-delimited IP
addresses that the agent
should listen on.
Multiple IP addresses are
supported since Zabbix 1.8.3.

ListenPort no 1024-32767 10050 Agent will listen on this port
for connections from the
server.

LogFile no Name of log file.
If not set, Windows Event Log
is used.

LogFileSize no 0-1024 1 Maximum size of log file in
MB.
0 - disable automatic log
rotation.
Note: If the log file size limit
is reached and file rotation
fails, for whatever reason,
the existing log file is
truncated and started anew.

LogRemoteCommands no 0 Enable logging of executed
shell commands as warnings.
0 - disabled
1 - enabled

MaxLinesPerSecond no 1-1000 100 Maximum number of new
lines the agent will send per
second to Zabbix server
or proxy processing ’log’,
’logrt’ and ’eventlog’ active
checks.
The provided value will be
overridden by the parameter
’maxlines’,
provided in ’log’, ’logrt’ or
’eventlog’ item keys.

815

Parameter Mandatory Range Default Description

PerfCounter no Syntax: <parame-
ter_name>,”<perf_counter_path>”,<period>
Defines new parameter
<parameter_name> which is
an average value for system
performance counter
<perf_counter_path> for the
specified time period
<period> (in seconds).
For example, if you wish to
receive average number of
processor interrupts per
second for last minute, you
can define new parameter
”interrupts” as following:
PerfCounter = inter-
rupts,”\Processor(0)\Interrupts/sec”,60
Please note double quotes
around performance counter
path.
The parameter name
(interrupts) is to be used as
the item key when creating
an item.
Samples for calculating
average value will be taken
every second.
You may run ”typeperf -qx” to
get list of all performance
counters available in
Windows.

RefreshActiveChecks no 60-3600 120 How often list of active
checks is refreshed, in
seconds.
Note that after failing to
refresh active checks the
next refresh will be
attempted after 60 seconds.

Server yes, if StartAgents is not
0; no otherwise

List of comma delimited IP
addresses (or hostnames) of
Zabbix servers. Spaces are
allowed since Zabbix 2.2.
Incoming connections will be
accepted only from the hosts
listed here.
If IPv6 support is enabled
then ’127.0.0.1’,
’::127.0.0.1’, ’::ffff:127.0.0.1’
are treated equally.

816

Parameter Mandatory Range Default Description

ServerActive no IP:port (or hostname:port) of
Zabbix server or Zabbix
proxy for active checks.
Multiple comma-delimited
addresses can be provided to
use several independent
Zabbix servers in parallel.
Spaces are allowed since
Zabbix 2.2.
If port is not specified,
default port is used.
IPv6 addresses must be
enclosed in square brackets if
port for that host is specified.
If port is not specified, square
brackets for IPv6 addresses
are optional.
If this parameter is not
specified, active checks are
disabled.

SourceIP no Source IP address for
outgoing connections.

StartAgents no 0-63 (*) 3 Number of pre-forked
instances of zabbix_agentd
that process passive checks.
If set to 0, disables passive
checks and the agent will not
listen on any TCP port.
The upper limit used to be 16
before version 1.8.5.

Timeout no 1-30 3 Spend no more than Timeout
seconds on processing

UnsafeUserParameters no 0-1 0 Allow all characters to be
passed in arguments to
user-defined parameters.
0 - do not allow
1 - allow

UserParameter User-defined parameter to
monitor. There can be several
user-defined parameters.
Format: UserParame-
ter=<key>,<shell
command>
Note that shell command
must not return empty string
or EOL only.
Example: UserParame-
ter=system.test,echo 1

Note:
(*) The number of active servers listed in ServerActive plus the number of pre-forked instances for passive checks specified
in StartAgents must be less than 64.

Note:
In Zabbix agent 2.0.0 version configuration parameters related to active and passive checks have been changed.
See the ”See also” section at the bottom of this page to read more details about these changes.

817

Note:
Zabbix supports configuration files only in UTF-8 encoding without BOM.

See also

1. Differences in the Zabbix agent configuration for active and passive checks starting from version 2.0.0.

5 Zabbix Java gateway

If you use startup.sh and shutdown.sh scripts for starting Zabbix Java gateway, then you can specify the necessary configura-
tion parameters in file settings.sh. The startup and shutdown scripts source the settings file and take care of converting shell
variables (listed in the first column) to Java properties (listed in the second column).

If you start Zabbix Java gateway manually by running java directly, then you specify the corresponding Java properties on the
command line.

Variable Property Mandatory Range Default Description

LISTEN_IP zabbix.listenIP no 0.0.0.0 IP address to listen on.
LISTEN_PORT zabbix.listenPort no 1024-

32767
10052 Port to listen on.

PID_FILE zabbix.pidFile no /tmp/zabbix_java.pidName of PID file. If
omitted, Zabbix Java
Gateway is started as a
console application.

START_POLLERS zabbix.startPollers no 1-1000 5 Number of worker
threads to start.

TIMEOUT zabbix.timeout no 1-30 3 How long to wait for
network operations.
This parameter is
supported since Zabbix
2.0.15 and 2.2.10.

Warning:
Port 10052 is not IANA registered.

6 Archive: Zabbix agent (UNIX, Inetd version)

The parameters supported in a Zabbix agent (UNIX, Inetd version) configuration file:

Parameter Mandatory Default value Description

Alias no Sets an alias for an item key.
It can be used to substitute
long and complex item key
with a smaller and simpler
one.
Multiple Alias parameters
may be present. Multiple
parameters with the same
Alias key are not allowed.
Different Alias keys may
reference the same item key.
For example, to retrieve the
ID of user ’zabbix’:
Alias=zabbix.userid:vfs.file.regexp[/etc/passwd,^zabbix:.:([0-
9]+)„„\1]
Now shorthand key
zabbix.userid may be used to
retrieve data.

818

https://en.wikipedia.org/wiki/Byte_order_mark
http://blog.zabbix.com/multiple-servers-for-active-agent-sure/858
http://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.txt

Parameter Mandatory Default value Description

Include no You may include individual
files or all files in a directory
in the configuration file. See
special notes about
limitations.

Server yes - Comma-delimited list of IP
addresses of ZABBIX Servers
or Proxies. Connections from
other IP addresses will be
rejected.

Timeout no 3 Do not spend more than
Timeout seconds on getting
requested value (1-255). The
agent does not kill timeouted
User Parameters processes!

UnsafeUserParameters no 0 Allow all characters to be
passed in arguments to
user-defined parameters

UserParameter no User-defined parameter to
monitor. There can be several
user-defined parameters.
Format: UserParame-
ter=<key>,<shell
command>
Note that shell command
must not return empty string
or EOL only.
Example: UserParame-
ter=system.test,who|wc -l

7 Special notes on ”Include” parameter

If an Include parameter is used for including a file, the file must be readable.

If an Include parameter is used for including a directory:

- All files in the directory must be readable.
- No particular order of inclusion should be assumed (e.g. files are not included in alphabetical order). Therefore do not define one parameter in several ''Include'' files (e.g. to override a general setting with a specific one).
- All files in the directory are included into configuration.
- Beware of file backup copies automatically created by some text editors. For example, if editing the ''include/my_specific.conf'' file produces a backup copy ''include/my_specific_conf.BAK'' then both files will be included. Move ''include/my_specific.conf.BAK'' out of the "Include" directory. Check the contents of the ''Include'' directory with a ''ls -al'' command for unnecessary files.

4 Protocols

1 Zabbix sender protocol

Please refer to Trapper items page for more information.

2 Zabbix agent protocol

Please refer to Passive and active agent checks page for more information.

3 Header and data length

Overview

Header and data length are present in response and request messages between Zabbix components. It is required to determine
the length of message.

819

<HEADER> - "ZBXD\x01" (5 bytes)
<DATALEN> - data length (8 bytes). 1 will be formatted as 01/00/00/00/00/00/00/00 (eight bytes, 64 bit number in little-endian format)

To not exhaust memory (potentially) Zabbix protocol is limited to accept only 128MB in one connection.

5 Items

1 Items supported by platform

The table displays support for Zabbix agent items on various platforms:

• Items marked with ”X” are supported, the ones marked with ”-” are not supported.
• If an item is marked with ”?”, it is not known whether it is supported or not.
• If an item is marked with ”r”, it means that it requires root privileges.
• Parameters that are included in angle brackets <like_this> are optional.

Note:
Windows-only Zabbix agent items are not included in this table.

NetBSD
OpenBSD ▼▼
Mac
OS X

▼▼

Tru64 ▼▼
AIX ▼▼
HP-UX ▼▼
Solaris ▼▼
FreeBSD ▼▼
Linux
2.6
(and
later)

▼▼

Linux
2.4

▼▼

Windows ▼▼
Parameter
/ sys-
tem

▼▼

▼▼ 1 2 3 4 5 6 7 8 9 10 11
agent.hostname X X X X X X X X X X X
agent.ping X X X X X X X X X X X
agent.version X X X X X X X X X X X
kernel.maxfiles - X X X - - - ? X X X
kernel.maxproc - - X X X - - ? X X X
log[file,<regexp>,<encoding>,<maxlines>,<mode>,<output>]X X X X X X X X X X X
logrt[file_format,<regexp>,<encoding>,<maxlines>,<mode>,<output>]X X X X X X X X X X X
net.dns[<ip>,zone,<type>,<timeout>,<count>]X X X X X X X X X X X
net.dns.record[<ip>,zone,<type>,<timeout>,<count>]X X X X X X X X X X X
net.if.collisions[if]- X X X X - X - X X r
net.if.discovery X X X X X X X - - X X
net.if.in[if,<mode>]X X X X X X 1 X - X X r
mode
▲

bytes
(de-
fault)

X X X X X 2 X X - X X r

packets X X X X X X X - X X r
errors X X X X X 2 X X - X X r
dropped X X X X - X - - X X r

net.if.out[if,<mode>]X X X X X X 1 X - X X r

820

mode
▲

bytes
(de-
fault)

X X X X X 2 X X - X X r

packets X X X X X X X - X X r
errors X X X X X 2 X X - X X r
dropped X X X - - X - - - - -

net.if.total[if,<mode>]X X X X X X 1 X - X X r
mode
▲

bytes
(de-
fault)

X X X X X 2 X X - X X r

packets X X X X X X X - X X r
errors X X X X X 2 X X - X X r
dropped X X X - - X - - - - -

net.tcp.listen[port]X X X X X - - - X - -
net.tcp.port[<ip>,port]X X X X X X X X X X X
net.tcp.service[service,<ip>,<port>]X X X X X X X X X X X
net.tcp.service.perf[service,<ip>,<port>]X X X X X X X X X X X
net.udp.listen[port]- X X X X - - - X - -

1 2 3 4 5 6 7 8 9 10 11
proc.mem[<name>,<user>,<mode>,<cmdline>]- X X X X 3 - X X - X X
mode
▲

sum
(de-
fault)

- X X X X - X X - X X

avg - X X X X - X X - X X
max - X X X X - X X - X X
min - X X X X - X X - X X

proc.num[<name>,<user>,<state>,<cmdline>]X X X X X 3 X X X - X X
state
▲

all
(de-
fault)

- X X X X X X X - X X

sleep - X X X X X X X - X X
zomb - X X X X X X X - X X
run - X X X X X X X - X X

cmdline
▲

- X X X X X X X - X X

sensor[device,sensor,<mode>]- X X - - - - - - X -
system.boottime- X X X X - - - X X X
system.cpu.intr - X X X X - X - - X X
system.cpu.load[<cpu>,<mode>]X X X X X X X X X X X
cpu ▲ all

(de-
fault)

X X X X X X X X X X X

percpu X X X X X X X - X X X
mode
▲

avg1
(de-
fault)

X X X X X X X X X X X

avg5 X X X X X X X X X X X
avg15 X X X X X X X X X X X

system.cpu.num[<type>]X X X X X X X - X X X
type
▲

online
(de-
fault)

X X X X X X X - X X X

max - X X X X - - - X - -
system.cpu.switches- X X X X - X - - X X
system.cpu.util[<cpu>,<type>,<mode>]X X X X X X X X - X X
type
▲

user
(de-
fault)

- X X X X X X X - X X

nice - X X X - X - X - X X
idle - X X X X X X X - X X
system X X X X X X X X - X X
iowait - - X - X - X - - - -

821

interrupt - - X X - - - - - X -
softirq - - X - - - - - - - -
steal - - X - - - - - - - -

mode
▲

avg1
(de-
fault)

X X X X X X X X - X X

avg5 X X X X X X X - - X X
avg15 X X X X X X X - - X X

1 2 3 4 5 6 7 8 9 10 11
system.hostname[<type>]X X X X X X X X X X X
system.hw.chassis[<info>]- X X - - - - - - - -
system.hw.cpu[<cpu>,<info>]- X X - - - - - - - -
system.hw.devices[<type>]- X X - - - - - - - -
system.hw.macaddr[<interface>,<format>]- X X - - - - - - - -
system.localtime[<type>]X X X X X X X X X X X
type
▲

utc
(de-
fault)

X X X X X X X X X X X

local X X X X X X X X X X X
system.run[command,<mode>]X X X X X X X X X X X
mode
▲

wait
(de-
fault)

X X X X X X X X X X X

nowait X X X X X X X X X X X
system.stat[resource,<type>]- - - - - - X - - - -
system.sw.arch X X X X X X X X X X X
system.sw.os[<info>]- X X - - - - - - - -
system.sw.packages[<package>,<manager>,<format>]- X X - - - - - - - -
system.swap.in[<device>,<type>]
(specifying
a de-
vice is
only
sup-
ported
under
Linux)

- X X - X - - - - X -

type
▲
(pages
will
only
work
if
device
was
not
speci-
fied)

count
(de-
fault
under
all ex-
cept
Linux)

- X X - X - - - - X -

sectors - X X - - - - - - - -
pages
(de-
fault
under
Linux)

- X X - X - - - - X -

822

system.swap.out[<device>,<type>]
(specifying
a de-
vice is
only
sup-
ported
under
Linux)

- X X - X - - - - X -

type
▲
(pages
will
only
work
if
device
was
not
speci-
fied)

count
(de-
fault
under
all ex-
cept
Linux)

- X X - X - - - - X -

sectors - X X - - - - - - - -
pages
(de-
fault
under
Linux)

- X X - X - - - - X -

system.swap.size[<device>,<type>]
(specifying
a de-
vice is
only
sup-
ported
under
FreeBSD,
for
other
plat-
forms
must
be
empty
or
”all”)

X X X X X - X X - X -

type
▲

free
(de-
fault)

X X X X X - X X - X -

total X X X X X - X X - X -
used X X X X X - X X - X -
pfree - X X X X - X X - X -
pused - X X X X - X X - X -

system.uname X X X X X X X X X X X
system.uptime X X X X X - X ? X X X
system.users.num- X X X X X X X X X X

1 2 3 4 5 6 7 8 9 10 11
vfs.dev.read[<device>,<type>,<mode>]- X X X X - X - - X -
type
▲

sectors - X X - - - - - - - -

823

operations
(de-
fault
for
OpenBSD,
AIX)

- X X X X - X - - X -

bytes
(de-
fault
for So-
laris)

- - - X X - X - - X -

sps
(de-
fault
for
Linux)

