
Forecasting trigger functions

March 26, 2021

First things first. Forecasting is not magic, it’s mostly statistics. You’ve probably heard that “There
are three kinds of lies: lies, damned lies, and statistics.” Of course, conclusions based on statistics cannot
be always exactly correct, but if used intelligently statistics can be a very powerful tool. The following
Guide will hopefully assist you in using Zabbix predictive capabilities wisely and efficiently. You can also
go into Details of the implementation if you feel the need. And if you are really keen on knowing all the
underlying mathematics, welcome to the Reference!

1 Guide

1.1 Visualising the predictions

At the present moment we cannot display the graph of expression Zabbix server fits to your data to make
predictions (if you really need to see it go straight to the Section 4) but you can see and plot the end
result of forecast if you create a calculated item like this:

forecast(host:item,1h,,1h)

Or like this:

timeleft(host:item,1h,,0)

Problem is, forecast() shows now what is expected value of item after some time, so it’s tricky to
compare forecast and original item and conclude whether forecasting works. Create one more calculated
item:

last(host:item_forecast,#1,1h)

Now you can create a graph with both your original item and shifted item forecast. (You will need to
wait an hour until last() becomes supported.) Figure 1 shows example of what you will see.

Go to WolframAlpha or use your favourite mathematical package (Mathematica, Matlab, GNU Oc-
tave, R, Calc or even Excel. . .) to play with different fits and learn more about different mathematical
functions supported by Zabbix. Fitting algorithms are basically the same everywhere, so you will be able
to transfer obtained knowledge from math package to Zabbix.

1.2 Choosing appropriate interval and forecast horizon

You should not make a forecast for say a year based on the data of last hour. Even minuscule jiggling in
last hour data will result in huge oscillations in forecast.

You should not base a forecast for say a minute on the data of last month. If the direction your
system is going in changed in last five minutes such forecast will still be going in the old direction.

Sweet spot is somewhere in between. Where exactly? This may depend on many factors. Start your
search with ratio 1:1 between your interval and forecast horizon. Try different ratios and choose which
one works better. Figure 3 gives some idea of what forecasting with different interval:horizon ratios might
look like.

Note: Exponential and higher degree polynomial are fast growing functions. Using long forecast
horizon may result in huge return values.

1

https://www.zabbix.com/documentation/3.0/manual/config/triggers/prediction
http://www.zabbix.com/
https://www.zabbix.com/documentation/3.0/manual/config/items/itemtypes/calculated
http://www.wolframalpha.com/
http://www.wolfram.com/mathematica/
http://se.mathworks.com/products/matlab/
https://www.gnu.org/software/octave/
https://www.gnu.org/software/octave/
https://www.r-project.org/
https://www.libreoffice.org/discover/calc/
https://products.office.com/en-us/excel

Figure 1: Red line on graph shows original item values, light green line shows forecast(item,30m,,30m)
and dark green line shows shifted forecast obtained using last(item.forecast,#1,30m). Dashed orange
lines show interval of 30 minutes on which we base forecast. Solid blue line shows best fit and dashed
blue line extrapolates it 30 minutes ahead. Blue arrow shows that value “from the future” appears on
graph “now”, but purple arrow shows shifting it back with last(). From the picture we see here we can
conclude that available memory on the system unfortunately is unpredictable.

1.3 Reliability of the predictions (and how it’s related to interval)

Make sure there are enough values in the interval. This will make your forecast more stable in case of
outliers or substantial noise and randomness in the data. How many values is enough? Again, there is
no answer for everybody. More values is better but do not overdo it because more values mean more
calculation and even worse than that are “memory effects” (See Figure 3). And unfortunately forecast
error for M points is proportional to 1√

M
, so increasing interval won’t pay off as well as you probably

expect in terms of increasing precision.

1.3.1 Full interval of “good fit” is needed for the prediction to be reliable

Long intervals are good for accuracy, but they cause a lag when something goes “not as planned”. Let’s
consider an example.