- X X - - - - - - - -

ops - X X X - - - - - - -
bps
(de-
fault
for
FreeBSD)

- - - X - - - - - - -

mode
▲
(compatible
only
with
type
in:
sps,
ops,
bps)

avg1
(de-
fault)

- X X X - - - - - - -

avg5 - X X X - - - - - - -
avg15 - X X X - - - - - - -

vfs.dev.write[<device>,<type>,<mode>]- X X X X - X - - X -
type
▲

sectors - X X - - - - - - - -

operations
(de-
fault
for
OpenBSD,
AIX)

- X X X X - X - - X -

bytes
(de-
fault
for So-
laris)

- - - X X - X - - X -

sps
(de-
fault
for
Linux)

- X X - - - - - - - -

ops - X X X - - - - - - -
bps
(de-
fault
for
FreeBSD)

- - - X - - - - - - -

824

mode
▲
(compatible
only
with
type
in:
sps,
ops,
bps)

avg1
(de-
fault)

- X X X - - - - - - -

avg5 - X X X - - - - - - -
avg15 - X X X - - - - - - -

vfs.file.cksum[file]X X X X X X X X X X X
vfs.file.contents[file,<encoding>]X X X X X X X X X X X
vfs.file.exists[file]X X X X X X X X X X X
vfs.file.md5sum[file]X X X X X X X X X X X
vfs.file.regexp[file,regexp,<encoding>,<output>]X X X X X X X X X X X
vfs.file.regmatch[file,regexp,<encoding>]X X X X X X X X X X X
vfs.file.size[file] X X X X X X X X X X X

1 2 3 4 5 6 7 8 9 10 11
vfs.file.time[file,<mode>]X X X X X X X X X X X
mode
▲

modify
(de-
fault)

X X X X X X X X X X X

access X X X X X X X X X X X
change X X X X X X X X X X X

vfs.fs.discovery X X X X X X X - X X X
vfs.fs.inode[fs,<mode>]- X X X X X X X X X X
mode
▲

total
(de-
fault)

- X X X X X X X X X X

free - X X X X X X X X X X
used - X X X X X X X X X X
pfree - X X X X X X X X X X
pused - X X X X X X X X X X

vfs.fs.size[fs,<mode>]X X X X X X X X X X X
mode
▲

total
(de-
fault)

X X X X X X X X X X X

free X X X X X X X X X X X
used X X X X X X X X X X X
pfree X X X X X X X X X X X
pused X X X X X X X X X X X

vm.memory.size[<mode>]X X X X X X X X X X X
mode
▲

total
(de-
fault)

X X X X X X X X X X X

active - - - X - X - - X X X
anon - - - - - - - - - - X
buffers - X X X - - - - - X X
cached X X X X - - X - - X X
exec - - - - - - - - - - X
file - - - - - - - - - - X
free X X X X X X X X X X X
inactive - - - X - - - - X X X
pinned - - - - - - X - - - -
shared - X - X - - - - - X X
wired - - - X - - - - X X X
used X X X X X X X X X X X
pused X X X X X X X X X X X
available X X X X X X X X X X X
pavailableX X X X X X X X X X X

web.page.get[host,<path>,<port>]X X X X X X X X X X X

825

web.page.perf[host,<path>,<port>]X X X X X X X X X X X
web.page.regexp[host,<path>,<port>,<regexp>,<length>,<output>]X X X X X X X X X X X

1 2 3 4 5 6 7 8 9 10 11

Note:
See also a description of vm.memory.size parameters.

Footnotes
1 Items net.if.in, net.if.out and net.if.total do not provide statistics of loopback interfaces (e.g. lo0).
2 These values for these items are not supported for loopback interfaces on Solaris systems up to and including Solaris 10 6/06 as
byte, error and utilisation statistics are not stored and/or reported by the kernel. However, if you’re monitoring a Solaris system
via net-snmp, values may be returned as net-snmp carries legacy code from the cmu-snmp dated as old as 1997 that, upon failing
to read byte values from the interface statistics returns the packet counter (which does exist on loopback interfaces) multiplied
by an arbitrary value of 308. This makes the assumption that the average length of a packet is 308 octets, which is a very rough
estimation as the MTU limit on Solaris systems for loopback interfaces is 8892 bytes.

These values should not be assumed to be correct or even closely accurate. They are guestimates. The Zabbix agent does not do
any guess work, but net-snmp will return a value for these fields.
3 The command line on Solaris, obtained from /proc/pid/psinfo, is limited to 80 bytes and contains the command line as it was
when the process was started.

2 vm.memory.size parameters

• total - total physical memory available.
• free - memory that is readily available to any entity requesting memory.
• active - memory currently in use or very recently used, and so it is in RAM.
• inactive - memory that is marked as not used.
• wired - memory that is marked to always stay in RAM. It is never moved to disk.
• pinned - same as ’wired’.
• anon - memory not associated with a file (cannot be re-read from it).
• exec - executable code, typically from a (program) file.
• file - cache for contents of recently accessed files.
• buffers - cache for things like file system metadata.
• cached - cache for various things.
• shared - memory that may be simultaneously accessed by multiple processes.
• used - active + wired memory.
• pused - active + wired memory in relation to total.
• available - inactive + cached + free memory.
• pavailable - inactive + cached + free memory in relation to ’total’.

Attention:
The sum of vm.memory.size[used] and vm.memory.size[available] does not necessarily equal total. For instance, on
FreeBSD active, inactive, wired, cached memories are considered used, because they store some useful information.
At the same time inactive, cached, free memories are considered available, because these kinds of memories can be
given instantly to processes that request more memory.
So inactive memory is both used and available simultaneously. Because of this, item vm.memory.size[used] is designed
for informational purposes only, while item vm.memory.size[available] is designed to be used in triggers.

Note:
See the ”See also” section at the bottom of this page to find more detailed information about memory calculation in
different OS.

Platform-specific notes

• on AIX and Solaris available and free are the same
• on Linux shared works only on kernel 2.4
• on Linux available is free + buffers + cached
• on Linux pavailable is free + buffers + cached in relation to total

826

See also

1. Detailed information about memory calculation in different OS

3 Passive and active agent checks

Overview

This section provides details on passive and active checks performed by Zabbix agent.

Zabbix uses a JSON based communication protocol for communicating with Zabbix agent.

There are some definitions used in the details of protocols used by Zabbix:

<HEADER> - "ZBXD\x01" (5 bytes)
<DATALEN> - data length (8 bytes). 1 will be formatted as 01/00/00/00/00/00/00/00 (eight bytes in HEX, 64 bit number)

To not exhaust memory (potentially) Zabbix server is limited to accept only 64MB in one connection when using the Zabbix protocol
in versions 2.2.0-2.2.2 (128MB before 2.2.0, unlimited before Zabbix 2.0.3).

Since 2.2.3, it is changed back to 128MB to remain compatible with older versions of Zabbix as when a process with a data transfer
limit of 128MB would send data to another with a limit of 64MB it would cause the receiver to drop the data completely due to it
exceeding its size limit.

Passive checks

A passive check is a simple data request. Zabbix server or proxy asks for some data (for example, CPU load) and Zabbix agent
sends back the result to the server.

Server request

<item key>\n

Agent response

<HEADER><DATALEN><DATA>

For example:

1. Server opens a TCP connection
2. Server sends agent.ping\n
3. Agent reads the request and responds with <HEADER><DATALEN>1
4. Server processes data to get the value, ’1’ in our case
5. TCP connection is closed

Active checks

Active checks require more complex processing. The agent must first retrieve from the server(s) a list of items for independent
processing.

The servers to get the active checks from are listed in the ’ServerActive’ parameter of the agent configuration file. The frequency
of asking for these checks is set by the ’RefreshActiveChecks’ parameter in the same configuration file. However, if refreshing
active checks fails, it is retried after hardcoded 60 seconds. The agent then periodically sends the new values to the server(s).

Getting the list of items

Agent request

<HEADER><DATALEN>{
"request":"active checks",
"host":"<hostname>"

}

Server response

{
"response":"success",
"data":[
{

"key":"log[\/home\/zabbix\/logs\/zabbix_agentd.log]",
"delay":"30",
"lastlogsize":"0"

},
{

827

http://blog.zabbix.com/when-alexei-isnt-looking#vm.memory.size

"key":"agent.version",
"delay":"600"

}
]

}

The server must respond with success. For each returned item, key and delay must exist. For items having type ”Log”, the
lastlogsize must exist as well.

For example:

1. Agent opens a TCP connection
2. Agent asks for the list of checks
3. Server responds with a list of items (item key, delay)
4. Agent parses the response
5. TCP connection is closed
6. Agent starts periodical collection of data

Attention:
Note that (sensitive) configuration data may become available to parties having access to the Zabbix server trapper
port when using an active check. This is possible because anyone may pretend to be an active agent and request item
configuration data; authentication does not take place.

Sending in collected data

Agent sends

<HEADER><DATALEN>{
"request":"agent data",
"data":[

{
"host":"<hostname>",
"key":"log[\/home\/zabbix\/logs\/zabbix_agentd.log]",
"value":" 13039:20090907:184546.759 zabbix_agentd started. ZABBIX 1.6.6 (revision {7836}).",
"lastlogsize":80,
"clock":1252926015

},
{

"host":"<hostname>",
"key":"agent.version",
"value":"1.6.6",
"clock":1252926015

}
],
"clock":1252926016

}

Server response

<HEADER><DATALEN>{
"response":"success",
"info":"Processed 2 Failed 0 Total 2 Seconds spent 0.002070"

}

Attention:
If sending of some values fails on the server (for example, because host or item has been disabled or deleted), agent will
not retry sending of those values.

For example:

1. Agent opens a TCP connection
2. Agent sends a list of values
3. Server processes the data and sends the status back
4. TCP connection is closed

Older XML protocol

828

Note:
Zabbix will take up to 16 MB of XML Base64-encoded data, but a single decoded value should be no longer than 64 KB
otherwise it will be truncated to 64 KB while decoding.

See also

1. More details on Zabbix agent protocol

4 Trapper items

Overview

Zabbix server uses a JSON- based communication protocol for receiving data from Zabbix sender with the help of trapper item.

For definition of header and data length please refer to protocol details section.

Zabbix sender request

{
"request":"sender data",
"data":[

{
"host":"<hostname>",
"key":"trap",
"value":"test value"

}
]

}

Zabbix server response

{
"response":"success",
"info":"processed: 1; failed: 0; total: 1; seconds spent: 0.060753"

}

Alternatively Zabbix sender can send request with a timestamp

{
"request":"sender data",
"data":[

{
"host":"<hostname>",
"key":"trap",
"value":"test value",
"clock":1516710794

},
{

"host":"<hostname>",
"key":"trap",
"value":"test value",
"clock":1516710795

}
],
"clock":1516712029,
"ns":873386094

}

Zabbix server response

{
"response":"success",
"info":"processed: 2; failed: 0; total: 2; seconds spent: 0.060904"

}

829

https://www.zabbix.org/wiki/Docs/protocols/zabbix_agent/2.2

5 Encoding of returned values

Zabbix server expects every returned text value in the UTF8 encoding. This is related to any type of checks: zabbix agent, ssh,
telnet, etc.

Different monitored systems/devices and checks can return non-ASCII characters in the value. For such cases, almost all possible
zabbix keys contain an additional item key parameter - <encoding>. This key parameter is optional but it should be specified if
the returned value is not in the UTF8 encoding and it contains non-ASCII characters. Otherwise the result can be unexpected and
unpredictable.

A description of behavior with different database back-ends in such cases follows.

MySQL

If a value contains a non-ASCII character in non UTF8 encoding - this character and the following will be discarded when the
database stores this value. No warning messages will be written to the zabbix_server.log.
Relevant for at least MySQL version 5.1.61

PostgreSQL

If a value contains a non-ASCII character in non UTF8 encoding - this will lead to a failed SQL query (PGRES_FATAL_ERROR:ERROR
invalid byte sequence for encoding) and data will not be stored. An appropriate warning message will be written to the zab-
bix_server.log.
Relevant for at least PostgreSQL version 9.1.3

6 Large file support

Large file support, often abbreviated to LFS, is the term applied to the ability to work with files larger than 2 GB on 32-bit operating
systems. Since Zabbix 2.0 support for large files has been added. This change affects at least log file monitoring and all vfs.file.*
items. Large file support depends on the capabilities of a system at Zabbix compilation time, but is completely disabled on a 32-bit
Solaris due to its incompatibility with procfs and swapctl.

7 Sensor

Each sensor chip gets its own directory in the sysfs /sys/devices tree. To find all sensor chips, it is easier to follow the device
symlinks from /sys/class/hwmon/hwmon*, where * is a real number (0,1,2,...).

The sensor readings are located either in /sys/class/hwmon/hwmon*/ directory for virtual devices, or in /sys/class/hwmon/hwmon*/device
directory for non-virtual devices. A file, called name, located inside hwmon* or hwmon*/device directories contains the name of
the chip, which corresponds to the name of the kernel driver used by the sensor chip.

There is only one sensor reading value per file. The common scheme for naming the files that contain sensor readings inside any
of the directories mentioned above is: <type><number>_<item>, where

• type - for sensor chips is ”in” (voltage), ”temp” (temperature), ”fan” (fan), etc.,
• item - ”input” (measured value), ”max” (high threshold), ”min” (low threshold), etc.,
• number - always used for elements that can be present more than once (usually starts from 1, except for voltages which
start from 0). If files do not refer to a specific element they have a simple name with no number.

The information regarding sensors available on the host can be acquired using sensor-detect and sensors tools (lm-sensors
package: http://lm-sensors.org/). Sensors-detect helps to determine which modules are necessary for available sensors. When
modules are loaded the sensors program can be used to show the readings of all sensor chips. The labeling of sensor readings,
used by this program, can be different from the common naming scheme (<type><number>_<item>):

• if there is a file called <type><number>_label, then the label inside this file will be used instead of <type><number><item>
name;

• if there is no <type><number>_label file, then the program searches inside the /etc/sensors.conf (could be also
/etc/sensors3.conf, or different) for the name substitution.

This labeling allows user to determine what kind of hardware is used. If there is neither <type><number>_label file nor label
inside the configuration file the type of hardware can be determined by the name attribute (hwmon*/device/name). The actual
names of sensors, which zabbix_agent accepts, can be obtained by running sensors program with -u parameter (sensors -u).

In sensor program the available sensors are separated by the bus type (ISA adapter, PCI adapter, SPI adapter, Virtual device, ACPI
interface, HID adapter).

On Linux 2.4:

(Sensor readings are obtained from /proc/sys/dev/sensors directory)

830

http://lm-sensors.org/

• device - device name (if <mode> is used, it is a regular expression);
• sensor - sensor name (if <mode> is used, it is a regular expression);
• mode - possible values: avg, max, min (if this parameter is omitted, device and sensor are treated verbatim).

Example key: sensor[w83781d-i2c-0-2d,temp1]

Prior to Zabbix 1.8.4, the sensor[temp1] format was used.

On Linux 2.6+:

(Sensor readings are obtained from /sys/class/hwmon directory)

• device - device name (non regular expression). The device name could be the actual name of the device (e.g 0000:00:18.3)
or the name acquired using sensors program (e.g. k8temp-pci-00c3). It is up to the user to choose which name to use;

• sensor - sensor name (non regular expression);
• mode - possible values: avg, max, min (if this parameter is omitted, device and sensor are treated verbatim).

Example key:

sensor[k8temp-pci-00c3,temp,max] or sensor[0000:00:18.3,temp1]

sensor[smsc47b397-isa-0880,in,avg] or sensor[smsc47b397.2176,in1]

Obtaining sensor names

Sensor labels, as printed by the sensors command, cannot always be used directly because the naming of labels may be different
for each sensor chip vendor. For example, sensors output might contain the following lines:

$ sensors
in0: +2.24 V (min = +0.00 V, max = +3.32 V)
Vcore: +1.15 V (min = +0.00 V, max = +2.99 V)
+3.3V: +3.30 V (min = +2.97 V, max = +3.63 V)
+12V: +13.00 V (min = +0.00 V, max = +15.94 V)
M/B Temp: +30.0°C (low = -127.0°C, high = +127.0°C)

Out of these, only one label may be used directly:

$ zabbix_get -s 127.0.0.1 -k sensor[lm85-i2c-0-2e,in0]
2.240000

Attempting to use other labels (like Vcore or +12V) will not work.

$ zabbix_get -s 127.0.0.1 -k sensor[lm85-i2c-0-2e,Vcore]
ZBX_NOTSUPPORTED

To find out the actual sensor name, which can be used by Zabbix to retrieve the sensor readings, run sensors -u. In the output, the
following may be observed:

$ sensors -u
...
Vcore:
in1_input: 1.15
in1_min: 0.00
in1_max: 2.99
in1_alarm: 0.00

...
+12V:
in4_input: 13.00
in4_min: 0.00
in4_max: 15.94
in4_alarm: 0.00

...

So Vcore should be queried as in1, and +12V should be queried as in4.1

$ zabbix_get -s 127.0.0.1 -k sensor[lm85-i2c-0-2e,in1]
1.301000

Not only voltage (in), but also current (curr), temperature (temp) and fan speed (fan) readings can be retrieved by Zabbix.
1According to specification these are voltages on chip pins and generally speaking may need scaling.

831

https://www.kernel.org/doc/Documentation/hwmon/sysfs-interface

8 Implementation details of net.tcp.service checks

Overview

Implementation of net.tcp.service checks is detailed in this section for various services specified in the service parameter.

ftp

Creates a TCP connection and expects the first 3 characters of the response to be ”220” response, then sends ”QUIT\n”. Default
port 21 is used if not specified.

http

Creates a TCP connection without expecting and sending anything. Default port 80 is used if not specified.

https

Uses (and only works with) libcurl, does not verify the authenticity of the certificate, does not verify the host name in the SSL
certificate, only fetches the response header (HEAD request). Default port 443 is used if not specified.

imap

Creates a TCP connection and expects the first 4 characters of the response to be ”* OK”, then sends ”a1 LOGOUT\n”. Default port
143 is used if not specified.

ldap

Opens a connection to an LDAP server and performs an LDAP search operation with filter set to (objectClass=*). Expects successful
retrieval of the first attribute of the first entry. Default port 389 is used if not specified.

nntp

Creates a TCP connection and expects the first 3 characters of the response to be ”200”, then sends ”QUIT\n”. Default port 119 is
used if not specified.

ntp

Sends an SNTP packet over UDP and validates the response according to RFC 4330, section 5. Default port 123 is used if not
specified.

pop

Creates a TCP connection and expects the first 3 characters of the response to be ”+OK”, then sends ”QUIT\n”. Default port 110
is used if not specified.

smtp

Creates a TCP connection and expects the first 3 characters of the response to be ”220”. Then sends ”QUIT\r\n”. Default port 25
is used if not specified.

ssh

Creates a TCP connection. If the connection has been established, both sides exchange an identification string (SSH-major.minor-
XXXX), where major and minor are protocol versions and XXXX is a string. Zabbix checks if the string matching the specification
is found and then sends back the string ”SSH-major.minor-zabbix_agent\r\n” or ”0\n” on mismatch. Default port 22 is used if not
specified.

tcp

Creates a TCP connection without expecting and sending anything. Unlike the other checks requires the port parameter to be
specified.

telnet

Creates a TCP connection and expects a login prompt (’:’ at the end). Default port 23 is used if not specified.

9 Unreachable/unavailable host settings

Overview

Several configuration parameters define how Zabbix server should behave when an agent check (Zabbix, SNMP, IPMI, JMX) fails
and a host becomes unreachable.

Unreachable host

832

http://tools.ietf.org/html/rfc4330#section-5

A host is treated as unreachable after a failed check (network error, timeout) by Zabbix, SNMP, IPMI or JMX agents. Note that
Zabbix agent active checks do not influence host availability in any way.

Since Zabbix 2.2.11, if another item check was successful between two failed checks of a problematic item, the problematic item
is marked as not supported after the second failed check without affecting host availability. This was removed in Zabbix 2.2.12.

From that moment UnreachableDelay defines how often a host is rechecked using one of the items (including LLD rules) in this
unreachability situation and such rechecks will be performed already by unreachable pollers. By default it is 15 seconds before
the next check.

In the Zabbix server log unreachability is indicated by messages like these:

Zabbix agent item "system.cpu.load[percpu,avg1]" on host "New host" failed: first network error, wait for 15 seconds
Zabbix agent item "system.cpu.load[percpu,avg15]" on host "New host" failed: another network error, wait for 15 seconds

Note that the exact item that failed is indicated and the item type (Zabbix agent).

Note:
The Timeout parameter will also affect how early a host is rechecked during unreachability. If the Timeout is 20 seconds
and UnreachableDelay 30 seconds, the next check will be in 50 seconds after the first attempt.

The UnreachablePeriod parameter defines how long the unreachability period is in total. By default UnreachablePeriod is 45
seconds. UnreachablePeriod should be several times bigger than UnreachableDelay, so that a host is rechecked more than once
before a host becomes unavailable.

If the unreachable host reappears, the monitoring returns to normal automatically:

resuming Zabbix agent checks on host "New host": connection restored

Unavailable host

After the UnreachablePeriod ends and the host has not reappeared, the host is treated as unavailable.

In the server log it is indicated by messages like these:

temporarily disabling Zabbix agent checks on host "New host": host unavailable

and in the frontend the host availability icon goes from green to red (note that on mouseover a tooltip with the error description is
displayed):

The UnavailableDelay parameter defines how often a host is checked during host unavailability.

By default it is 60 seconds (so in this case ”temporarily disabling”, from the log message above, will mean disabling checks for
one minute).

When the connection to the host is restored, the monitoring returns to normal automatically, too:

enabling Zabbix agent checks on host "New host": host became available

6 Triggers

1 Supported trigger functions

All functions supported in trigger expressions are listed here:

FUNCTION

Description Parameters Comments
abschange

833

FUNCTION

The
amount of
absolute
difference
between
last and
previous
values.

Supported
value
types:
float, int,
str, text,
log

For
example:
(previous
value;last
value=abschange)
1;5=4
3;1=2
0;-
2.5=2.5

For
strings
returns:
0 - values
are equal
1 - values
differ

avg (sec|#num,<time_shift>)

834

FUNCTION

Average
value of
an item
within the
defined
evalua-
tion
period.

sec or
#num -
maximum
evalua-
tion
period1 in
seconds
or in
latest
collected
values
(preceded
by a hash
mark)
time_shift
(optional)
- evalua-
tion point
is moved
the
number of
seconds
back in
time

Supported
value
types:
float, int

Examples:
=>
avg(#5)
→
average
value for
the five
latest
values
=>
avg(3600)
→
average
value for
an hour
=>
avg(3600,86400)
→
average
value for
an hour
one day
ago.

The
time_shift
parame-
ter is
supported
since
Zabbix
1.8.2. It is
useful
when
there is a
need to
compare
the
current
average
value with
the
average
value
time_shift
seconds
back.

band (<sec|#num>,mask,<time_shift>)

835

FUNCTION

Value of
”bitwise
AND” of
an item
value and
mask.

sec
(ignored,
equals
#1) or
#num
(optional)
- the Nth
most
recent
value
mask
(manda-
tory) -
64-bit
unsigned
integer (0
-
18446744073709551615)
time_shift
(optional)
- see avg()

Supported
value
types: int

Take note
that #num
works
differently
here than
with many
other
functions
(see
last()).

Although
the com-
parison is
done in a
bitwise
manner,
all the
values
must be
supplied
and are
returned
in
decimal.
For
example,
checking
for the
3rd bit is
done by
compar-
ing to 4,
not 100.

Examples:
=>
band(,12)=8
or
band(,12)=4
→ 3rd or
4th bit
set, but
not both
at the
same
time
=>
band(,20)=16
→ 3rd bit
not set
and 5th
bit set.

This
function is
supported
since
Zabbix
2.2.0.836

FUNCTION

change
The
amount of
difference
between
last and
previous
values.

Supported
value
types:
float, int,
str, text,
log

For
example:
(previous
value;last
value=change)
1;5=+4
3;1=-2
0;-2.5=-
2.5

For
strings
returns:
0 - values
are equal
1 - values
differ

count (sec|#num,<pattern>,<operator>,<time_shift>)

837

FUNCTION

Number
of values
within the
defined
evalua-
tion
period.

sec or
#num -
maximum
evalua-
tion
period1 in
seconds
or in
latest
collected
values
(preceded
by a hash
mark)
pattern
(optional)
- required
pattern

operator
(optional)

Supported
operators:
eq - equal
ne - not
equal
gt -
greater
ge -
greater or
equal
lt - less
le - less or
equal
like -
matches
if contains
pattern
(case-
sensitive)
band -
bitwise
AND (sup-
ported
since
Zabbix
2.2.0).

Note that:
eq
(default),
ne, gt, ge,
lt, le,
band are
supported
for
integer
items
eq
(default),
ne, gt, ge,
lt, le are
supported
for float
items
like
(default),
eq, ne are
supported
for string,
text and
log items

time_shift
(optional)
- see avg()

Supported
value
types:
float,
integer,
string,
text, log
Float
items
match
with the
precision
of
0.000001.

With band
as third
parame-
ter, the
second
parame-
ter can be
specified
as two
numbers,
separated
by ’/’:
num-
ber_to_compare_with/mask.
count()
calculates
”bitwise
AND”
from the
value and
the mask
and
compares
the result
to num-
ber_to_compare_with.
If the
result of
”bitwise
AND” is
equal to
num-
ber_to_compare_with,
the value
is
counted.
If num-
ber_to_compare_with
and mask
are equal,
only the
mask
need be
specified
(without
’/’).

Examples:
=>
count(600)
→ number
of values
for last 10
minutes
=>
count(10m,”error”,eq)
→ number
of values
for last 10
minutes
that equal
’error’
=>
count(600,12)
→ number
of values
for last 10
minutes
that equal
’12’
=>
count(600,12,gt)
→ number
of values
for last 10
minutes
that are
over ’12’
=>
count(#10,12,gt)
→ number
of values
within last
10 values
that are
over ’12’
=>
count(600,12,gt,86400)
→ number
of values
for
preceding
10
minutes
up to 24
hours ago
that were
over ’12’
=>
count(600,6/7,band)
→ number
of values
for last 10
minutes
having
’110’ (in
binary) in
the 3
least
significant
bits.
=>
count(600„,86400)
→ number
of values
for
preceding
10
minutes
up to 24
hours ago

The #num
parame-
ter is
supported
since
Zabbix
1.6.1.
The
time_shift
parame-
ter and
string
operators
are
supported
since
Zabbix
1.8.2.

838

FUNCTION

date
Current
date in
YYYYM-
MDD
format.

Supported
value
types:
any

Example
of
returned
value:
20150731

dayofmonth
Day of
month in
range of 1
to 31.

Supported
value
types:
any

This
function is
supported
since
Zabbix
1.8.5.

dayofweek
Day of
week in
range of 1
to 7 (Mon
- 1, Sun -
7).

Supported
value
types:
any

delta (sec|#num,<time_shift>)
Difference
between
the
maximum
and
minimum
values
within the
defined
evalua-
tion
period
(’max()’
minus
’min()’).

sec or
#num -
maximum
evalua-
tion
period1 in
seconds
or in
latest
collected
values
specified
(preceded
by a hash
mark)
time_shift
(optional)
- see avg()

Supported
value
types:
float, int

The
time_shift
parame-
ter is
supported
since
Zabbix
1.8.2.

diff

839

FUNCTION

Checking
if last and
previous
values
differ.

Supported
value
types:
float, int,
str, text,
log

Returns:
1 - last
and
previous
values
differ
0 -
otherwise

fuzzytime (sec)

840

FUNCTION

Checking
how much
an item
times-
tamp
value
differs
from the
Zabbix
server
time.

sec -
seconds

Supported
value
types:
float, int

Returns:
0 - if
difference
between
item
times-
tamp
value and
Zabbix
server
times-
tamp is
over T
seconds
1 - other-
wise.

Usually
used with
sys-
tem.localtime
to check
that local
time is in
sync with
local time
of Zabbix
server.
Can be
used also
with
vfs.file.time[/path/file,modify]
key to
check
that file
didn’t get
updates
for long
time.

Example:
=> fuzzy-
time(60)=0
→ detect
a problem
if time
difference
is over 60
seconds

iregexp (<pattern>,<sec|#num>)

841

FUNCTION

This
function is
a non
case-
sensitive
analogue
of
regexp().

see
regexp()

Supported
value
types: str,
log, text

last (<sec|#num>,<time_shift>)

842

FUNCTION

The most
recent
value.

sec
(ignored,
equals
#1) or
#num
(optional)
- the Nth
most
recent
value
time_shift
(optional)
- see avg()

Supported
value
types:
float, int,
str, text,
log

Take note
that #num
works
differently
here than
with many
other
functions.
For
example:
last() is
always
equal to
last(#1)
last(#3) -
third most
recent
value (not
three
latest
values)

Zabbix
does not
guarantee
exact
order of
values if
more than
two
values
exist
within one
second in
history.

The #num
parame-
ter is
supported
since
Zabbix
1.6.2.
The
time_shift
parame-
ter is
supported
since
Zabbix
1.8.2.

logeventid (<pattern>)

843

FUNCTION

Check if
event ID
of the last
log entry
matches
a regular
expres-
sion.

pattern
(optional)
- regular
expres-
sion
describing
the
required
pattern,
POSIX
extended
style.

Supported
value
types: log

Returns:
0 - does
not match
1 -
matches

This
function is
supported
since
Zabbix
1.8.5.

logseverity
Log
severity
of the last
log entry.