{host:vfs.fs.size[/,free].timeleft(1h,,0)} < 1h

This trigger expression will warn you if you are going to run out of disk space less than in one hour time.
Imagine that you are already low on disk space but you can live with that for days probably because you
do not write huge amounts of data on the disk. At least you weren’t during the past hour. But in the last
minute someone very nasty came and started downloading big files from the Internet. The above trigger
will not fire because it still “remembers” that you had not been writing to the disk something substantial
for a long time. Last minute won’t contribute much if your forecast is based on one hour interval. It will
take approximately one hour for timeleft() to get back on track of returning accurate prognosis.

Another aspect is that typical real-life monitoring data has a lot of “breaks”, things change quickly
in the modern world. Too quickly for 18th century forecasting methodology sometimes. Consider free
disk space. It goes down at a steady pace and the timeleft() above is telling you that you will need
a new disk after a month. Then you (or anybody else) delete a substantially large file, free disk space
reading jumps up and timeleft() thinks you will never run out of disk space. And it will be telling you
this very fairy tale for about one hour ! This is too long, anything can happen in this hour. We need to
get back on rails as soon as possible. And we won’t believe that we will never run out of disk space, of
course we will.

(timeleft("vfs.fs.size[/,free]",1h,,0) < 100d)

*

timeleft("vfs.fs.size[/,free]",1h,,0)

+

(timeleft("vfs.fs.size[/,free]",1h,,0) >= 100d)

*

(

(timeleft("vfs.fs.size[/,free]",30m,,0) < 100d)

2

https://www.zabbix.com/documentation/3.0/manual/config/triggers/expression

*

timeleft("vfs.fs.size[/,free]",30m,,0)

+

(timeleft("vfs.fs.size[/,free]",30m,,0) >= 100d)

*

(

(timeleft("vfs.fs.size[/,free]",15m,,0) < 100d)

*

timeleft("vfs.fs.size[/,free]",15m,,0)

+

(timeleft("vfs.fs.size[/,free]",15m,,0) >= 100d)

*

(

(timeleft("vfs.fs.size[/,free]",7m,,0) < 100d)

*

timeleft("vfs.fs.size[/,free]",7m,,0)

+

(timeleft("vfs.fs.size[/,free]",7m,,0) >= 100d)

*

(

100d

)

)

)

)

This is a “hackish” expression for calculated item, because it relies on “true” being equal to 1 and “false”
being equal to 0. But it can be rewritten as a completely legal trigger expression.

{host:vfs.fs.size[/,free].timeleft(1h,,0)} < 100d

and

{host:vfs.fs.size[/,free].timeleft(1h,,0)} < 1h

or

{host:vfs.fs.size[/,free].timeleft(1h,,0)} >= 100d

and

(

{host:vfs.fs.size[/,free].timeleft(30m,,0)} < 100d

and

{host:vfs.fs.size[/,free].timeleft(30m,,0)} < 1h

or

{host:vfs.fs.size[/,free].timeleft(30m,,0)} >= 100d

and

(

{host:vfs.fs.size[/,free].timeleft(15m,,0)} < 100d

and

{host:vfs.fs.size[/,free].timeleft(15m,,0)} < 1h

or

{host:vfs.fs.size[/,free].timeleft(15m,,0)} >= 100d

and

(

{host:vfs.fs.size[/,free].timeleft(7m,,0)} < 100d

and

{host:vfs.fs.size[/,free].timeleft(7m,,0)} < 1h

)

)

)

This trigger will warn you if you are going to run out of free disk space in less than one hour based
on the most accurate (based on the longest interval) prognosis which is not pointing into infinity. Fig-
ure 2 depicts how “out-of-the-box” timeleft("vfs.fs.size[/,free]",1h,,0) and more sophisticated
expression respond to the described situation. Ordinary timeleft() stays “deaf” for almost one hour,
whereas “complicated timeleft” never exceeds a reasonable mark of 100 days (does not spoil your graphs)

3

https://support.zabbix.com/browse/ZBX-9905

Figure 2: Comparison of response to the same situation of ordinary timeleft() and more complicated
combination of timeleft()’s (see text for more details). Note that ∼ 30 thousand years (in the upper
graph) is ∼ 1012 seconds—our synonym of “never”.

and just after 6–7 minutes we get more or less reasonable estimate which gets more and more precise as
time goes.