Supported
value
types: log

Returns:
0 - default
severity
N -
severity
(integer,
useful for
Windows
event
logs: 1 -
Informa-
tion, 2 -
Warning,
4 - Error,
7 - Failure
Audit, 8 -
Success
Audit, 9 -
Critical,
10 -
Verbose).
Zabbix
takes log
severity
from
Informa-
tion field
of
Windows
event log.

logsource (<pattern>)

844

http://en.wikipedia.org/wiki/Regular_expression#POSIX_Extended_Regular_Expressions
http://en.wikipedia.org/wiki/Regular_expression#POSIX_Extended_Regular_Expressions

FUNCTION

Checking
if log
source of
the last
log entry
matches
parame-
ter.

pattern
(optional)
- required
string

Supported
value
types: log

Returns:
0 - does
not match
1 -
matches
Normally
used for
Windows
event
logs. For
example,
log-
source(”VMware
Server”).

max (sec|#num,<time_shift>)
Highest
value of
an item
within the
defined
evalua-
tion
period.

sec or
#num -
maximum
evalua-
tion
period1 in
seconds
or in
latest
collected
values
(preceded
by a hash
mark)
time_shift
(optional)
- see avg()

Supported
value
types:
float, int

The
time_shift
parame-
ter is
supported
since
Zabbix
1.8.2.

min (sec|#num,<time_shift>)
Lowest
value of
an item
within the
defined
evalua-
tion
period.

sec or
#num -
maximum
evalua-
tion
period1 in
seconds
or in
latest
collected
values
(preceded
by a hash
mark)
time_shift
(optional)
- see avg()

Supported
value
types:
float, int

The
time_shift
parame-
ter is
supported
since
Zabbix
1.8.2.

nodata (sec)

845

FUNCTION

Checking
for no
data
received.

sec - eval-
uation
period in
seconds.
The
period
should
not be
less than
30
seconds.

Supported
value
types:
any

Returns:
1 - if no
data
received
during the
defined
period of
time
0 -
otherwise

Note that
this
function
will
display an
error if,
within the
period of
the 1st pa-
rameter:
- there’s
no data
and
Zabbix
server
was
restarted
- there’s
no data
and main-
tenance
was com-
pleted
- there’s
no data
and the
item was
added or
re-
enabled
Errors are
displayed
in the Info
column in
trigger
configura-
tion.

now

846

FUNCTION

Number
of
seconds
since the
Epoch
(00:00:00
UTC,
January 1,
1970).

Supported
value
types:
any

prev
Previous
value.

Supported
value
types:
float, int,
str, text,
log

Returns
the same
as
last(#2).

regexp (<pattern>,<sec|#num>)
Checking
if the
latest
(most
recent)
value
matches
regular
expres-
sion.

pattern
(optional)
- regular
expres-
sion,
POSIX
extended
style.
sec or
#num
(optional)
-
maximum
evalua-
tion
period1 in
seconds
or in
latest
collected
values
(preceded
by a hash
mark). In
this case,
more than
one value
may be
pro-
cessed.

Supported
value
types: str,
text, log

Returns:
1 - found
0 -
otherwise

If more
than one
value is
pro-
cessed,
’1’ is
returned
if there is
at least
one
matching
value.

This
function is
case-
sensitive.

str (<pattern>,<sec|#num>)

847

http://en.wikipedia.org/wiki/Regular_expression#POSIX_Extended_Regular_Expressions
http://en.wikipedia.org/wiki/Regular_expression#POSIX_Extended_Regular_Expressions

FUNCTION

Finding a
string in
the latest
(most
recent)
value.

pattern
(optional)
- required
string
sec or
#num
(optional)
-
maximum
evalua-
tion
period1 in
seconds
or in
latest
collected
values
(preceded
by a hash
mark). In
this case,
more than
one value
may be
pro-
cessed.

Supported
value
types: str,
text, log

Returns:
1 - found
0 -
otherwise

If more
than one
value is
pro-
cessed,
’1’ is
returned
if there is
at least
one
matching
value.

This
function is
case-
sensitive.

strlen (<sec|#num>,<time_shift>)

848

FUNCTION

Length of
the latest
(most
recent)
value in
charac-
ters (not
bytes).

sec
(ignored,
equals
#1) or
#num
(optional)
- the Nth
most
recent
value
time_shift
(optional)
- see avg()

Supported
value
types: str,
text, log

Take note
that #num
works
differently
here than
with many
other
functions.

Examples:
=>
strlen()(is
equal to
strlen(#1))
→ length
of the
latest
value
=>
strlen(#3)
→ length
of the
third most
recent
value
=>
strlen(,86400)
→ length
of the
most
recent
value one
day ago.

This
function is
supported
since
Zabbix
1.8.4.

sum (sec|#num,<time_shift>)

849

FUNCTION

Sum of
collected
values
within the
defined
evalua-
tion
period.

sec or
#num -
maximum
evalua-
tion
period1 in
seconds
or in
latest
collected
values
(preceded
by a hash
mark)
time_shift
(optional)
- see avg()

Supported
value
types:
float, int

The
function is
evaluated
starting
with the
first
received
value.

The
time_shift
parame-
ter is
supported
since
Zabbix
1.8.2.

time
Current
time in
HHMMSS
format.

Supported
value
types:
any

Example
of
returned
value:
123055

Warning:
Important notes:
1) All functions return numeric values only. Comparison to strings is not supported.
2) Some of the functions cannot be used for non-numeric values!
3) String arguments should be double quoted. Otherwise, they might get misinterpreted.
4) For all trigger functions sec and time_shift must be an integer with an optional time unit suffix and has absolutely
nothing to do with the item’s data type.

Footnotes
1 The function is evaluated starting with the first received value (unless the timeshift parameter is used).

7 Macros

1 Macros supported by location

Overview

The table contains a complete list of macros supported by Zabbix.

• X means ”supported” in that location
• The numbered macro syntax of {MACRO<1-9>} is used to reference hosts in the order in which they appear in a trigger
expression. Thus, macros like {HOST.IP1}, {HOST.IP2}, {HOST.IP3} will expand to the IP of the first, second and third host in
the trigger expression, providing the expression contains those hosts. Additionally {HOST.HOST<1-9>} is supported within

850

{host:key.func(param)} macro in graph names. For example, {{HOST.HOST2}:key.func()} in the graph name will refer to the
host of the second item in the graph.

Graph
names

▼ ▼DESCRIPTION▼

Web
mon-
i-
tor-
ing6

▼

DB
mon-
itor-
ing
ad-
di-
tional
pa-
ram-
e-
ters,
SSH
and
Tel-
net
scripts

▼

Host
in-
ter-
face
IP/DNS

▼

Item
names

▼

Trigger
names
and
de-
scrip-
tions

▼

Trigger
ex-
pres-
sions

▼

Map
URLs

▼

Icon
la-
bels
in
maps1

▼

Item
key
pa-
ram-
e-
ters

▼

851

Global
scripts
in-
clud-
ing
con-
fir-
ma-
tion
text

▼

Low-
level
dis-
cov-
ery
rule
based
in-
ter-
nal
no-
tifi-
ca-
tions

▼

Item
based
in-
ter-
nal
no-
tifi-
ca-
tions

▼

Trigger
based
in-
ter-
nal
no-
tifi-
ca-
tions

▼

Auto
reg-
is-
tra-
tion
no-
ti-
fi-
ca-
tions

▼

Discovery
no-
ti-
fi-
ca-
tions

▼

852

Trigger-
based
no-
ti-
fi-
ca-
tions
and
com-
mands

▼

▼MACRO▼1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
{ACTION.ID}X X X X X X Numeric

ID
of
the
trig-
gered
ac-
tion.
Supported
since
2.2.0.

{ACTION.NAME}X X X X X X Name
of
the
trig-
gered
ac-
tion.
Supported
since
2.2.0.

{DATE}X X X X X X Current
date
in
yyyy.mm.dd.
for-
mat.

{DISCOVERY.DEVICE.IPADDRESS}X IP
ad-
dress
of
the
dis-
cov-
ered
de-
vice.
Available
al-
ways,
does
not
de-
pend
on
host
be-
ing
added.

853

{DISCOVERY.DEVICE.DNS}X DNS
name
of
the
dis-
cov-
ered
de-
vice.
Available
al-
ways,
does
not
de-
pend
on
host
be-
ing
added.

{DISCOVERY.DEVICE.STATUS}X Status
of
the
dis-
cov-
ered
de-
vice:
can
be
ei-
ther
UP
or
DOWN.

854

{DISCOVERY.DEVICE.UPTIME}X Time
since
the
last
change
of
dis-
cov-
ery
sta-
tus
for
a
par-
tic-
ular
de-
vice.
For
ex-
am-
ple:
1h
29m.
For
de-
vices
with
sta-
tus
DOWN,
this
is
the
pe-
riod
of
their
down-
time.

855

{DISCOVERY.RULE.NAME}X Name
of
the
dis-
cov-
ery
rule
that
dis-
cov-
ered
the
pres-
ence
or
ab-
sence
of
the
de-
vice
or
ser-
vice.

{DISCOVERY.SERVICE.NAME}X Name
of
the
ser-
vice
that
was
dis-
cov-
ered.
For
ex-
am-
ple:
HTTP.

{DISCOVERY.SERVICE.PORT}X Port
of
the
ser-
vice
that
was
dis-
cov-
ered.
For
ex-
am-
ple:
80.

856

{DISCOVERY.SERVICE.STATUS}X Status
of
the
dis-
cov-
ered
ser-
vice://
can
be
ei-
ther
UP
or
DOWN.
|
|{DIS-
COV-
ERY.SERVICE.UPTIME}
| | X
Time	
since	
the	
last	
change	
of	
dis-	
cov-	
ery	
sta-	
tus	
for	
a	
par-	
tic-	
ular	
ser-	
vice. For	
ex-	
am-	
ple:	
1h	
29m. For	
ser-	
vices	
with	
sta-	
tus	
DOWN,	
this	
is	
the	
pe-	
riod	
of	
their	
down-	
time.	
{ESC.HISTORY}	
X	
	X
X	
X	
Escalation	
his-
tory.
Log
of
pre-
vi-
ously
sent
mes-
sages.
Shows
pre-
vi-
ously
sent
no-
tifi-
ca-
tions,
on
which
es-
ca-
la-
tion
step
they
were
sent
and
their
sta-
tus
(sent//,
in
progress
or
failed).

857

{EVENT.ACK.HISTORY}X Log
of
ac-
knowl-
edge-
ments
on
the
prob-
lem.

{EVENT.ACK.STATUS}X Acknowledgement
sta-
tus
of
the
event
(Yes/No).

{EVENT.AGE}X X X X X X Age
of
the
event
that
trig-
gered
an
ac-
tion.
Useful
in
es-
ca-
lated
mes-
sages.

{EVENT.DATE}X X X X X X Date
of
the
event
that
trig-
gered
an
ac-
tion.

{EVENT.ID}X X X X X X Numeric
ID
of
the
event
that
trig-
gered
an
ac-
tion.

858

{EVENT.RECOVERY.DATE}X X X X Date
of
the
re-
cov-
ery
event.
Can
be
used
in
re-
cov-
ery
mes-
sages
only.
Supported
since
2.2.0.

{EVENT.RECOVERY.ID}X X X X Numeric
ID
of
the
re-
cov-
ery
event.
Can
be
used
in
re-
cov-
ery
mes-
sages
only.
Sup-
ported
since
2.2.0.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

859

{EVENT.RECOVERY.STATUS}X X X X Verbal
value
of
the
re-
cov-
ery
event.
Can
be
used
in
re-
cov-
ery
mes-
sages
only.
Sup-
ported
since
2.2.0.

{EVENT.RECOVERY.TIME}X X X X Time
of
the
re-
cov-
ery
event.
Can
be
used
in
re-
cov-
ery
mes-
sages
only.
Supported
since
2.2.0.

860

{EVENT.RECOVERY.VALUE}X X X X Numeric
value
of
the
re-
cov-
ery
event.
Can
be
used
in
re-
cov-
ery
mes-
sages
only.
Supported
since
2.2.0.

{EVENT.STATUS}X X X X X X Verbal
value
of
the
event
that
trig-
gered
an
ac-
tion.
Supported
since
2.2.0.

{EVENT.TIME}X X X X X X Time
of
the
event
that
trig-
gered
an
ac-
tion.

{EVENT.VALUE}X X X X X X Numeric
value
of
the
event
that
trig-
gered
an
ac-
tion.
Supported
since
2.2.0.

861

{HOST.CONN<1-
9>}

X X X X X X2 X X X X5 X IP
or
host
DNS
name,
de-
pend-
ing
on
host
set-
tings
3.
Supported
in
trig-
ger
names
since
2.0.0.

{HOST.DNS<1-
9>}

X X X X X X2 X X X X5 X Host
DNS
name
3.
Supported
in
trig-
ger
names
since
2.0.0.

{HOST.HOST<1-
9>}

X X X X X X X X X X X5 X Host
name.
{HOSTNAME<1-9>}
is
dep-
re-
cated.

{HOST.ID} X Host
ID.

{HOST.IP<1-
9>}

X X X X X X X2 X X X X5 X Host
IP
ad-
dress
3.
Sup-
ported
since
2.0.0.
{IPADDRESS<1-9>}
is
dep-
re-
cated.

862

{HOST.METADATA} X Host
meta-
data.
Used
only
for
ac-
tive
agent
auto-
registration.
Sup-
ported
since
2.2.0.

{HOST.NAME<1-
9>}

X X X X X X X X X X5 X Visible
host
name.
Supported
since
2.0.0.

{HOST.PORT<1-
9>}

X X X X X X Host
(agent)
port
3.
Supported
in
auto-
registration
since
2.0.0.
Supported
in
trig-
ger
names,
trig-
ger
de-
scrip-
tions,
in-
ter-
nal
and
trigger-
based
no-
tifi-
ca-
tions
since
2.2.2.

{HOSTGROUP.ID} X Host
group
ID.

863

{INVENTORY.ALIAS<1-
9>}

X X X X Alias
field
in
host
in-
ven-
tory.

{INVENTORY.ASSET.TAG<1-
9>}

X X X X Asset
tag
field
in
host
in-
ven-
tory.

{INVENTORY.CHASSIS<1-
9>}

X X X X Chassis
field
in
host
in-
ven-
tory.

{INVENTORY.CONTACT<1-
9>}

X X X X Contact
field
in
host
in-
ven-
tory.
{PROFILE.CONTACT<1-9>}
is
dep-
re-
cated.

{INVENTORY.CONTRACT.NUMBER<1-
9>}

X X X X Contract
num-
ber
field
in
host
in-
ven-
tory.

{INVENTORY.DEPLOYMENT.STATUS<1-
9>}

X X X X Deployment
sta-
tus
field
in
host
in-
ven-
tory.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

864

{INVENTORY.HARDWARE<1-
9>}

X X X X Hardware
field
in
host
in-
ven-
tory.
{PROFILE.HARDWARE<1-9>}
is
dep-
re-
cated.

{INVENTORY.HARDWARE.FULL<1-
9>}

X X X X Hardware
(Full
de-
tails)
field
in
host
in-
ven-
tory.

{INVENTORY.HOST.NETMASK<1-
9>}

X X X X Host
sub-
net
mask
field
in
host
in-
ven-
tory.

{INVENTORY.HOST.NETWORKS<1-
9>}

X X X X Host
net-
works
field
in
host
in-
ven-
tory.

{INVENTORY.HOST.ROUTER<1-
9>}

X X X X Host
router
field
in
host
in-
ven-
tory.

{INVENTORY.HW.ARCH<1-
9>}

X X X X Hardware
ar-
chi-
tec-
ture
field
in
host
in-
ven-
tory.

865

{INVENTORY.HW.DATE.DECOMM<1-
9>}

X X X X Date
hard-
ware
de-
com-
mis-
sioned
field
in
host
in-
ven-
tory.

{INVENTORY.HW.DATE.EXPIRY<1-
9>}

X X X X Date
hard-
ware
main-
te-
nance
ex-
pires
field
in
host
in-
ven-
tory.

{INVENTORY.HW.DATE.INSTALL<1-
9>}

X X X X Date
hard-
ware
in-
stalled
field
in
host
in-
ven-
tory.

{INVENTORY.HW.DATE.PURCHASE<1-
9>}

X X X X Date
hard-
ware
pur-
chased
field
in
host
in-
ven-
tory.

{INVENTORY.INSTALLER.NAME<1-
9>}

X X X X Installer
name
field
in
host
in-
ven-
tory.

866

{INVENTORY.LOCATION<1-
9>}

X X X X Location
field
in
host
in-
ven-
tory.
{PROFILE.LOCATION<1-9>}
is
dep-
re-
cated.

{INVENTORY.LOCATION.LAT<1-
9>}

X X X X Location
lati-
tude
field
in
host
in-
ven-
tory.

{INVENTORY.LOCATION.LON<1-
9>}

X X X X Location
lon-
gi-
tude
field
in
host
in-
ven-
tory.

{INVENTORY.MACADDRESS.A<1-
9>}

X X X X MAC
ad-
dress
A
field
in
host
in-
ven-
tory.
{PROFILE.MACADDRESS<1-9>}
is
dep-
re-
cated.

{INVENTORY.MACADDRESS.B<1-
9>}

X X X X MAC
ad-
dress
B
field
in
host
in-
ven-
tory.

867

{INVENTORY.MODEL<1-
9>}

X X X X Model
field
in
host
in-
ven-
tory.

{INVENTORY.NAME<1-
9>}

X X X X Name
field
in
host
in-
ven-
tory.
{PROFILE.NAME<1-9>}
is
dep-
re-
cated.

{INVENTORY.NOTES<1-
9>}

X X X X Notes
field
in
host
in-
ven-
tory.
{PROFILE.NOTES<1-9>}
is
dep-
re-
cated.

{INVENTORY.OOB.IP<1-
9>}

X X X X OOB
IP
ad-
dress
field
in
host
in-
ven-
tory.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
{INVENTORY.OOB.NETMASK<1-
9>}

X X X X OOB
sub-
net
mask
field
in
host
in-
ven-
tory.

{INVENTORY.OOB.ROUTER<1-
9>}

X X X X OOB
router
field
in
host
in-
ven-
tory.

868

{INVENTORY.OS<1-
9>}

X X X X OS
field
in
host
in-
ven-
tory.
{PROFILE.OS<1-9>}
is
dep-
re-
cated.

{INVENTORY.OS.FULL<1-
9>}

X X X X OS
(Full
de-
tails)
field
in
host
in-
ven-
tory.

{INVENTORY.OS.SHORT<1-
9>}

X X X X OS
(Short)
field
in
host
in-
ven-
tory.

{INVENTORY.POC.PRIMARY.CELL<1-
9>}

X X X X Primary
POC
cell
field
in
host
in-
ven-
tory.

{INVENTORY.POC.PRIMARY.EMAIL<1-
9>}

X X X X Primary
POC
email
field
in
host
in-
ven-
tory.

{INVENTORY.POC.PRIMARY.NAME<1-
9>}

X X X X Primary
POC
name
field
in
host
in-
ven-
tory.

869

{INVENTORY.POC.PRIMARY.NOTES<1-
9>}

X X X X Primary
POC
notes
field
in
host
in-
ven-
tory.

{INVENTORY.POC.PRIMARY.PHONE.A<1-
9>}

X X X X Primary
POC
phone
A
field
in
host
in-
ven-
tory.

{INVENTORY.POC.PRIMARY.PHONE.B<1-
9>}

X X X X Primary
POC
phone
B
field
in
host
in-
ven-
tory.

{INVENTORY.POC.PRIMARY.SCREEN<1-
9>}

X X X X Primary
POC
screen
name
field
in
host
in-
ven-
tory.

{INVENTORY.POC.SECONDARY.CELL<1-
9>}

X X X X Secondary
POC
cell
field
in
host
in-
ven-
tory.

{INVENTORY.POC.SECONDARY.EMAIL<1-
9>}

X X X X Secondary
POC
email
field
in
host
in-
ven-
tory.

870

{INVENTORY.POC.SECONDARY.NAME<1-
9>}

X X X X Secondary
POC
name
field
in
host
in-
ven-
tory.

{INVENTORY.POC.SECONDARY.NOTES<1-
9>}

X X X X Secondary
POC
notes
field
in
host
in-
ven-
tory.

{INVENTORY.POC.SECONDARY.PHONE.A<1-
9>}

X X X X Secondary
POC
phone
A
field
in
host
in-
ven-
tory.

{INVENTORY.POC.SECONDARY.PHONE.B<1-
9>}

X X X X Secondary
POC
phone
B
field
in
host
in-
ven-
tory.

{INVENTORY.POC.SECONDARY.SCREEN<1-
9>}

X X X X Secondary
POC
screen
name
field
in
host
in-
ven-
tory.

871

{INVENTORY.SERIALNO.A<1-
9>}

X X X X Serial
num-
ber
A
field
in
host
in-
ven-
tory.
{PROFILE.SERIALNO<1-9>}
is
dep-
re-
cated.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
{INVENTORY.SERIALNO.B<1-
9>}

X X X X Serial
num-
ber
B
field
in
host
in-
ven-
tory.

{INVENTORY.SITE.ADDRESS.A<1-
9>}

X X X X Site
ad-
dress
A
field
in
host
in-
ven-
tory.

{INVENTORY.SITE.ADDRESS.B<1-
9>}

X X X X Site
ad-
dress
B
field
in
host
in-
ven-
tory.

{INVENTORY.SITE.ADDRESS.C<1-
9>}

X X X X Site
ad-
dress
C
field
in
host
in-
ven-
tory.

872

{INVENTORY.SITE.CITY<1-
9>}

X X X X Site
city
field
in
host
in-
ven-
tory.

{INVENTORY.SITE.COUNTRY<1-
9>}

X X X X Site
coun-
try
field
in
host
in-
ven-
tory.

{INVENTORY.SITE.NOTES<1-
9>}

X X X X Site
notes
field
in
host
in-
ven-
tory.

{INVENTORY.SITE.RACK<1-
9>}

X X X X Site
rack
lo-
ca-
tion
field
in
host
in-
ven-
tory.

{INVENTORY.SITE.STATE<1-
9>}

X X X X Site
state/province
field
in
host
in-
ven-
tory.

{INVENTORY.SITE.ZIP<1-
9>}

X X X X Site
ZIP/postal
field
in
host
in-
ven-
tory.

873

{INVENTORY.SOFTWARE<1-
9>}

X X X X Software
field
in
host
in-
ven-
tory.
{PROFILE.SOFTWARE<1-9>}
is
dep-
re-
cated.

{INVENTORY.SOFTWARE.APP.A<1-
9>}

X X X X Software
ap-
pli-
ca-
tion
A
field
in
host
in-
ven-
tory.

{INVENTORY.SOFTWARE.APP.B<1-
9>}

X X X X Software
ap-
pli-
ca-
tion
B
field
in
host
in-
ven-
tory.

{INVENTORY.SOFTWARE.APP.C<1-
9>}

X X X X Software
ap-
pli-
ca-
tion
C
field
in
host
in-
ven-
tory.

{INVENTORY.SOFTWARE.APP.D<1-
9>}

X X X X Software
ap-
pli-
ca-
tion
D
field
in
host
in-
ven-
tory.

874

{INVENTORY.SOFTWARE.APP.E<1-
9>}

X X X X Software
ap-
pli-
ca-
tion
E
field
in
host
in-
ven-
tory.

{INVENTORY.SOFTWARE.FULL<1-
9>}

X X X X Software
(Full
de-
tails)
field
in
host
in-
ven-
tory.

{INVENTORY.TAG<1-
9>}

X X X X Tag
field
in
host
in-
ven-
tory.
{PROFILE.TAG<1-9>}
is
dep-
re-
cated.

{INVENTORY.TYPE<1-
9>}

X X X X Type
field
in
host
in-
ven-
tory.
{PROFILE.DEVICETYPE<1-9>}
is
dep-
re-
cated.

{INVENTORY.TYPE.FULL<1-
9>}

X X X X Type
(Full
de-
tails)
field
in
host
in-
ven-
tory.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

875

{INVENTORY.URL.A<1-
9>}

X X X X URL
A
field
in
host
in-
ven-
tory.

{INVENTORY.URL.B<1-
9>}

X X X X URL
B
field
in
host
in-
ven-
tory.

{INVENTORY.URL.C<1-
9>}

X X X X URL
C
field
in
host
in-
ven-
tory.

{INVENTORY.VENDOR<1-
9>}

X X X X Vendor
field
in
host
in-
ven-
tory.

{ITEM.DESCRIPTION<1-
9>}

X X X X Description
of
the
Nth
item
in
the
trig-
ger
ex-
pres-
sion
that
caused
a
no-
tifi-
ca-
tion.
Sup-
ported
since
2.0.0.

876

{ITEM.ID<1-
9>}

X X X X Numeric
ID
of
the
Nth
item
in
the
trig-
ger
ex-
pres-
sion
that
caused
a
no-
tifi-
ca-
tion.
Sup-
ported
since
1.8.12.

{ITEM.KEY<1-
9>}

X X X X Key
of
the
Nth
item
in
the
trig-
ger
ex-
pres-
sion
that
caused
a
no-
tifi-
ca-
tion.
Sup-
ported
since
2.0.0.
{TRIGGER.KEY}
is
dep-
re-
cated.

877

{ITEM.KEY.ORIG<1-
9>}

X X X X Original
key
(with
macros
not
ex-
panded)
of
the
Nth
item
in
the
trig-
ger
ex-
pres-
sion
that
caused
a
no-
tifi-
ca-
tion.
Sup-
ported
since
2.0.6.

878

{ITEM.LASTVALUE<1-
9>}

X X The
lat-
est
value
of
the
Nth
item
in
the
trig-
ger
ex-
pres-
sion
that
caused
a
no-
tifi-
ca-
tion.
It
will
re-
solve
to
*UN-
KNOWN*
in
the
fron-
tend
if
the
lat-
est
his-
tory
value
has
been
col-
lected
more
than
the
ZBX_HISTORY_PERIOD
time
ago
(de-
fined
in
de-
fines.inc.php).
Supported
since
1.4.3.
It is
alias
to
{{HOST.HOST}:{ITEM.KEY}.last()}

879

{ITEM.LOG.AGE<1-
9>}

X Age
of
the
log
item
event.

{ITEM.LOG.DATE<1-
9>}

X Date
of
the
log
item
event.

{ITEM.LOG.EVENTID<1-
9>}

X ID
of
the
event
in
the
event
log.
For
Win-
dows
event
log
mon-
itor-
ing
only.

{ITEM.LOG.NSEVERITY<1-
9>}

X Numeric
sever-
ity
of
the
event
in
the
event
log.
For
Win-
dows
event
log
mon-
itor-
ing
only.

880

{ITEM.LOG.SEVERITY<1-
9>}

X Verbal
sever-
ity
of
the
event
in
the
event
log.
For
Win-
dows
event
log
mon-
itor-
ing
only.

{ITEM.LOG.SOURCE<1-
9>}

X Source
of
the
event
in
the
event
log.
For
Win-
dows
event
log
mon-
itor-
ing
only.

{ITEM.LOG.TIME<1-
9>}

X Time
of
the
log
item
event.

{ITEM.NAME<1-
9>}

X X X X Name
of
the
Nth
item
in
the
trig-
ger
ex-
pres-
sion
that
caused
a
no-
tifi-
ca-
tion.

881

{ITEM.NAME.ORIG<1-
9>}

X X X X Original
name
(with
macros
not
ex-
panded)
of
the
Nth
item
in
the
trig-
ger
ex-
pres-
sion
that
caused
a
no-
tifi-
ca-
tion.
Sup-
ported
since
2.0.6.

882

{ITEM.STATE<1-
9>}

X The
lat-
est
state
of
the
Nth
item
in
the
trig-
ger
ex-
pres-
sion
that
caused
a
no-
tifi-
ca-
tion.
Pos-
si-
ble
val-
ues:
Not
sup-
ported
and
Nor-
mal.
Supported
since
2.2.0.

883

{ITEM.VALUE<1-
9>}

X X Resolved
to
ei-
ther:
1)
the
his-
tori-
cal
(at-
the-
time-
of-
event)
value
of
the
Nth
item
in
the
trig-
ger
ex-
pres-
sion,
if
used
in
the
con-
text
of
trig-
ger
sta-
tus
change,
for
ex-
am-
ple,
when
dis-
play-
ing
events
or
send-
ing
no-
tifi-
ca-
tions.
2)
the
lat-
est
value
of
the
Nth
item
in
the
trig-
ger
ex-
pres-
sion,
if
used
with-
out
the
con-
text
of
trig-
ger
sta-
tus
change,
for
ex-
am-
ple,
when
dis-
play-
ing
a
list
of
trig-
gers
in a
pop-
up
se-
lec-
tion
win-
dow.
In
this
case
works
the
same
as
{ITEM.LASTVALUE}
In
the
first
case
it
will
re-
solve
to
*UN-
KNOWN*
if
the
his-
tory
value
has
al-
ready
been
deleted
or
has
never
been
stored.
In
the
sec-
ond
case,
and
in
the
fron-
tend
only,
it
will
re-
solve
to
*UN-
KNOWN*
if
the
lat-
est
his-
tory
value
has
been
col-
lected
more
than
the
ZBX_HISTORY_PERIOD
time
ago
(de-
fined
in
de-
fines.inc.php).
Supported
since
1.4.3.

884

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
{LLDRULE.DESCRIPTION} X Description

of
the
low-
level
dis-
cov-
ery
rule
which
caused
a
no-
tifi-
ca-
tion.
Supported
since
2.2.0.

{LLDRULE.ID} X Numeric
ID
of
the
low-
level
dis-
cov-
ery
rule
which
caused
a
no-
tifi-
ca-
tion.
Supported
since
2.2.0.

{LLDRULE.KEY} X Key
of
the
low-
level
dis-
cov-
ery
rule
which
caused
a
no-
tifi-
ca-
tion.
Supported
since
2.2.0.

885

{LLDRULE.KEY.ORIG} X Original
key
(with
macros
not
ex-
panded)
of
the
low-
level
dis-
cov-
ery
rule
which
caused
a
no-
tifi-
ca-
tion.
Supported
since
2.2.0.

{LLDRULE.NAME} X Name
of
the
low-
level
dis-
cov-
ery
rule
which
caused
a
no-
tifi-
ca-
tion.
Supported
since
2.2.0.

886

{LLDRULE.NAME.ORIG} X Original
name
(with
macros
not
ex-
panded)
of
the
low-
level
dis-
cov-
ery
rule
which
caused
a
no-
tifi-
ca-
tion.
Supported
since
2.2.0.