Typical behaviour of linear fit “crawling” over sudden drops or “steps” in otherwise very steady and
predictable data can be seen in Figure 3. Since the “drop” is literally sudden and there had been no
evidence it would happen right until the moment when it happened all forecasts “lag” forecasting horizon
(20 minutes in this case) behind the “drop”. Then they all “react” and the shorter is the interval the
more vigorous is reaction. After some time all forecasts are back on track the last being the forecast with
the longest interval.

1.4 When and why to use time shift?

Of course, to make contemporary prognosis it is highly recommended to use the most recent data available.
But sometimes you want to use particular time interval for your prediction and time shift allows you to
do that.

For example, you can make prediction as if there were no recent data and then compare this “forecast
from the past” with latest values you actually gathered. If the difference is not too big then your forecast
without time shift is likely to be correct.

({host:item.forecast(1h,1h,1h,,avg)} - {host:item.avg(1h)}) *

({host:item.forecast(1h,1h,1h,,avg)} - {host:item.avg(1h)}) /

{host:item.avg(1h)} / {host:item.avg(1h)} < 0.01 and

{host:item.forecast(1h,,1h)} > limit

This trigger will fire if you have very good chances to go over the limit in the upcoming hour. (Actually,
for this example to work, “time” should be counted from “now”-“time shift” and “avg” applied on
interval from “now”-“time shift” to “now”-“time shift”+“time”. In the current implementation “time”
is always counted from “now” and interval from “now” to “now”+“time” is analysed. Take a look at
ZBXNEXT-2972 if you’d like to have forecast validation capabilities.)

4

https://support.zabbix.com/browse/ZBXNEXT-2972

Figure 3: Original item values are plotted in red, light lines are results of forecast() and darker ones are
results of forecast() shifted with last(). Fitting intervals, fitted straight lines and their extrapolation
are shown in the middle of the “drop”.

As mentioned above you should use longer intervals with more data points to obtain more accurate
long-term forecasts. But forecasts based on longer intervals can be very slow to respond to the rapid
change in trend. So you would normally use longer interval but switch to shorter interval automatically
in the time of change. (Replace exact comparisons with approximate like in the example above.)

{host:item.forecast(1h,,1h)} > limit and

{host:item.forecast(30m,30m,1h)} = {host:item.forecast(30m,,1h)} or

{host:item.forecast(30m,,1h)} > limit and

{host:item.forecast(30m,30m,1h)} <> {host:item.forecast(30m,,1h)}

This trigger expression will look at precise but inert forecast, but skip it in favour of less precise but more
agile forecast if trend change occurred in the last hour.

1.5 Determining which fit to use

In general case, these words of statistician George Box may be very useful:

Now it would be very remarkable if any system existing in the real world could be exactly
represented by any simple model. However, cunningly chosen parsimonious models often do
provide remarkably useful approximations. For example, the law PV = RT relating pressure
P , volume V and temperature T of an ”ideal” gas via a constant R is not exactly true for
any real gas, but it frequently provides a useful approximation and furthermore its structure
is informative since it springs from a physical view of the behavior of gas molecules.

For such a model there is no need to ask the question ”Is the model true?”. If ”truth” is to
be the ”whole truth” the answer must be ”No”. The only question of interest is ”Is the model
illuminating and useful?”.

If you have insights on how your monitored system behaves and which mathematical patterns it
follows and Zabbix forecasting trigger functions support such fits—use them!

Otherwise start with linear fit (which is default) and move on from there if you need. If you clearly see
that your data is not straight but is curved you may want to try polynomial fit. Start with polynomial2
(quadratic parabola), switch to polynomial3 (cubic parabola) if polynomial2 does not satisfy you, and so
on. . . But, please, keep in mind that higher order polynomials can give rise to many unpleasant numeric
complications.

Power fit is very adaptive. It can be as straight as x = kt or as fast growing as x = ktn or as downhill
as x = k

tn depending on input data. May be useful when your data has “ups” and “downs”.
Exponential fit grows very, very quickly. It may be used for peak detection.
It is more complicated to come up with a good example where to use logarithmic fit, but if your

system behaves like this—use logarithmic fit and let us know about your experience!