{LLDRULE.STATE} X The
lat-
est
state
of
the
low-
level
dis-
cov-
ery
rule.
Pos-
si-
ble
val-
ues:
Not
sup-
ported
and
Nor-
mal.
Supported
since
2.2.0.

{MAP.ID} X Network
map
ID.

{NODE.ID<1-
9>}

X X X X X X

{NODE.NAME<1-
9>}

X X X X X X

887

{PROXY.NAME<1-
9>}

X X X X X X Name
of
the
proxy.
Re-
solves
to
ei-
ther:
1)
proxy
of
the
Nth
item
in
the
trig-
ger
ex-
pres-
sion
(in
trigger-
based
no-
tifi-
ca-
tions).
You
may
use
in-
dexed
macros
here,
like
{PROXY.NAME1},
{PROXY.NAME2},
etc.
2)
proxy,
which
ex-
e-
cuted
dis-
cov-
ery
(in
dis-
cov-
ery
no-
tifi-
ca-
tions).
Use
{PROXY.NAME}
here,
with-
out
in-
dex-
ing.
3)
proxy
to
which
an
ac-
tive
agent
reg-
is-
tered
(in
auto-
registration
no-
tifi-
ca-
tions).
Use
{PROXY.NAME}
here,
with-
out
in-
dex-
ing.
Supported
since
1.8.4.

888

{TIME}X X X X X X Current
time
in
hh:mm:ss.

{TRIGGER.DESCRIPTION}X X Trigger
de-
scrip-
tion.
Sup-
ported
since
2.0.4.
Starting
with
2.2.0,
all
macros
sup-
ported
in a
trig-
ger
de-
scrip-
tion
will
be
ex-
panded
if
{TRIGGER.DESCRIPTION}
is
used
in
no-
tifi-
ca-
tion
text.
{TRIGGER.COMMENT}
is
dep-
re-
cated.

889

{TRIGGER.EVENTS.ACK}X X Number
of
ac-
knowl-
edged
events
for
a
map
ele-
ment
in
maps,
or
for
the
trig-
ger
which
gen-
er-
ated
cur-
rent
event
in
no-
tifi-
ca-
tions.
Sup-
ported
since
1.8.3.

{TRIGGER.EVENTS.PROBLEM.ACK}X X Number
of
ac-
knowl-
edged
PROB-
LEM
events
for
all
trig-
gers
dis-
re-
gard-
ing
their
state.
Sup-
ported
since
1.8.3.

890

{TRIGGER.EVENTS.PROBLEM.UNACK}X X Number
of
un-
ac-
knowl-
edged
PROB-
LEM
events
for
all
trig-
gers
dis-
re-
gard-
ing
their
state.
Sup-
ported
since
1.8.3.

891

{TRIGGER.EVENTS.UNACK}X X Number
of
un-
ac-
knowl-
edged
events
for
a
map
ele-
ment
in
maps,
or
for
the
trig-
ger
which
gen-
er-
ated
cur-
rent
event
in
no-
tifi-
ca-
tions.
Sup-
ported
in
map
ele-
ment
la-
bels
since
1.8.3.

892

{TRIGGER.HOSTGROUP.NAME}X X A
sorted
(by
SQL
query),
comma-
space
sep-
a-
rated
list
of
host
groups
in
which
the
trig-
ger
is
de-
fined.
Sup-
ported
since
2.0.6.

{TRIGGER.PROBLEM.EVENTS.PROBLEM.ACK} X Number
of
ac-
knowl-
edged
PROB-
LEM
events
for
trig-
gers
in
PROB-
LEM
state.
Sup-
ported
since
1.8.3.

893

{TRIGGER.PROBLEM.EVENTS.PROBLEM.UNACK} X Number
of
un-
ac-
knowl-
edged
PROB-
LEM
events
for
trig-
gers
in
PROB-
LEM
state.
Sup-
ported
since
1.8.3.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
{TRIGGER.EXPRESSION}X X Trigger

ex-
pres-
sion.
Sup-
ported
since
1.8.12.

{TRIGGER.ID}X X X Numeric
trig-
ger
ID
which
trig-
gered
this
ac-
tion.
Supported
in
trig-
ger
URLs
since
Zab-
bix
1.8.8.

{TRIGGER.NAME}X X Name
of
the
trig-
ger.

894

{TRIGGER.NAME.ORIG}X X Original
name
(with
macros
not
ex-
panded)
of
the
trig-
ger.
Sup-
ported
since
2.0.6.

{TRIGGER.NSEVERITY}X X Numerical
trig-
ger
sever-
ity.
Pos-
si-
ble
val-
ues:
0 -
Not
clas-
si-
fied,
1 -
In-
for-
ma-
tion,
2 -
Warn-
ing,
3 -
Av-
er-
age,
4 -
High,
5 -
Dis-
as-
ter.
Supported
start-
ing
from
Zab-
bix
1.6.2.

895

{TRIGGER.SEVERITY}X X Trigger
sever-
ity
name.
Can
be
de-
fined
in
Ad-
min-
is-
tra-
tion
→
Gen-
eral
→
Trig-
ger
sever-
i-
ties.

{TRIGGER.STATE} X The
lat-
est
state
of
the
trig-
ger.
Pos-
si-
ble
val-
ues:
Un-
known
and
Nor-
mal.
Supported
since
2.2.0.

{TRIGGER.STATUS}X Current
trig-
ger
value.
Can
be
ei-
ther
PROB-
LEM
or
OK.
{STATUS}
is
dep-
re-
cated.

896

{TRIGGER.TEMPLATE.NAME}X X A
sorted
(by
SQL
query),
comma-
space
sep-
a-
rated
list
of
tem-
plates
in
which
the
trig-
ger
is
de-
fined,
or
*UN-
KNOWN*
if
the
trig-
ger
is
de-
fined
in a
host.
Sup-
ported
since
2.0.6.

{TRIGGER.URL}X X Trigger
URL.

{TRIGGER.VALUE}X X Current
trig-
ger
nu-
meric
value:
0 -
trig-
ger
is
in
OK
state,
1 -
trig-
ger
is in
PROB-
LEM
state.

897

{TRIGGERS.UNACK} X Number
of
un-
ac-
knowl-
edged
trig-
gers
for
a
map
ele-
ment,
dis-
re-
gard-
ing
trig-
ger
state.
A
trig-
ger
is
con-
sid-
ered
to
be
un-
ac-
knowl-
edged
if at
least
one
of
its
PROB-
LEM
events
is
un-
ac-
knowl-
edged.

898

{TRIGGERS.PROBLEM.UNACK} X Number
of
un-
ac-
knowl-
edged
PROB-
LEM
trig-
gers
for
a
map
ele-
ment.
A
trig-
ger
is
con-
sid-
ered
to
be
un-
ac-
knowl-
edged
if at
least
one
of
its
PROB-
LEM
events
is
un-
ac-
knowl-
edged.
Supported
since
1.8.3.

899

{TRIGGERS.ACK} X Number
of
ac-
knowl-
edged
trig-
gers
for
a
map
ele-
ment,
dis-
re-
gard-
ing
trig-
ger
state.
A
trig-
ger
is
con-
sid-
ered
to
be
ac-
knowl-
edged
if
all
of
it’s
PROB-
LEM
events
are
ac-
knowl-
edged.
Supported
since
1.8.3.

900

{TRIGGERS.PROBLEM.ACK} X Number
of
ac-
knowl-
edged
PROB-
LEM
trig-
gers
for
a
map
ele-
ment.
A
trig-
ger
is
con-
sid-
ered
to
be
ac-
knowl-
edged
if
all
of
it’s
PROB-
LEM
events
are
ac-
knowl-
edged.
Supported
since
1.8.3.

{host:key.func(param)}X X4 X9 X7 Simple
macros,
as
used
in
build-
ing
trig-
ger
ex-
pres-
sions.

901

{$MACRO} X X X8 X X X X X User-
definable
macros.
Supported
in
item
and
trig-
ger
names
since
1.8.4.
Supported
in
global
script
com-
mands
and
con-
fir-
ma-
tion
texts
since
Zab-
bix
2.2.0.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Footnotes
1 Macros for map labels are supported since 1.8.
2 The {HOST.*} macros supported in item key parameters will resolve to the interface that is selected for the item. When used
in items without interfaces they will resolve to either the Zabbix agent, SNMP, JMX or IPMI interface of the host in this order of
priority, since Zabbix 2.2.16. In Zabbix 2.0.3-2.2.15 they will not resolve when used in items without interfaces e.g. ”Zabbix agent
(active)”, ”Calculated” etc.
3 In remote commands, global scripts, interface IP/DNS fields and web scenarios the macro will resolve to the main agent interface,
however, if it is not present, the main SNMP interface will be used. If SNMP is also not present, the main JMX interface will be used.
If JMX is not present either, the main IPMI interface will be used.
4 This macro is supported in icon labels and link labels in maps. Only the avg, last, max and min functions, with seconds as
parameter are supported in this macro.
5 Supported since 2.0.3.
6 Supported since Zabbix 2.2.0. {HOST.*} macros and user-defined macros {$MACRO} are supported in web scenario Name and
Variables fields and in scenario step Name, URL, Post and Required string fields. {$MACRO} is also supported in web scenario
Authentication (user and password), Agent and HTTP proxy fields and in the scenario step Required status codes field.
7 Supported since Zabbix 2.2.0. Only the avg, last,max andmin functions, with seconds as parameter are supported within this
macro in graph names. The {HOST.HOST<1-9>} macro can be used as host within the macro. For example:

* {Cisco switch:ifAlias[{#SNMPINDEX}].last()}
* %%{{HOST.HOST}:ifAlias[{#SNMPINDEX}].last()}%%

8 Only in trigger expression constants and function parameters.
9 While supported to build trigger expressions, simple macros may not be used inside each other.

Additional support for user macros

In addition to the locations listed, user-definable macros since Zabbix 2.0 are supported in numerous other locations:

• Hosts
– Interface IP/DNS

902

– Interface port

• Passive proxy
– Interface port

• Items and item prototypes
– SNMPv3 context name
– SNMPv3 security name
– SNMPv3 auth pass
– SNMPv3 priv pass
– SNMPv1/v2 community
– SNMP OID
– SNMP port
– SSH username
– SSH public key
– SSH private key
– SSH password
– Telnet username
– Telnet password
– Calculated item formula
– Trapper item ”Allowed hosts” field (since Zabbix 2.2)

• Discovery

* SNMPv3 context name
* SNMPv3 security name
* SNMPv3 auth pass
* SNMPv3 priv pass
* SNMPv1/v2 community
* SNMP OID

Macros used in low-level discovery

There is a type of macro used within the low-level discovery function - {#MACRO}. It is a macro that is used in an LLD rule and
returns real values of file system names, network interfaces and SNMP OIDs.

These macros can be used for creating item, trigger and graph prototypes. Then, when discovering real file systems, network
interfaces etc., these macros are substituted with real values and are the basis for creating real items, triggers and graphs.

These macros are also used in creating host and host group prototypes in virtual machine discovery.

LLD macros can be used:

• for item prototypes in
– names
– key parameters
– SNMP OIDs
– calculated item formulas
– SSH and Telnet scripts
– database monitoring SQL queries
– descriptions (supported since 2.2.0)

• for trigger prototypes in
– names
– expressions (insofar as when referencing an item key prototype and as standalone constants)
– descriptions (supported since 2.2.0)

• for graph prototypes in
– names

• for host prototypes (supported since 2.2.0) in
– names
– visible names
– host group prototype names
– (see the full list)

Some low-level discovery macros come ”pre-packaged” with the LLD function in Zabbix - {#FSNAME}, {#FSTYPE}, {#IFNAME},
{#SNMPINDEX}, {#SNMPVALUE}. However, adhering to these names is not compulsory when creating a custom low-level discovery
rule. Then you may use any other LLD macro name and refer to that name.

903

8 Setting time periods

1 Format

To set a time period, the following format has to be used:

d-d,hh:mm-hh:mm

You can specify more than one time period using a semicolon (;) separator:

d-d,hh:mm-hh:mm;d-d,hh:mm-hh:mm...

2 Description

Symbol Description

d Day of the week: 1 - Monday, 2 - Tuesday ,... , 7 - Sunday
hh Hours: 00-24
mm Minutes: 00-59

3 Default

Empty time period specification equals 01-07,00:00-24:00, which is the default value.

Attention:
The upper limit of a time period is not included. Thus, if you specify 09:00-18:00 the last second included in the time period
is 17:59:59. This is true starting from version 1.8.7, for everything, while Working time has always worked this way.

4 Examples

Working hours. Monday - Friday from 9:00 till 18:00:

1-5,09:00-18:00

Working hours plus weekend. Monday - Friday from 9:00 till 18:00 and Saturday, Sunday from 10:00 till 16:00:

1-5,09:00-18:00;6-7,10:00-16:00

9 Command execution

Zabbix uses common functionality to execute user parameters, remote commands, system.run[] items without the ”nowait” flag,
scripts (alert, external and global) and some internal commands.

The command/script is executed similarly on both Unix and Windows platforms:

1. Zabbix (the parent process) creates a pipe for communication
2. Zabbix sets the pipe as the output for the to-be-created child process
3. Zabbix creates the child process (runs the command/script)
4. A new process group (in Unix) or a job (in Windows) is created for the child process
5. Zabbix reads from the pipe until timeout occurs or no one is writing to the other end (ALL handles/file descriptors have been
closed). Note that the child process can create more processes and exit before they exit or close the handle/file descriptor.

6. If the timeout has not been reached, Zabbix waits until the initial child process exits or timeout occurs
7. At this point it is assumed that everything is done and the whole process tree (i.e. the process group or the job) is terminated

Attention:
Steps 5-7 do not refer to remote commands as they are executed with a ”nowait” flag.

Attention:
Zabbix assumes that a command/script has done processing when the initial child process has exited AND no other process
is still keeping the output handle/file descriptor open. When processing is done, ALL created processes are terminated.

All double quotes and backslashes in the command are escaped with backslashes and the command is enclosed in double quotes.

Read more about user parameters, remote commands, alert scripts.

904

10 Recipes for monitoring

General

Monitoring server availability

At least three methods (or combination of all methods) may be used in order to monitor availability of a server.

• ICMP ping (”icmpping” key)
• ”zabbix[host,agent,available]” item
• trigger function nodata() for monitoring the availability of hosts that use active checks only

Sending alerts via WinPopUps

WinPopUps maybe very useful if you’re running Windows OS and want to get quick notification from Zabbix. It could be good
addition for email-based alert messages. Details about enabling of WinPopUps can be found at http://www.zabbix.com/forum/
showthread.php?t=2147.

Monitoring specific applications

AS/400

IBM AS/400 platform can be monitored using SNMP. More information is available at http://publib-b.boulder.ibm.com/Redbooks.nsf/
RedbookAbstracts/sg244504.html?Open.