5

https://en.wikipedia.org/wiki/All_models_are_wrong
https://en.wikipedia.org/wiki/Linear_function
https://en.wikipedia.org/wiki/Polynomial#Polynomial_functions
https://en.wikipedia.org/wiki/Runge's_phenomenon
https://en.wikipedia.org/wiki/Wilkinson's_polynomial
https://en.wikipedia.org/wiki/Power_function
https://en.wikipedia.org/wiki/Exponential_function
https://en.wikipedia.org/wiki/Logarithm

1.6 When and why to use other mode than “value”

Modes other than “value” are there to emulate existing min(), max(), avg() and delta() trigger func-
tions for time intervals in the future. Perhaps you already have a trigger like that which works perfectly
fine:

{host:item.max(5m)} > limit

Based on this trigger you can make predictive one like:

{host:item.forecast(10m,,5m,,max)} > limit

Note: Modes “min”, “max”, “avg”, “delta” do not forecast how your data will fluctuate in the future!
This are simply minimum, maximum, average and delta of the fitted expression in the interval from “now”
to “now” + “time”.

These additional modes do not provide something particularly interesting for monotonous and stable
fits (namely linear, logarithmic, exponential, power) but for polynomials it is safer to use “min” and
“max” (for lower and upper limits correspondingly) since polynomials may have multiple “humps” which
will be out of your field of view if you just look at the “value”. And thanks to unstable nature of
polynomial fits these “humps” can grow “out of nowhere”, again, outside of your field of view as new
values come into your interval.

1.7 Dealing with periodic behaviour

Fit options currently supported by Zabbix do not allow any periodicity in forecasts. How to act if you
have (more or less) periodic pattern in data? Say server load usually increases in working hours Monday
to Friday but stays low during nights and weekends.

One option is to forget about periodicity and predict average values. Provide a sufficiently long
interval containing 5–10 periods and you can forecast how will average value of the item evolve in long-
term scenario.

Another option is to restrict yourself with short-term forecasts. This time you need your interval and
forecasting horizon to be 5–10 times shorter than one period.

But you can also think outside of the box and combine usual trigger functions with forecasting ones
to write something like that:

{host:item.forecast(7d,,1d)} +

({host:item.last(,6d)} - {host:item.forecast(7d,,-6d)}) > limit

Note: Support for negative parameters needed to write such expressions. Consider voting for ZBXNEXT-
2969.

2 Details of the implementation

2.1 Trends data is not used

No trend data at the moment, only history. Therefore, adjust your value cache size accordingly if you are
planning to use forecasting capabilities. Do not check items which need longer intervals too frequently. Or
create additional calculated item which performs some averaging before data is passed to the forecasting
function.

2.2 Min, max values of the returned floats

Return value of forecast() is in range from −
(
1012 − 10−4

)
to 1012 − 10−4. If the actual prediction

is outside this range it will be cropped to ±
(
1012 − 10−4

)
. In case of error return value is −1, trigger

function will not become not supported.
Return value of timeleft() is normally in range from 0 to 1012 − 10−4. If the actual time to reach

the threshold is larger or the threshold cannot be reached at all return value is 1012 − 10−4. In case of
error return value is −1, trigger function will not become not supported.

6

https://www.zabbix.com/documentation/3.0/manual/appendix/triggers/functions
https://www.zabbix.com/documentation/3.0/manual/appendix/triggers/functions
https://en.wikipedia.org/wiki/Runge's_phenomenon
https://support.zabbix.com/browse/ZBXNEXT-2969
https://support.zabbix.com/browse/ZBXNEXT-2969
https://www.zabbix.com/documentation/3.0/manual/config/items/value_cache

Table 1: Fitted expressions

“fit” x = f (t)
linear x = a+ bt

polynomialN x =
∑N

n=0 ant
n

exponential x = a exp (bt)
logarithmic x = a+ b log (t)
power x = atb

2.3 Types of mathematical errors to expect and suggestions on next steps to
recover from them

We did our best to make forecasting algorithm as robust as possible and these errors are uncommon, but
sometimes input data is really tough to work with.

1. Matrix inversion error. Matrix inversion is essential step of our least squares fitting procedure.
This usually means that you have too long interval in combination with higher degree polynomial
or huge item values. Adjust your parameters or scale down item values.

2. Polynomial root finding error. We need to find polynomial roots when we are interested in poly-
nomial minima, maxima and intersections with threshold. There are exact formulas for quadratic
equations, but for higher degree polynomials it is an iterative numerical procedure. We assume
that t is a good enough root of f (t) if |f (t)| < ε, ε = 10−6. We stop iterations when all roots are
good enough (it takes 10–15 iterations in more or less simple situations) or we hit iteration count
limit—200 iterations. You may want to tune ε and iteration count limit if you are constantly getting
this error.

3. Zero or negative value under logarithm. Item values must be positive if you want to use exponential
or power fit.

4. Numeric overflow error. Probably a mixture of very small and very large values in a combination
with higher degree polynomial. Scale item values or use different fit.

3 Reference

3.1 Model

The main idea behind forecasting is quite simple. We have data points (ti, xi), where xi are item values
and ti are corresponding timestamps. We assume that there is some law underlying our data:

xi = f (ti) + ∆xi, (1)

where ∆xi denotes error. Error can be due to our data were measured with imperfect instruments or
due to the law being far from reality. Also, errors may be purely random. Note that there is error only
for xi, because we believe ti is known exactly.

Our task now is to find f (t) and then we will be able to feed it with t values from the future and
deduce something useful about upcoming events.

To narrow our field of search we restrict f (t) to have certain looks and limited set of parameters (See
Table 1).

3.2 Least squares

The trickiest part is how we define “best fit”. We assume that ∆xi are independent identically distributed
random variables all have normal distribution:

p (∆x) =
1

σ
√

2π
exp

(
−∆x2

2σ2

)
. (2)

Distribution parameter σ is unknown to us, but it makes no problem. Let’s estimate probability, that
a specific f? (t) produced our set of data (ti, xi). Skipping constant coefficient in front of exp (. . .) for
simplicity.

P (f?) ∼
∏
i

exp

(
−∆x2i

2σ2

)
= exp

(
− 1

2σ2

∑
i

∆x2i

)
. (3)

7

https://en.wikipedia.org/wiki/Independent_and_identically_distributed_random_variables
https://en.wikipedia.org/wiki/Independent_and_identically_distributed_random_variables
https://en.wikipedia.org/wiki/Normal_distribution

Table 2: Substitutions

“fit” ξi τi at

linear xi
(
1 ti

) (
a b

)
polynomialN xi

(
1 t t2 . . . tN

) (
a0 a1 a2 . . . aN

)
exponential log (xi)

(
1 ti

) (
log (a) b

)
logarithmic xi

(
1 log (ti)

) (
a b

)
power log (xi)

(
1 log (ti)

) (
log (a) b

)

Table 3: Return values of forecast() function

“mode” forecast()

value f? (t“now” + t“time”)
max maxt“now”≤t≤t“now”+t“time”

f? (t)
min mint“now”≤t≤t“now”+t“time”

f? (t)
delta max... f

? (t)−min... f
? (t)

avg 1
t“time”

∫ t“now”+t“time”

t“now”
f? (t) dt

The best f? (t) is obviously the one which has the largest P (f?) and largest P (f?) is when
∑

i ∆x2i
is the smallest. So, to get best fit we need to minimize

∑
i (xi − f? (ti))

2
. This is called least squares

method.

3.3 Linearisation

Using matrix multiplication we can rewrite all expressions from Table 1 in a simple form:

ξ = Ta+ ∆ξ, ξ =

. . .ξi
. . .

 , T =

. . .τi
. . .

 , ∆ξ =

 . . .
∆ξi
. . .

 . (4)

The meaning of ξi, τi and a is explained in Table 2. By applying log (. . .) we distort the normal
distribution of ∆xi but usually we still get acceptable results this way. There is somewhat “hackish” way
to deal with that but we don’t use it because it’s “hackish”. Feel free to prove us wrong with a link to
proper mathematical proof of this method.