MySQL

Several user parameters can be used for the monitoring of MySQL in the agent configuration file: /usr/local/etc/zabbix_agentd.conf

Set of parameters for monitoring MySQL server (v3.23.42 and later)
Change -u and add -p if required
#UserParameter=mysql.ping,mysqladmin -uroot ping|grep alive|wc -l
#UserParameter=mysql.uptime,mysqladmin -uroot status|cut -f2 -d":"|cut -f2 -d" "
#UserParameter=mysql.threads,mysqladmin -uroot status|cut -f3 -d":"|cut -f2 -d" "
#UserParameter=mysql.questions,mysqladmin -uroot status|cut -f4 -d":"|cut -f2 -d" "
#UserParameter=mysql.slowqueries,mysqladmin -uroot status|cut -f5 -d":"|cut -f2 -d" "
#UserParameter=mysql.qps,mysqladmin -uroot status|cut -f9 -d":"|cut -f2 -d" "
#UserParameter=mysql.version,mysql -V

• mysql.ping

Check whether MySQL is alive.

Result: 0 - not started 1 - alive

• mysql.uptime

Number of seconds MySQL is running.

• mysql.threads

Number of MySQL threads.

• mysql.questions

Number of processed queries.

• mysql.slowqueries

Number of slow queries.

• mysql.qps

Queries per second.

• mysql.version

Version of MySQL. For example: mysql Ver 14.14 Distrib 5.1.53, for pc-linux-gnu (i686)

For additional information see also the userparameter_mysql.conf file in conf/zabbix_agentd directory.

Mikrotik routers

Use SNMP agent provided by Mikrotik. See http://www.mikrotik.com for more information.

WIN32

905

http://www.zabbix.com/forum/showthread.php?t=2147
http://www.zabbix.com/forum/showthread.php?t=2147
http://publib-b.boulder.ibm.com/Redbooks.nsf/RedbookAbstracts/sg244504.html?Open
http://publib-b.boulder.ibm.com/Redbooks.nsf/RedbookAbstracts/sg244504.html?Open
http://www.mikrotik.com

Use Zabbix W32 agent included (pre-compiled) into Zabbix distribution.

Tuxedo

Tuxedo command line utilities tmadmin and qmadmin can be used in definition of a UserParameter in order to return per
server/service/queue performance counters and availability of Tuxedo resources.

Informix

Standard Informix utility onstat can be used for monitoring of virtually every aspect of Informix database. Also, Zabbix can retrieve
information provided by Informix SNMP agent.

HP OpenView

Zabbix can be configured to send messages to OpenView server. The following steps must be performed:

Step 1

Define new media.

The media will execute a script which will send required information to OpenView.

Step 2

Define new user.

The user has to be linked with the media.

Step 3

Configure actions.

Configure actions to send all (or selected) trigger status changes to the user.

Step 4

Write media script.

The script will have the following logic. If trigger is ON, then execute OpenView command opcmsg -id application=<application>
msg_grp=<msg_grp> object=<object> msg_text=<text>. The command will return unique message ID which has to be stored
somewhere, preferrably in a new table of ZABBIX database. If trigger is OFF then opcmack <message id> has to be executed with
message ID retrieved from the database.

Refer to OpenView official documentation for more details about opcmsg and opcmack. The media script is not given here.

11 Performance tuning

Attention:
This is a work in progress.

Overview

It is very important to have Zabbix system properly tuned for maximum performance.

Hardware

General advice on hardware:

• Use fastest processor available
• SCSI or SAS is better than IDE (performance of IDE disks may be significantly improved by using utility hdparm) and SATA
• 15K RPM is better than 10K RPM which is better than 7200 RPM
• Use fast RAID storage
• Use fast Ethernet adapter
• Having more memory is always better

Operating system

• Use latest (stable!) version of OS
• Exclude unnecessary functionality from kernel
• Tune kernel parameters

906

Zabbix configuration parameters

Many parameters may be tuned to get optimal performance.

zabbix_server

StartPollers

General rule - keep value of this parameter as low as possible. Every additional instance of zabbix_server adds known overhead,
in the same time, parallelism is increased. Optimal number of instances is achieved when queue, on average, contains minimum
number of parameters (ideally, 0 at any given moment). This value can be monitored by using internal check zabbix[queue].

Note:
See the ”See also” section at the bottom of this page to find out how to configure optimal count of zabbix processes.

DebugLevel

Optimal value is 3.

DBSocket

MySQL only. It is recommended to use DBSocket for connection to the database. That is the fastest and the most secure way.

Database engine

This is probably the most important part of Zabbix tuning. Zabbix heavily depends on the availability and performance of database
engine.

• use fastest database engine, i.e. MySQL or PostgreSQL
• use stable release of a database engine
• rebuild MySQL or PostgreSQL from sources to get maximum performance
• follow performance tuning instructions taken from MySQL or PostgreSQL documentation
• for MySQL, use InnoDB table structure
• ZABBIX works at least 1.5 times faster (comparing to MyISAM) if InnoDB is used. This is because of increased parallelism.
However, InnoDB requires more CPU power.

• tuning the database server for the best performance is highly recommended.
• keep database tables on different hard disks
• ’history’, ’history_str, ’items’ ’functions’, triggers’, and ’trends’ are most heavily used tables.
• for large installations keeping MySQL temporary files in tmpfs is:

– MySQL >= 5.5: not recommended (MySQL bug #58421)
– MySQL < 5.5: recommended

GUI debugging

Problems related to the frontend performance may be diagnosed using the frontend debug mode.

General advice

• monitor required parameters only
• tune ’Update interval’ for all items. Keeping a small update interval may be good for nice graphs, however, this may overload
Zabbix

• tune parameters for default templates
• tune housekeeping parameters
• do not monitor parameters which return the same information.
• avoid the use of triggers with long period given as function argument. For example, max(3600) will be calculated significantly
slower than max(60).

Viewing Zabbix process performance with ”ps” and ”top”

Zabbix 2.2 introduces a new feature - processes change their commandlines to display current activity and meaningful statistics,
like:

UID PID PPID C STIME TTY TIME CMD
zabbix22 4584 1 0 14:55 ? 00:00:00 zabbix_server -c /home/zabbix22/zabbix_server.conf
zabbix22 4587 4584 0 14:55 ? 00:00:00 zabbix_server: configuration syncer [synced configuration in 0.041169 sec, idle 60 sec]
zabbix22 4588 4584 0 14:55 ? 00:00:00 zabbix_server: db watchdog [synced alerts config in 0.018748 sec, idle 60 sec]
zabbix22 4608 4584 0 14:55 ? 00:00:00 zabbix_server: timer #1 [processed 3 triggers, 0 events in 0.007867 sec, 0 maint.periods in 0.005677 sec, idle 30 sec]
zabbix22 4609 4584 0 14:55 ? 00:00:00 zabbix_server: timer #2 [processed 2 triggers, 0 events in 0.004209 sec, idle 30 sec]
zabbix22 4637 4584 0 14:55 ? 00:00:01 zabbix_server: history syncer #4 [synced 35 items in 0.166198 sec, idle 5 sec]
zabbix22 4657 4584 0 14:55 ? 00:00:00 zabbix_server: vmware collector #1 [updated 0, removed 0 VMware services in 0.000004 sec, idle 5 sec]
zabbix22 4670 1 0 14:55 ? 00:00:00 zabbix_proxy -c /home/zabbix22/zabbix_proxy.conf

907

https://bugs.mysql.com/bug.php?id=58421

zabbix22 4673 4670 0 14:55 ? 00:00:00 zabbix_proxy: configuration syncer [synced config 15251 bytes in 0.111861 sec, idle 60 sec]
zabbix22 4674 4670 0 14:55 ? 00:00:00 zabbix_proxy: heartbeat sender [sending heartbeat message success in 0.013643 sec, idle 30 sec]
zabbix22 4688 4670 0 14:55 ? 00:00:00 zabbix_proxy: icmp pinger #1 [got 1 values in 1.811128 sec, idle 5 sec]
zabbix22 4690 4670 0 14:55 ? 00:00:00 zabbix_proxy: housekeeper [deleted 9870 records in 0.233491 sec, idle 3599 sec]
zabbix22 4701 4670 0 14:55 ? 00:00:08 zabbix_proxy: http poller #2 [got 1 values in 0.024105 sec, idle 1 sec]
zabbix22 4707 4670 0 14:55 ? 00:00:00 zabbix_proxy: history syncer #4 [synced 22 items in 0.008565 sec, idle 5 sec]
zabbix22 4738 1 0 14:55 ? 00:00:00 zabbix_agentd -c /home/zabbix22/zabbix_agentd.conf
zabbix22 4739 4738 0 14:55 ? 00:00:00 zabbix_agentd: collector [idle 1 sec]
zabbix22 4740 4738 0 14:55 ? 00:00:00 zabbix_agentd: listener #1 [waiting for connection]
zabbix22 4741 4738 0 14:55 ? 00:00:00 zabbix_agentd: listener #2 [processing request]

The main process is an exception. Instead of current activity the original commandline is shown. This helps to distinguish processes
on systems with multiple Zabbix instances.

This feature is not implemented for Microsoft Windows.

If logging level is set to DebugLevel=4 these activity and statistics messages are also written into log file.

Linux

On Linux systems ps command can be used together with watch command for observing how Zabbix is doing. For example, to
run ps command 5 times per second to see process activities:

watch -n 0.2 ps -fu zabbix

To show only Zabbix proxy and agent processes:

watch -tn 0.2 'ps -f -C zabbix_proxy -C zabbix_agentd'

To show only history syncer processes:

watch -tn 0.2 'ps -fC zabbix_server | grep history'

The ps command produces a wide output (approximately 190 columns) as some activity messages are long. If your terminal has
less than 190 columns of text you can try

watch -tn 0.2 'ps -o cmd -C zabbix_server -C zabbix_proxy -C zabbix_agentd'

to display only commandlines without UID, PID, start time etc.

top command also can be used for observing Zabbix performance. Pressing ’c’ key in top shows processes with their command-
lines. In our tests on Linux top and atop correctly displayed changing activities of Zabbix processes, but htop was not displaying
changing activities.

BSD systems

If watch command is not installed, a similar effect can be achieved with

while [1]; do ps x; sleep 0.2; clear; done

AIX, HP-UX

If watch command is not available, one can try

while [1]; do ps -fu zabbix; sleep 1; clear; done

Solaris

By default the ps command does not show changing activities. One option is to use /usr/ucb/ps instead. If watch command is
not installed, a periodically updated list of processes can be shown with

while [1]; do /usr/ucb/ps gxww; sleep 1; clear; done

On Solaris 11:

• /usr/ucb/ps is not installed by default. You may need to install ucb package, e.g. pkg install compatibility/ucb,
• if Zabbix daemon has been started by privileged user its activities are not shown to non-privileged user.
• the sleep command accepts not only whole seconds but also fractions of second (e.g. sleep 0.2).

See also

1. How to configure optimal count of zabbix processes

908

http://blog.zabbix.com/monitoring-how-busy-zabbix-processes-are/457

12 Version compatibility

Supported agents

Older agents from Zabbix 1.0, Zabbix 1.1.x, Zabbix 1.4.x, Zabbix 1.6.x, Zabbix 1.8.x and Zabbix 2.0.x can still be used with Zabbix
2.2. It does not require any configuration changes on agent side.

However, to take full advantage of new and improved items, improved performance and reduced memory usage, use the latest
2.2 agent.

Supported Zabbix proxies

Only Zabbix 2.2 proxies may be used with Zabbix server. Zabbix 1.6, 1.8 and 2.0 proxies are not supported with Zabbix 2.2 server.

Zabbix 2.2 proxies may only be used with Zabbix 2.2 server. They will not work with 2.0 or older Zabbix server.

Supported distributed monitoring nodes

All distributed monitoring nodes must be of the same major version. 2.0 nodes are not supported together with 2.2 nodes.

Supported XML files

XML files, exported with 1.8 and 2.0, are supported for import in Zabbix 2.2.

Attention:
In Zabbix 1.8 XML export format, trigger dependencies are stored by name only. If there are several triggers with the same
name (for example, having different severities and expressions) that have a dependency defined between them, it is not
possible to import them. Such dependencies must be manually removed from the XML file and re-added after import.

13 Database error handling

If Zabbix detects that the backend database is not accessible, it will send a notification message and continue the attempts to
connect to the database. For some database engines, specific error codes are recognised.

MySQL

• CR_CONN_HOST_ERROR
• CR_SERVER_GONE_ERROR
• CR_CONNECTION_ERROR
• CR_SERVER_LOST
• CR_UNKNOWN_HOST
• ER_SERVER_SHUTDOWN
• ER_ACCESS_DENIED_ERROR
• ER_ILLEGAL_GRANT_FOR_TABLE
• ER_TABLEACCESS_DENIED_ERROR
• ER_UNKNOWN_ERROR

14 Zabbix sender dynamic link library for Windows

In a Windows environment applications can send data to Zabbix server/proxy directly by using the Zabbix sender dynamic link
library (zabbix_sender.dll) instead of having to launch an external process (zabbix_sender.exe).

The dynamic link library with the development files is located in bin\winXX\dev folders. To use it, include the zabbix_sender.h
header file and link with the zabbix_sender.lib library. An example file with Zabbix sender API usage can be found in
build\win32\examples\zabbix_sender folder.

The following functionality is provided by the Zabbix sender dynamic link library:

int zabbix_sender_send_values(const char *address, unsigned short port,const char *source, const zabbix_sender_value_t *values, int count,char **result);

char **result);‘{.c}

909

The following data structures are used by the Zabbix sender dynamic link library:

typedef struct
{

/* host name, must match the name of target host in Zabbix */
char *host;
/* the item key */
char *key;
/* the item value */
char *value;

}
zabbix_sender_value_t;

typedef struct
{

/* number of total values processed */
int total;
/* number of failed values */
int failed;
/* time in seconds the server spent processing the sent values */
double time_spent;

}
zabbix_sender_info_t;

15 Other issues

Login and systemd

We recommend creating a zabbix user as system user, that is, without ability to log in. Some users ignore this recommendation
and use the same account to log in (e. g. using SSH) to host running Zabbix. This might crash Zabbix daemon on log out. In this
case you will get something like the following in Zabbix server log:

zabbix_server [27730]: [file:'selfmon.c',line:375] lock failed: [22] Invalid argument
zabbix_server [27716]: [file:'dbconfig.c',line:5266] lock failed: [22] Invalid argument
zabbix_server [27706]: [file:'log.c',line:238] lock failed: [22] Invalid argument

and in Zabbix agent log:

zabbix_agentd [27796]: [file:'log.c',line:238] lock failed: [22] Invalid argument

This happens because of default systemd setting RemoveIPC=yes configured in /etc/systemd/logind.conf. When you log
out of the system the semaphores created by Zabbix previously are removed which causes the crash.

A quote from systemd documentation:

RemoveIPC=

Controls whether System V and POSIX IPC objects belonging to the user shall be removed when the
user fully logs out. Takes a boolean argument. If enabled, the user may not consume IPC resources
after the last of the user's sessions terminated. This covers System V semaphores, shared memory
and message queues, as well as POSIX shared memory and message queues. Note that IPC objects of the
root user and other system users are excluded from the effect of this setting. Defaults to "yes".

There are 2 solutions to this problem:

1. (recommended) Stop using zabbix account for anything else than Zabbix processes, create a dedicated account for other
things.

2. (not recommended) Set RemoveIPC=no in /etc/systemd/logind.conf and reboot the system.