3.4 Minimization

The minimum of
∑

i ∆ξ2i = ∆ξt∆ξ is when

∂ (∆ξt∆ξ)

∂at
= 0. (5)

Since ∆ξ = ξ − Ta this yields:

∂∆ξt∆ξ

∂at
=
∂ (ξ − Ta)

t
(ξ − Ta)

∂at
=

=
∂

∂at

(
ξtξ − ξtTa− atT tξ + atT tTa

)
= −2T tξ + 2T tTa = 0. (6)

From there:
a =

(
T tT

)−1
T tξ. (7)

See proof for details.
When we have a we can make inverse substitution and get the desired f? (t).

3.5 Return values in different modes

What forecast() function should return is specified in Table 3. How it calculates these things is specified
in Table 4.

Function timeleft() obtains f? (t), then solves equation f? (t) = x“threshold”, finds the closest root
t0 > t“now” and returns t0 − t“now” (or −1 if there are no such roots). Some details on how it does this
are in Table 4.

8

https://en.wikipedia.org/wiki/Ordinary_least_squares
https://en.wikipedia.org/wiki/Ordinary_least_squares
http://mathworld.wolfram.com/LeastSquaresFittingExponential.html
https://en.wikipedia.org/wiki/Proofs_involving_ordinary_least_squares

T
ab

le
4:

E
x
ac

t
fo

rm
u

la
s

u
se

d
in

ca
lc

u
la

ti
o
n

s

li
n

ea
r

p
ol

y
n

om
ia

lN
ex

p
on

en
ti

al
lo

g
a
ri

th
m

ic
p

ow
er

f
o
r
e
c
a
s
t
(
)

va
lu

e
f
?

(t
r
)

f
?

(t
r
)

f
?

(t
r
)

f
?

(t
r
)

f
?

(t
r
)

m
ax

m
ax
{f

?
(t

l)
,f

?
(t

r
)}

*
m

ax
{f

?
(t

l)
,f

?
(t

r
)}

m
a
x
{f

?
(t

l)
,f

?
(t

r
)}

m
a
x
{f

?
(t

l)
,f

?
(t

r
)}

m
in

m
in
{f

?
(t

l)
,f

?
(t

r
)}

*
m

in
{f

?
(t

l)
,f

?
(t

r
)}

m
in
{f

?
(t

l)
,f

?
(t

r
)}

m
in
{f

?
(t

l)
,f

?
(t

r
)}

d
el

ta
|f

?
(t

l)
−
f
?

(t
r
)|

*
|f

?
(t

l)
−
f
?

(t
r
)|

|f
?

(t
l)
−
f
?

(t
r
)|

|f
?

(t
l)
−
f
?

(t
r
)|

av
g

f
?
(t

l
)+

f
?
(t

r
)

2
F
(t

r
)−

F
(t

l
)

t r
−
t l

f
?
(t

r
)−

f
?
(t

l
)

(t
r
−
t l
)a

1
f
?

(t
r
)

+
a
1

(lo
g
(1

+
t r
−
t l

t l

) t l
t r
−
t l
−

1
) (f

?
(t

r
)t

r
−
f
?
(t

l
)t

l
)

(t
r
−
t l
)(
a
1
+
1
)
,

if
a
1
6=
−

1

e
x
p
(a

0
)
lo
g
(1

+
t
r
−

t
l

t
l

)
t r
−
t l

,
if

a
1

=
−

1

t
i
m
e
l
e
f
t
(
)

x
t
h
−
a
0

a
1
−
t l

**
lo
g
(x

t
h
)−

a
0

a
1

−
t l

ex
p
(x

t
h
−
a
0

a
1

) −t
l

ex
p
(log(

x
t
h
)−

a
0

a
1

) −t
l

W
h

er
e
f
?

is
ex

p
re

ss
io

n
fr

om
T

ab
le

1
w

it
h

“b
es

t
fi

t”
co

effi
ci

en
ts

,
t l

=
t “

n
o
w
”
,
t r

=
t “

n
o
w
”

+
t “

ti
m
e
”
,
F

(t
)

=
∑ N+

1
n
=
1

a
n
−

1
tn

n
+
C

is
p

o
ly

n
o
m

ia
l

a
n
ti

d
er

iv
a
ti

ve
,
x
th

is
“t

h
re

sh
ol

d
”,
a
i

m
ea

n
s
i-

th
el

em
en

t
of
a

fr
om

T
ab

le
2.

*
W

e
so

lv
e

df
?
(t
)

d
t

=
0

u
si

n
g

**
(w

it
h
N
′

=
N
−

1)
an

d
se

ar
ch

fo
r

m
ax

im
u

m
an

d
m

in
im

u
m

am
on

g
t l

,
t r

a
n

d
ro

o
ts

ly
in

g
in

b
et

w
ee

n
;

df
?
(t
)

d
t

=
∑ N−

1
n
=
0

(n
+

1
)
a
n
+
1
tn

.
**

E
x
ac

t
fo

rm
u

la
s

fo
r
N

=
1

(s
ee

li
n
ea

r
ca

se
)

an
d
N

=
2,

(W
ei

er
st

ra
ss

—
)D

u
ra

n
d

—
K

er
n

er
m

et
h

o
d

fo
r

3
≤
N
≤

6
.

9

https://en.wikipedia.org/wiki/Quadratic_formula
https://en.wikipedia.org/wiki/Durand%E2%80%93Kerner_method

3.6 Performance

Forecasting process is done in four stages:

1. getting data from value cache;

2. preparing data (according to Table 2);

3. least squares fitting;

4. calculating necessary return value (according to Table 3).

First step is no different from other trigger functions dealing with history (avg(), count(), delta(),
max(), min(), sum()) and takes time linearly dependent on number M of item values in a given interval.

Second step also takes linear time but different for different fits. Linear is the fastest and involves
no additional calculations. Polynomial takes more time since we need to raise every timestamp to power
1, 2, . . . , N . Exponential and logarithmic are even slower because we call expensive log () function for
either every timestamp or every item value respectively. Power fit is the slowest on this stage because we
need to log () both timestamps and item values.

Fitting is linear on M as well and identical to all fits except polynomialN for which it is N+1
2 times

slower.
Last step does not depend on M , we’ve already got f? () expression and simply analyse it. For linear,

exponential, logarithmic and power fits for forecast() in any mode and for timeleft() it is a ”single
shot” formula. Of course, simpler one for linear, more complicated one consisting of exp ()’s and log ()’s
for others. For polynomial’s forecast() in modes “value” or “avg” it is straightforward formula as well
(however, a longer one for larger N , obviously).

Things get more complicated for polynomial’s timeleft() and forecast() in modes “max”, “min”
and “delta”. But even here we’ve got formulas for smaller N (1–2 for timeleft(), 1–3 for forecast()).
For higher degrees we have no choice apart from solving equation numerically. It can take up to 200
iterations (each taking time proportional to N) with no guarantee of success in most difficult cases (but
they are very uncommon).

All in all, forecast() and timeleft() with default linear fit and polynomial2–3 are reasonably cheap
performance-wise. More exotic fits have greater performance impact but they won’t be used as widely.

4 Cross validating results from Zabbix (getting out the data
and coefficients)

To get the data out from Zabbix one can use direct queries to Zabbix database, Zabbix API or simply
copy data manually from Zabbix frontendÞMonitoringÞLatest dataÞitemÞValues.

Fitted expression is printed in server log file in human-readable form if DebugLevel is set to 4 or 5.

10

https://www.zabbix.com/documentation/3.0/manual/api

	Guide
	Visualising the predictions
	Choosing appropriate interval and forecast horizon
	Reliability of the predictions (and how it's related to interval)
	Full interval of ``good fit'' is needed for the prediction to be reliable

	When and why to use time shift?
	Determining which fit to use
	When and why to use other mode than ``value''
	Dealing with periodic behaviour

	Details of the implementation
	Trends data is not used
	Min, max values of the returned floats
	Types of mathematical errors to expect and suggestions on next steps to recover from them

	Reference
	Model
	Least squares
	Linearisation
	Minimization
	Return values in different modes
	Performance

	Cross validating results from Zabbix (getting out the data and coefficients)