Zabbix manpages

These are Zabbix manpages for Zabbix processes.

910

zabbix_agentd

Section: Maintenance Commands (8)
Updated: 10 November 2011
Index Return to Main Contents

NAME

zabbix_agentd - Zabbix agent daemon.

SYNOPSIS

zabbix_agentd [-hpV] [-c <config-file>] [-t <item key>]

DESCRIPTION

zabbix_agentd is a daemon for monitoring of various server parameters.

Options -c, --config <config-file>
Use the alternate config-file instead of the default one. Absolute path should be specified.

-p, --print
Print known items and exit.

-t, --test <item key>
Test single item and exit.

-h, --help
Display this help and exit.

-V, --version
Output version information and exit.

FILES

/usr/local/etc/zabbix_agentd.conf
Default location of Zabbix agent configuration file (if not modified during compile time).

SEE ALSO

zabbix_get(8), zabbix_proxy(8), zabbix_sender(8), zabbix_server(8)

AUTHOR

Alexei Vladishev <alex@zabbix.com>

Index

NAME

SYNOPSIS

DESCRIPTION
Options

FILES

SEE ALSO

911

AUTHOR

This document was created by man2html, using the manual pages.
Time: 14:45:37 GMT, July 23, 2012

zabbix_get

Section: Maintenance Commands (8)
Updated: 5 July 2011
Index Return to Main Contents

NAME

zabbix_get - Zabbix get utility.

SYNOPSIS

zabbix_get [-hV] [-s <host name or IP>] [-p <port number>] [-I <IP address>] [-k <item key>]

DESCRIPTION

zabbix_get is a command line utility for getting data from a remote Zabbix agent.

Options -s, --host <host name or IP>
Specify host name or IP address of a host.

-p, --port <port number>
Specify port number of agent running on the host. Default is 10050.

-I, --source-address <IP address>
Specify source IP address.

-k, --key <item key>
Specify key of item to retrieve value for.

-h, --help
Display this help and exit.

-V, --version
Output version information and exit.

EXAMPLES

zabbix_get -s 127.0.0.1 -p 10050 -k system.cpu.load[all,avg1]

SEE ALSO

zabbix_agentd(8), zabbix_proxy(8), zabbix_sender(8), zabbix_server(8)

AUTHOR

Alexei Vladishev <alex@zabbix.com>

912

Index

NAME

SYNOPSIS

DESCRIPTION
Options

EXAMPLES

SEE ALSO

AUTHOR

This document was created by man2html, using the manual pages.
Time: 14:47:43 GMT, July 23, 2012

zabbix_proxy

Section: Maintenance Commands (8)
Updated: 10 November 2011
Index Return to Main Contents

NAME

zabbix_proxy - Zabbix proxy daemon.

SYNOPSIS

zabbix_proxy [-hV] [-c <config-file>] [-R <option>]

DESCRIPTION

zabbix_proxy is a daemon used for remote data collection.

Options -c, --config <config-file>
Use the alternate config-file instead of the default one. Absolute path should be specified.

-R, --runtime-control <option>
Perform administrative functions according to option.

Runtime control options

config_cache_reload
Reload configuration cache. Ignored if cache is being currently loaded. Active Zabbix proxy will connect to the Zabbix server and
request configuration data. Default configuration file (unless -c option is specified) will be used to find PID file and signal will be
sent to process, listed in PID file.

-h, --help
Display this help and exit.

-V, --version
Output version information and exit.

913

FILES

/usr/local/etc/zabbix_proxy.conf
Default location of Zabbix proxy configuration file (if not modified during compile time).

SEE ALSO

zabbix_agentd(8), zabbix_get(8), zabbix_sender(8), zabbix_server(8)

AUTHOR

Alexei Vladishev <alex@zabbix.com>

Index

NAME

SYNOPSIS

DESCRIPTION

Options

FILES

SEE ALSO

AUTHOR

This document was created by man2html, using the manual pages.
Time: 14:48:15 GMT, July 23, 2012

zabbix_sender

Section: Maintenance Commands (8)
Updated: 16 October 2015
Index Return to Main Contents

NAME

zabbix_sender - Zabbix sender utility.

SYNOPSIS

zabbix_sender [-hpzvIV] {-kso | [-T] -i <inputfile>} [-c <config-file>]

DESCRIPTION

zabbix_sender is a command line utility for sending performance data to a remote Zabbix server. On the Zabbix server an item
of type Zabbix trapper should be created with corresponding key. Note that incoming values will only be accepted from hosts
specified in Allowed hosts field for this item.

914

Options -c, --config <config-file>
Use config-file. Zabbix sender reads server details from the agent configuration file. By default Zabbix sender does not read any
configuration file. Absolute path should be specified. Only parameters Hostname, ServerActive and SourceIP are supported.
First entry from the ServerActive parameter is used.

-z, --zabbix-server <server>
Hostname or IP address of Zabbix server. If a host is monitored by a proxy, proxy hostname or IP address should be used instead.

-p, --port <port>
Specify port number of server trapper running on the server. Default is 10051.

-s, --host <host>
Specify agent hostname as registered in Zabbix frontend. Host IP address and DNS name will not work.

-I, --source-address <IP>
Specify source IP address.

-k, --key <key>
Specify item key to send value to.

-o, --value <value>
Specify value.

-i, --input-file <inputfile>
Load values from input file. Specify - as <inputfile> to read values from standard input.

Each value must be specified on its own line. Each line must contain 3 whitespace delimited entries: <hostname> <key>
<value>, where ”hostname” is the name of monitored host as registered in Zabbix frontend, ”key” is target item key and ”value”
- the value to send. Specify - as <hostname> to use hostname from agent configuration file or from --host argument.

An example of a line of an input file:

”Linux DB3” db.connections 43

The value type must be correctly set in item configuration of Zabbix frontend. Zabbix sender will send up to 250 values in one
connection. Contents of the input file must be in the UTF-8 encoding. All values from the input file are sent in a sequential order
top-down. Entries must be formatted using the following rules:

•
Quoted and non-quoted entries are supported.

•
Double-quote is the quoting character.

•
Entries with whitespace must be quoted.

•
Double-quote and backslash characters inside quoted entry must be escaped with a backslash.

•
Escaping is not supported in non-quoted entries.

•
Linefeed escape sequences (\n) are supported in quoted strings.

•
Linefeed escape sequences are trimmed from the end of an entry.

-T, --with-timestamps
This option can be only used with --input-file option.

Each line of the input file must contain 4 whitespace delimited entries: <hostname> <key> <timestamp> <value>. Times-
tamp should be specified in Unix timestamp format. If target item has triggers referencing it, all timestamps must be in an
increasing order, otherwise event calculation will not be correct.

An example of a line of the input file:

”Linux DB3” db.connections 1429533600 43

For more details please see option --input-file.

If a timestamped value is sent for a host that is in a “no data” maintenance type then this value will be dropped however it is
possible to send a timestamped value in for an expired maintenance period and it will be accepted.

915

-r, --real-time
Send values one by one as soon as they are received. This can be used when reading from standard input.

-v, --verbose
Verbose mode, -vv for more details.

-h, --help
Display this help and exit.

-V, --version
Output version information and exit.

EXIT STATUS

The exit status is 0 if the values were sent and all of them were successfully processed by server. If data was sent, but processing
of at least one of the values failed, the exit status is 2. If data sending failed, the exit status is 1.

EXAMPLES

zabbix_sender -c /etc/zabbix/zabbix_agentd.conf -s Monitored Host -k mysql.queries -o 342.45

Send 342.45 as the value formysql.queries key in Monitored Host host using Zabbix server defined in agent daemon configu-
ration file.

zabbix_sender -z 192.168.1.113 -i data_values.txt

Send values from file data_values.txt to server with IP 192.168.1.113. Host names and keys are defined in the file.

echo - hw.serial.number 1287872261 SQ4321ASDF | zabbix_sender -c /usr/local/etc/zabbix_agentd.conf -T -i -

Send a timestamped value from the commandline to Zabbix server, specified in the agent daemon configuration file. Dash in the
input data indicates that hostname also should be used from the same configuration file.

echo ’Zabbix server trapper.item ’ | zabbix_sender -z 192.168.1.113 -p 10000 -i -

Send empty value of an item to the Zabbix server with IP address 192.168.1.113 on port 10000 from the commandline. Empty
values must be indicated by double empty double quotes.

SEE ALSO

zabbix_agentd(8), zabbix_get(8), zabbix_proxy(8), zabbix_server(8)

AUTHOR

Alexei Vladishev <alex@zabbix.com>

Index

NAME

SYNOPSIS

DESCRIPTION
Options

EXIT STATUS

EXAMPLES

SEE ALSO

AUTHOR

916

This document was created by man2html, using the manual pages.
Time: 09:44:44 GMT, February 14, 2017

zabbix_server

Section: Maintenance Commands (8)
Updated: 10 November 2011
Index Return to Main Contents

NAME

zabbix_server - Zabbix server daemon.

SYNOPSIS

zabbix_server [-hV] [-c <config-file>] [-n <nodeid>] [-R <option>]

DESCRIPTION

zabbix_server is the core daemon of Zabbix software.

Options -c, --config <config-file>
Use the alternate config-file instead of the default one. Absolute path should be specified.

-n, --new-nodeid <nodeid>
Convert database data to new nodeid. Does not start the server. Run this only once.

-R, --runtime-control <option>
Perform administrative functions according to option.

Runtime control options

config_cache_reload
Reload configuration cache. Ignored if cache is being currently loaded. Default configuration file (unless -c option is specified) will
be used to find PID file and signal will be sent to process, listed in PID file.

-h, --help
Display this help and exit.

-V, --version
Output version information and exit.

FILES

/usr/local/etc/zabbix_server.conf
Default location of Zabbix server configuration file (if not modified during compile time).

SEE ALSO

zabbix_agentd(8), zabbix_get(8), zabbix_proxy(8), zabbix_sender(8)

AUTHOR

Alexei Vladishev <alex@zabbix.com>

917

Index

NAME

SYNOPSIS

DESCRIPTION

Options

FILES

SEE ALSO

AUTHOR

This document was created by man2html, using the manual pages.
Time: 14:49:10 GMT, July 23, 2012

918

	Zabbix Manual
	Copyright notice
	1. Introduction
	1 Manual structure
	2 What is Zabbix
	3 Zabbix features
	4 Zabbix overview
	5 What's new in Zabbix 2.2.0
	6 What's new in Zabbix 2.2.1
	7 What's new in Zabbix 2.2.2
	8 What's new in Zabbix 2.2.3
	9 What's new in Zabbix 2.2.4
	10 What's new in Zabbix 2.2.5
	11 What's new in Zabbix 2.2.6
	12 What's new in Zabbix 2.2.7
	13 What's new in Zabbix 2.2.8
	14 What's new in Zabbix 2.2.9
	15 What's new in Zabbix 2.2.10
	16 What's new in Zabbix 2.2.11
	17 What's new in Zabbix 2.2.12
	18 What's new in Zabbix 2.2.13
	19 What's new in Zabbix 2.2.15
	20 What's new in Zabbix 2.2.16
	21 What's new in Zabbix 2.2.17
	22 What's new in Zabbix 2.2.18
	23 What's new in Zabbix 2.2.19
	24 What's new in Zabbix 2.2.20
	25 What's new in Zabbix 2.2.21
	26 What's new in Zabbix 2.2.22
	27 What's new in Zabbix 2.2.23
	28 What's new in Zabbix 2.2.24

	2. Zabbix concepts
	1 Zabbix definitions
	2 Server
	3 Agent
	4 Proxy
	5 Java gateway
	6 Sender
	7 Get

	3. Installation
	1 Getting Zabbix
	2 Requirements
	3 Installation from packages
	4 Installation from sources
	5 Upgrade procedure
	6 Known issues
	7 Template changes
	8 Upgrade notes for 2.2.0
	9 Upgrade notes for 2.2.1
	10 Upgrade notes for 2.2.2
	11 Upgrade notes for 2.2.3
	12 Upgrade notes for 2.2.4
	13 Upgrade notes for 2.2.5
	14 Upgrade notes for 2.2.6
	15 Upgrade notes for 2.2.7
	16 Upgrade notes for 2.2.8
	17 Upgrade notes for 2.2.9
	18 Upgrade notes for 2.2.10
	19 Upgrade notes for 2.2.11
	20 Upgrade notes for 2.2.12
	21 Upgrade notes for 2.2.13
	22 Upgrade notes for 2.2.14
	23 Upgrade notes for 2.2.15
	24 Upgrade notes for 2.2.16
	25 Upgrade notes for 2.2.17
	26 Upgrade notes for 2.2.18
	27 Upgrade notes for 2.2.19
	28 Upgrade notes for 2.2.20
	29 Upgrade notes for 2.2.21
	30 Upgrade notes for 2.2.22
	31 Upgrade notes for 2.2.23

	4. Quickstart
	1 Login and configuring user
	2 New host
	3 New item
	4 New trigger
	5 Receiving problem notification
	6 New template

	5. Zabbix appliance
	6. Configuration
	1 Hosts and host groups
	2 Items
	3 Triggers
	4 Events
	5 Visualisation
	6 Templates
	7 Notifications upon events
	8 Macros
	9 Users and user groups

	7. IT services
	8. Web monitoring
	1 Web monitoring items
	2 Real life scenario

	9. Virtual machine monitoring
	Virtual machine discovery key fields

	10. Maintenance
	11. Regular expressions
	12. Event acknowledgement
	13. Configuration export/import
	Groups
	Hosts

	14. Discovery
	1 Network discovery
	2 Active agent auto-registration
	3 Low-level discovery

	15. Distributed monitoring
	1 Proxies
	2 Nodes

	16. Web interface
	1 Frontend sections
	2 User profile
	3 Global search
	4 Frontend maintenance mode
	5 Page parameters
	6 Definitions
	7 Creating your own theme
	8 Debug mode

	17. API
	Method reference
	Appendix 1. Reference commentary
	Appendix 2. Changes from 2.0 to 2.2
	Zabbix API changes in 2.2

	18. Appendixes
	1 Frequently asked questions / Troubleshooting
	2 Installation
	3 Daemon configuration
	4 Protocols
	5 Items
	6 Triggers
	7 Macros
	8 Setting time periods
	9 Command execution
	10 Recipes for monitoring
	11 Performance tuning
	12 Version compatibility
	13 Database error handling
	14 Zabbix sender dynamic link library for Windows
	15 Other issues

	Zabbix manpages
	zabbix_agentd
	NAME
	SYNOPSIS
	DESCRIPTION
	FILES
	SEE ALSO
	AUTHOR
	Index

	zabbix_get
	NAME
	SYNOPSIS
	DESCRIPTION
	EXAMPLES
	SEE ALSO
	AUTHOR
	Index

	zabbix_proxy
	NAME
	SYNOPSIS
	DESCRIPTION
	FILES
	SEE ALSO
	AUTHOR
	Index

	zabbix_sender
	NAME
	SYNOPSIS
	DESCRIPTION
	EXIT STATUS
	EXAMPLES
	SEE ALSO
	AUTHOR
	Index

	zabbix_server
	NAME
	SYNOPSIS
	DESCRIPTION
	FILES
	SEE ALSO
	AUTHOR
	Index

